1
|
Marey MA, Abozahra R, El-Nikhely NA, Kamal MF, Abdelhamid SM, El-Kholy MA. Transforming microbial pigment into therapeutic revelation: extraction and characterization of pyocyanin from Pseudomonas aeruginosa and its therapeutic potential as an antibacterial and anticancer agent. Microb Cell Fact 2024; 23:174. [PMID: 38867319 PMCID: PMC11170807 DOI: 10.1186/s12934-024-02438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.
Collapse
Affiliation(s)
- Moustafa A Marey
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nefertiti A El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt.
| |
Collapse
|
2
|
Mudaliar SB, Bharath Prasad AS. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges. World J Microbiol Biotechnol 2024; 40:90. [PMID: 38341389 PMCID: PMC10858844 DOI: 10.1007/s11274-024-03889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Pyocyanin is a bioactive pigment produced by Pseudomonas aeruginosa. It is an important virulence factor that plays a critical role in P. aeruginosa infections as a redox-active secondary metabolite and a quorum sensing (QS) signaling molecule. Pyocyanin production from chorismic acid requires the involvement of two homologous operons, phz1 and phz2, which are activated by QS regulatory proteins. Pyocyanin inhibits the proliferation of bacterial, fungal, and mammalian cells by inducing oxidative stress due to which it acts as a potent antibacterial, antifungal, and anticancer agent. Its potential role as a neuroprotectant needs further exploration. However, pyocyanin exacerbates the damaging effects of nosocomial infections caused by P. aeruginosa in immunocompromised individuals. Further, cystic fibrosis (CF) patients are highly susceptible to persistent P. aeruginosa infections in the respiratory system. The bacterial cells form colonies and three interconnected QS networks-pqs, las, and rhl-get activated, thus stimulating the cells to produce pyocyanin which exacerbates pulmonary complications. As an opportunistic pathogen, P. aeruginosa produces pyocyanin to impede the recovery of injuries like burn wounds through its anti-proliferative activity. Moreover, pyocyanin plays a vital role in compounding P. aeruginosa infections by promoting biofilm formation. This review begins with a brief description of the characteristics of pyocyanin, its activity, and the different aspects of its production including its biosynthesis, the role of QS, and the effect of environmental factors. It then goes on to explore the potential applications of pyocyanin as a biotherapeutic molecule while also highlighting the biomedical challenges and limitations that it presents.
Collapse
Affiliation(s)
- Samriti Balaji Mudaliar
- Department of Public Health & Genomics, Manipal School of Life Sciences (MSLS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health & Genomics, Manipal School of Life Sciences (MSLS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Kim J, Kim JC, Sang MK. Identification of isomeric cyclo(leu-pro) produced by Pseudomonas sesami BC42 and its differential antifungal activities against Colletotrichum orbiculare. Front Microbiol 2023; 14:1230345. [PMID: 37637119 PMCID: PMC10448827 DOI: 10.3389/fmicb.2023.1230345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas spp. produce various antimicrobial substances, including cyclic peptides, which have been shown to suppress fungal pathogens. In a previous study, Pseudomonas sesami BC42 was selected to control anthracnose caused by Colletotrichum orbiculare in cucumber plants, and the bioactive extract of strain BC42 inhibited fungal growth and development. In this work, preparative thin-layer chromatography was conducted to identify the antifungal compounds in the extract of strain BC42, and the portion of the extract that exhibited antifungal activity was further analyzed by gas chromatography-mass spectrometry. Three different isomers of the cyclic dipeptide, cyclo(Leu-Pro), were identified: cyclo(l-Leu-l-Pro), cyclo(d-Leu-d-Pro), and cyclo(d-Leu-l-Pro). Among these, 100 μg/mL of cyclo(l-Leu-l-Pro) significantly and more effectively inhibited the germination of conidia and appressorium formation and reduced leaf lesion size caused by C. orbiculare, relative to the control; cyclo(d-Leu-d-Pro) significantly reduced conidia germination and lesion occurrence, however, cyclo(d-Leu-l-Pro) did not exhibit antifungal activity. Therefore, the cyclo(l-Leu-l-Pro) and cyclo(d-Leu-d-Pro) derived from P. sesami BC42 may be a promising candidate for biocontrol applications in agriculture.
