1
|
Wardah ZH, Chaudhari HG, Prajapati V, Raol GG. Application of statistical methodology for the optimization of L-glutaminase enzyme production from Streptomyces pseudogriseolus ZHG20 under solid-state fermentation. J Genet Eng Biotechnol 2023; 21:138. [PMID: 37999820 PMCID: PMC10673782 DOI: 10.1186/s43141-023-00618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Actinomycetes are excellent microbial sources for various chemical structures like enzymes, most of which are used in pharmaceutical and industrial products. Actinomycetes are preferred sources of enzymes due to their high ability to produce extracellular enzymes. L-glutaminase has proven its essential role as a pharmaceutical agent in cancer therapy and an economic agent in the food industry. The current study aimed to screen the potent L-glutaminase producer and optimize the production media for maximum enzyme yield using one factor at a time (OFAT) approach and statistical approaches under solid-state fermentation (SSF). RESULTS Out of 20 actinomycetes strains isolated from rhizosphere soil, 5 isolates produced extracellular L-glutaminase. One isolate was chosen as the most potent strain, and identified as Streptomyces pseudogriseolus ZHG20 based on 16S rRNA. The production and optimization process were carried out under SSF, after optimization using OFAT method, the enzyme production increased up to 884.61 U/gds. Further, statistical strategy, response surface methodology (RSM), and central composite design (CCD) were employed for the level optimization of significant media component (p < 0.05), i.e., wheat bran, sesame oil cake, and corn steep liquor which are leading to increase 3.21-fold L-glutaminase production as compared to unoptimized media. CONCLUSIONS The presented investigation reveals the optimization of various physicochemical parameters using OFAT and RSM-CCD. Statistical approaches proved to be an effective method for increasing the yield of extracellular L-glutaminase from S. pseudogriseolus ZHG20 where L-glutaminase activity increased up to 1297.87 U/gds which is 3.21-fold higher than the unoptimized medium using a mixture of two solid substrates (wheat bran and sesame oil cake) incubated at pH 7.0 for 6 days at 33 °C.
Collapse
Affiliation(s)
- Zuhour Hussein Wardah
- Department of Microbiology, Shri Alpesh N. Patel PG Institute of Science and Research, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388001, India
| | - Hiral G Chaudhari
- Department of Microbiology, Shri Alpesh N. Patel PG Institute of Science and Research, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388001, India
| | - Vimalkumar Prajapati
- Division of Microbial and Environmental Biotechnology, Aspee Shakilam Biotechnology Institute, Navsari Agricultural University, Athwa Farm, Ghod Dod Road, Surat, Gujarat, 395007, India.
| | - Gopalkumar G Raol
- Shri R. P. Arts, Shri K.B. Commerce and Smt, BCJ Science College, Khambhat, 388620, Gujarat, India.
| |
Collapse
|
2
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
3
|
Parashiva J, Nuthan BR, Bharatha M, Praveen R, Tejashwini P, Satish S. Response surface methodology based optimized production, purification, and characterization of L-asparaginase from Fusarium foetens. World J Microbiol Biotechnol 2023; 39:252. [PMID: 37442849 DOI: 10.1007/s11274-023-03684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. L-asparaginase obtained from bacteria exhibits hypersensitive reactions including various side effects. The present work aimed to optimize growth parameters for maximum production of L-asparaginase by Fusarium foetens through response surface methodology, its purification, and characterization. The optimization of L-asparaginase production by Fusarium foetens was initially done through a one-factor-at-a-time method. L-asparaginase production was further optimized using a central composite design based response surface methodology. The maximum L-asparaginase activity of 12.83 IU/ml was obtained under the following growth conditions; temperature-27.5 °C, pH-8, inoculum concentration-1.5 × 106 spores/ml, and incubation period-7 days. In comparison with the unoptimized growth conditions (4.58 IU/ml), the optimization led to a 2.65-fold increase in the L-asparaginase activity. The L-asparaginase from Fusarium foetens was purified 15.60-fold, with a yield of 39.89% using DEAE-cellulose column chromatography. After purification, the L-asparaginase activity was determined to be 127.26 IU/ml and the specific activity was found to be 231.38 IU/mg. The molecular mass was estimated to be approximately 37 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme showed optimum activity at pH 5, and a temperature of 40 °C. The enzyme showed 100% specificity towards L-asparagine and no activity towards L-glutamine. Its activity was enhanced by Mn2+, Fe2+, and Mg2, while it was inhibited by β-mercaptoethanol and EDTA. The Km and Vmax of the purified L-asparaginase were found to be 23.82 mM and 210.3 IU/ml respectively. The results suggest that Fusarium foetens could be a potent candidate for the bioprocessing of L-asparaginase at a large scale.
