1
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
2
|
Yaashikaa P, Kumar PS, Varjani S, Tamilselvi S, Saravanan A. Formulation and combinatorial effect of Pseudomonas fluorescens and Bacillus coagulans as biocontrol agents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Chanratana M, Han GH, Roy Choudhury A, Sundaram S, Halim MA, Krishnamoorthy R, Kang Y, Sa T. Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development. AMB Express 2017; 7:208. [PMID: 29164352 PMCID: PMC5698239 DOI: 10.1186/s13568-017-0518-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022] Open
Abstract
Salinity is one of the major factors contributing to the loss of crop productivity and thereby impacting livelihood of people in more than 100 countries of the world and the area of land affected by salinity is increasing day by day. This will worsen due to various factors such as drought that might result in high soil salinity. Use of plant growth promoting rhizobacteria is one of the promising eco-friendly strategies for salinity stress management as part of sustainable agricultural practices. However, it requires selecting rhizobacteria with good survivability and adaptation to salt stress. In this study we report aggregation of Methylobacterium oryzae CBMB20 cells grown in media containing high C/N ratio (30:1) than in media containing low C/N ratio (7:1). Aggregated Methylobacterium oryzae CBMB20 cells exhibited enhanced tolerance to UV irradiation, heat, desiccation, different temperature regimes, oxidative stress, starvation and supported higher population in media. Poly-β-hydroxybutyrate accumulation, exopolysaccharide production, proline accumulation and biofilm formation were good at 100 mM salt concentration with good microbial cell hydrophobicity at both 50 and 100 mM than other concentrations. Both the aggregated and non-aggregated cells grown under 0-200 mM salt concentrations produced IAA even at 200 mM salt concentration with a peak at 100 mM concentration with aggregated cells producing significantly higher quantities. ACC deaminase activity was observed in all NaCl concentrations studied with gradual and drastic reduction in aggregated and non-aggregated cells over increased salt concentrations.
Collapse
Affiliation(s)
- Mak Chanratana
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Gwang Hyun Han
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Seshadri Sundaram
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
- Indegenous and Frontiers Technology Research (IFTR) Centre, Chennai, India
| | - Md. Abdul Halim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | | | - Yeongyeong Kang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| |
Collapse
|