1
|
Behera J, Rahman MM, Shockey J, Kilaru A. Acyl-CoA-dependent and acyl-CoA-independent avocado acyltransferases positively influence oleic acid content in nonseed triacylglycerols. FRONTIERS IN PLANT SCIENCE 2023; 13:1056582. [PMID: 36714784 PMCID: PMC9874167 DOI: 10.3389/fpls.2022.1056582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
In higher plants, acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) catalyze the terminal step of triacylglycerol (TAG) synthesis in acyl-CoA-dependent and -independent pathways, respectively. Avocado (Persea americana) mesocarp, a nonseed tissue, accumulates significant amounts of TAG (~70% by dry weight) that is rich in heart-healthy oleic acid (18:1). The oil accumulation stages of avocado mesocarp development coincide with high expression levels for type-1 DGAT (DGAT1) and PDAT1, although type-2 DGAT (DGAT2) expression remains low. The strong preference for oleic acid demonstrated by the avocado mesocarp TAG biosynthetic machinery represents lucrative biotechnological opportunities, yet functional characterization of these three acyltransferases has not been explored to date. We expressed avocado PaDGAT1, PaDGAT2, and PaPDAT1 in bakers' yeast and leaves of Nicotiana benthamiana. PaDGAT1 complemented the TAG biosynthesis deficiency in the quadruple mutant yeast strain H1246, and substantially elevated total cellular lipid content. In vitro enzyme assays showed that PaDGAT1 prefers oleic acid compared to palmitic acid (16:0). Both PaDGAT1 and PaPDAT1 increased the lipid content and elevated oleic acid levels when expressed independently or together, transiently in N. benthamiana leaves. These results indicate that PaDGAT1 and PaPDAT1 prefer oleate-containing substrates, and their coordinated expression likely contributes to sustained TAG synthesis that is enriched in oleic acid. This study establishes a knowledge base for future metabolic engineering studies focused on exploitation of the biochemical properties of PaDGAT1 and PaPDAT1.
Collapse
Affiliation(s)
- Jyoti Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
- dNTP Laboratory, Teaneck, NJ, United States
| | - Jay Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
2
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
3
|
Hatanaka T, Tomita Y, Matsuoka D, Sasayama D, Fukayama H, Azuma T, Soltani Gishini MF, Hildebrand D. Different acyl-CoA:diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3030-3043. [PMID: 35560190 DOI: 10.1093/jxb/erac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Triacylglycerols (TAGs) are the major component of plant storage lipids such as oils. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step of the Kennedy pathway, and is mainly responsible for plant oil accumulation. We previously found that the activity of Vernonia DGAT1 was distinctively higher than that of Arabidopsis and soybean DGAT1 in a yeast microsome assay. In this study, the DGAT1 cDNAs of Arabidopsis, Vernonia, soybean, and castor bean were introduced into Arabidopsis. All Vernonia DGAT1-expressing lines showed a significantly higher oil content (49% mean increase compared with the wild-type) followed by soybean and castor bean. Most Arabidopsis DGAT1-overexpressing lines did not show a significant increase. In addition to these four DGAT1 genes, sunflower, Jatropha, and sesame DGAT1 genes were introduced into a TAG biosynthesis-defective yeast mutant. In the yeast expression culture, DGAT1s from Arabidopsis, castor bean, and soybean only slightly increased the TAG content; however, DGAT1s from Vernonia, sunflower, Jatropha, and sesame increased TAG content >10-fold more than the former three DGAT1s. Three amino acid residues were characteristically common in the latter four DGAT1s. Using soybean DGAT1, these amino acid substitutions were created by site-directed mutagenesis and substantially increased the TAG content.