Collapse
Affiliation(s)
- Jiwon Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
4
|
Abdelaziz AA, Kamer AMA, Al-Monofy KB, Al-Madboly LA. Pseudomonas aeruginosa's greenish-blue pigment pyocyanin: its production and biological activities. Microb Cell Fact 2023; 22:110. [PMID: 37291560 DOI: 10.1186/s12934-023-02122-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
A subject of great interest is the bioprospecting of microorganisms and their bioactive byproducts, such as pigments. Microbial pigments have various benefits, including being safe to use due to their natural makeup, having therapeutic effects, and being produced all year round, regardless of the weather or location. Pseudomonas aeruginosa produces phenazine pigments that are crucial for interactions between Pseudomonas species and other living things. Pyocyanin pigment, which is synthesized by 90-95% of P. aeruginosa, has potent antibacterial, antioxidant, and anticancer properties. Herein, we will concentrate on the production and extraction of pyocyanin pigment and its biological use in different areas of biotechnology, engineering, and biology.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Khaled B Al-Monofy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Chamkhi I, Zwanzig J, Ibnyasser A, Cheto S, Geistlinger J, Saidi R, Zeroual Y, Kouisni L, Bargaz A, Ghoulam C. Siccibacter colletis as a member of the plant growth-promoting rhizobacteria consortium to improve faba-bean growth and alleviate phosphorus deficiency stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rhizosphere is a hot spot and a source of beneficial microorganisms known as plant growth-promoting rhizobacteria (PGPR). From the alfalfa (Medicago sativa) rhizosphere, 115 bacteria were isolated, and from the screening for PGP traits, 26 interesting isolates were selected as PGP rhizobacteria for the next tests. The objective of this study was to use a consortium of PGPR to enhance the growth of faba-bean under phosphate (P) deficiency by taking advantage of their ability to release phosphorus from rock phosphate (RP). Several examined strains were found to have a relatively high activity on P solubilization, auxin, siderophore, ammoniac production, antifungal activity, and the ability to tolerate hypersalinity and water stress. 16S rRNA gene sequencing of the collection revealed six different genera, including Bacillus (46.15%), Siccibacter (23.07%), and Acinetobacter (15.38%) which were identified as the most abundant. Three of the interesting strains (Siccibacter colletis, Enterobacter huaxiensis, and Pantoea sp.) showed high plant growth promotion traits and no antagonism with Rhizobium laguerreae. These three bacteria were retained to establish a rhizobia-including consortium. The inoculation of faba-bean plants with the consortium improved growth parameters as root and shoot dried biomasses and some physiological criteria (chlorophyll content and P uptake under low P availability conditions), and the increase reached 40%. Our study could be the first report of faba-bean growth promotion by a multi-strain PGPR-rhizobia consortium involving S. colletis, E. huaxiensis, and Pantoea sp. Thus, this consortium could be recommended for faba-bean inoculation, particularly under P-limiting conditions.
Collapse
|
6
|
Chamkhi I, El Omari N, Balahbib A, El Menyiy N, Benali T, Ghoulam C. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J Biol Sci 2022; 29:1246-1259. [PMID: 35241967 PMCID: PMC8864493 DOI: 10.1016/j.sjbs.2021.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
The plant faces different pedological and climatic challenges that influence its growth and enhancement. While, plant-microbes interactions throught the rhizosphere offer several privileges to this hotspot in the service of plant, by attracting multi-beneficial mutualistic and symbiotic microorganisms as plant growth-promoting bacteria (PGPB), archaea, mycorrhizal fungi, endophytic fungi, and others…). Currently, numerous investigations showed the beneficial effects of these microbes on growth and plant health. Indeed, rhizospheric microorganisms offer to host plants the essential assimilable nutrients, stimulate the growth and development of host plants, and induce antibiotics production. They also attributed to host plants numerous phenotypes involved in the increase the resistance to abiotic and biotic stresses. The investigations and the studies on the rhizosphere can offer a way to find a biological and sustainable solution to confront these environmental problems. Therefore, the interactions between microbes and plants may lead to interesting biotechnological applications on plant improvement and the adaptation in different climates to obtain a biological sustainable agricultures without the use of chemical fertilizers.
Collapse
Key Words
- AMF, Arbuscular Mycorrhizal Fungi
- AOA, Ammonia-Oxidizing Archaea
- BMV, Brome Mosaic Virus
- C, Carbon
- CMV, Cucumber mosaic virus
- LDH, Layered double hydroxides
- MF, Mycorrhizal fungi
- Microorganisms
- P, Phosphorus
- PAL, L-Phenylalanine Ammonia Lyase
- PCA, Phenazine-1-Carboxylic Acid
- PGPR, Plant Growth-Promoting Rhizobacteria
- POX, Peroxidase
- PPO, Polyphenol Oxidase
- Plant growth promoting microbes
- Plant-microbes interactions
- Rhizosphere
Collapse
Affiliation(s)
- Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.,University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Cherki Ghoulam
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.,Cadi Ayyad University, Faculty of Sciences and Techniques, PO Box 549, Gueliz, Marrakech,Morocco
| |
Collapse
|
7
|
Wu Z, Kong Z, Lu S, Huang C, Huang S, He Y, Wu L. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. J GEN APPL MICROBIOL 2019; 65:254-264. [DOI: 10.2323/jgam.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zijun Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Shina Lu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Cheng Huang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Shaoyi Huang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Yinghui He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University
| |
Collapse
|
8
|
Anthelmintic efficacy of glycolipid biosurfactant produced by Pseudomonas plecoglossicida: an insight from mutant and transgenic forms of Caenorhabditis elegans. Biodegradation 2018; 30:203-214. [PMID: 29663166 DOI: 10.1007/s10532-018-9831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 12/15/2022]
Abstract
The current research focuses on the production and characterization of glycolipid biosurfactant (GB) from Pseudomonas plecoglossicida and its anthelmintic activity against Caenorhabditis elegans. The GB was purified and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography and Mass Spectrometry (GC-MS) analysis. Anthelmintic activity of GB was studied at six different pharmacological doses from 10 to 320 µg/mL on C. elegans. Exposure of different developmental stages (L1, L2, L3, L4 and adult) of C. elegans to the GB reduced the survivability of worms in a dose and time-dependent manner. Adult and L4 worms were least susceptible, while L1, L2 and L3 were more susceptible to GB when compared to the untreated control. An increased exposure period drastically reduced the survival rate of worms and reduction in LC50 value. The GB significantly inhibited the development of C. elegans with an IC50 value of 53.14 µg/mL and even reduced the adult body length and egg hatching. Fecundity rate of the worms treated with GB at 20, 40 and 80 µg/mL decreased from 261.90 ± 3.21 to 239.70 ± 5.58, 164.20 ± 5.94 and 44.80 ± 6.22 eggs per worm, respectively. Besides the toxicological effects, prolonged exposure to GB significantly decreased (p ≤ 0.0001) the lifespan of wild type worms under standard laboratory conditions. Additionally, GB was found to be lethal towards ivermectin and albendazole resistant C. elegans strains. Overall, the data indicated that the GB extracted from P. plecoglossicida could be utilized for the control of non-susceptible and resistant gastrointestinal nematodes towards broad spectrum anthelmintic drugs, ivermectin and albendazole.
Collapse
|
9
|
Patil S, Nikam M, Patil H, Anokhina T, Kochetkov V, Chaudhari A. Bioactive pigment production by Pseudomonas spp. MCC 3145: Statistical media optimization, biochemical characterization, fungicidal and DNA intercalation-based cytostatic activity. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|