Collapse
Affiliation(s)
- Tomoko Hatanaka
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoshiki Tomita
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Daisuke Matsuoka
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Daisuke Sasayama
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Tetsushi Azuma
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Mohammad Fazel Soltani Gishini
- Department of Production Engineering and Plant Genetics, Faculty of Sciences and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - David Hildebrand
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Manipulation of triacylglycerol biosynthesis in Nannochloropsis oceanica by overexpressing an Arabidopsis thaliana diacylglycerol acyltransferase gene. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wang J, Xu Y, Holic R, Yu X, Singer SD, Chen G. Improving the Production of Punicic Acid in Baker's Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9616-9624. [PMID: 34428902 DOI: 10.1021/acs.jafc.1c03256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Punicic acid (PuA) is a high-value edible conjugated fatty acid with strong bioactivities and has important potential applications in nutraceutical, pharmaceutical, feeding, and oleochemical industries. Since the production of PuA is severely limited by the fact that its natural source (pomegranate seed oil) is not readily available on a large scale, there is considerable interest in understanding the biosynthesis and accumulation of this plant-based unusual fatty acid in transgenic microorganisms to support the rational design of biotechnological approaches for PuA production via fermentation. Here, we tested the effectiveness of genetic engineering and precursor supply in PuA production in the model yeast strain Saccharomyces cerevisiae. The results revealed that the combination of precursor feeding and co-expression of selected genes in acyl channeling processes created an effective "push-pull" approach to increase PuA content, which could prove valuable in future efforts to produce PuA in industrial yeast and other microorganisms via fermentation.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Xiaochen Yu
- Diamond V, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404, United States
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
6
|
Xu Y, Caldo KMP, Singer SD, Mietkiewska E, Greer MS, Tian B, Dyer JM, Smith M, Zhou XR, Qiu X, Weselake RJ, Chen G. Physaria fendleri and Ricinus communis lecithin:cholesterol acyltransferase-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:182-196. [PMID: 33107656 DOI: 10.1111/tpj.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael S Greer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Bo Tian
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
7
|
Lin Y, Chen G, Mietkiewska E, Song Z, Caldo KMP, Singer SD, Dyer J, Smith M, McKeon T, Weselake RJ. Castor patatin-like phospholipase A IIIβ facilitates removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. PLANT MOLECULAR BIOLOGY 2019; 101:521-536. [PMID: 31549344 DOI: 10.1007/s11103-019-00915-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Castor patatin-like phospholipase A IIIβ facilitates the exclusion of hydroxy fatty acids from phosphatidylcholine in developing transgenic Arabidopsis seeds. Hydroxy fatty acids (HFAs) are industrial useful, but their major natural source castor contains toxic components. Although expressing a castor OLEATE 12-HYDROXYLASE in Arabidopsis thaliana leads to the synthesis of HFAs in seeds, a high proportion of the HFAs are retained in phosphatidylcholine (PC). Thus, the liberation of HFA from PC seems to be critical for obtaining HFA-enriched seed oils. Plant phospholipase A (PLA) catalyzes the hydrolysis of PC to release fatty acyl chains that can be subsequently channeled into triacylglycerol (TAG) synthesis or other metabolic pathways. To further our knowledge regarding the function of PLAs from HFA-producing plant species, two class III patatin-like PLA cDNAs (pPLAIIIβ or pPLAIIIδ) from castor or Physaria fendleri were overexpressed in a transgenic line of A. thaliana producing C18-HFA, respectively. Only the overexpression of RcpPLAIIIβ resulted in a significant reduction in seed HFA content with concomitant changes in fatty acid composition. Reductions in HFA content occurred in both PC and TAG indicating that HFAs released from PC were not incorporated into TAG. These results suggest that RcpPLAIIIβ may catalyze the removal of HFAs from PC in the developing seeds synthesizing these unusual fatty acids.
Collapse
Affiliation(s)
- Yingyu Lin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Okanagan Specialty Fruits Inc. (OSF), 410 Downey Road, Saskatoon, SK, S7N 4N1, Canada
| | - Ziliang Song
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - John Dyer
- USDA-ARS, Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Thomas McKeon
- USDA-ARS, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
8
|
Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1997-2006. [PMID: 29682901 PMCID: PMC6230952 DOI: 10.1111/pbi.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-β-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.
Collapse
Affiliation(s)
| | - Giulia Scaiola
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | - Jamil Molenaar
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | | | | | | | | | - Carlos Carollo
- Lab Prod Nat & Espectrometria MassasUniv Fed Mato Grosso do SulCampo GrandeMSBrazil
| | - Harro Bouwmeester
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
- Present address:
Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jules Beekwilder
- Wageningen Univ & ResWageningen Plant ResBiosciWageningenThe Netherlands
| |
Collapse
|
9
|
Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:322-348. [PMID: 26991237 DOI: 10.1111/tpj.13163] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jinjie Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | | | - Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas A Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Matt Larson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Ana P Alonso
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Arroyo-Caro JM, Mañas-Fernández A, Alonso DL, García-Maroto F. Type I Diacylglycerol Acyltransferase (MtDGAT1) from Macadamia tetraphylla: Cloning, Characterization, and Impact of Its Heterologous Expression on Triacylglycerol Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:277-285. [PMID: 26666454 DOI: 10.1021/acs.jafc.5b04805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acyltransferase enzymes have been reported as useful biotechnological tools in order to increase oil yield and modify fatty acid composition. Macadamia species are able to accumulate unusually high levels of palmitoleic acid that besides oleic acid amounts to over 80% of monounsaturated fatty acids in the seed oil. In this work, a gene encoding a type 1 acyl-CoA:diacylglycerol acyltransferase (DGAT1) was cloned from M. tetraphylla. DGAT activity of the protein encoded by MtDGAT1 was confirmed by heterologous expression in a yeast mutant. Fatty acid composition of triacylglycerols synthesized by MtDGAT1 was compared to that of DGAT1 enzymes from Arabidopsis and Echium, with the results suggesting a substrate preference for monounsaturated over polyunsaturated fatty acids. Characteristics of MtDGAT1 may contribute to biochemical mechanisms determining the particular fatty acid composition of Macadamia oil and also indicate the possibility of using this enzyme in biotechnological approaches where a reduction of polyunsaturated fatty acids in the oil is desired.
Collapse
Affiliation(s)
- José María Arroyo-Caro
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Aurora Mañas-Fernández
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Diego López Alonso
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Federico García-Maroto
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| |
Collapse
|