Collapse
Affiliation(s)
- Javaraiah Parashiva
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Purushotham Tejashwini
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | - Sreedharamurthy Satish
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
4
|
Anticancer Asparaginases: Perspectives in Using Filamentous Fungi as Cell Factories. Catalysts 2023. [DOI: 10.3390/catal13010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The enzyme L-asparaginase (L-asparagine amidohydrolase) catalyzes the breakdown of L-asparagine into aspartate and ammonia, which leads to an anti-neoplastic activity stemming from its capacity to deplete L-asparagine concentrations in the bloodstream, and it is therefore used in cases of acute lymphoblastic leukemia (ALL) to inhibit malignant cell growth. Nowadays, this anti-cancer enzyme, largely produced by Escherichia coli, is well established on the market. However, E. coli L-asparaginase therapy has side effects such as anaphylaxis, coagulation abnormality, low plasma half-life, hepatotoxicity, pancreatitis, protease action, hyperglycemia, and cerebral dysfunction. This review provides a perspective on the use of filamentous fungi as alternative cell factories for L-asparaginase production. Filamentous fungi, such as various Aspergillus species, have superior protein secretion capacity compared to yeast and bacteria and studies show their potential for the future production of proteins with humanized N-linked glycans. This article explores the past and present applications of this important enzyme and discusses the prospects for using filamentous fungi to produce safe eukaryotic asparaginases with high production yields.
Collapse
|
5
|
Rodrigues F, Cedran M, Bicas J, Sato H. Inhibitory effect of reuterin-producing Limosilactobacillus reuteri and edible alginate-konjac gum film against foodborne pathogens and spoilage microorganisms. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Patel P, Patel A, Agarwal-Rajput R, Rawal R, Dave B, Gosai H. Characterization, Anti-proliferative Activity, and Bench-Scale Production of Novel pH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37. Appl Biochem Biotechnol 2022; 195:3122-3141. [PMID: 36564676 DOI: 10.1007/s12010-022-04281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Bacterial L-asparaginase (LA) is a chemotherapeutic drug that has remained mainstay of cancer treatment for several decades. LA has been extensively used worldwide for the treatment of acute lymphoblastic leukemia (ALL). A halotolerant bacterial strain Bacillus licheniformis sp. isolated from marine environment was used for LA production. The enzyme produced was subjected to purification and physico-chemical characterisation. Purified LA was thermotolerant and demonstrated more than 90% enzyme activity after 1 h of incubation at 80 °C. LA has also proved to be resistant against pH gradient and retained activity at pH ranging from 3.0 to 10. The enzyme also had high salinity tolerance with 90% LA activity at 10% NaCl concentration. Detergents like Triton X-100 and Tween-80 were observed to inhibit LA activity while more than 70% catalytic activity was maintained in the presence of metals. Electrophoretic analysis revealed that LA is a heterodimer (~ 63 and ~ 65 kDa) and has molecular mass of around 130 kDa in native form. The kinetic parameters of LA were tested with LA having low Km value of 1.518 µM and Vmax value of 6.94 µM/min/mL. Purified LA has also exhibited noteworthy antiproliferative activity against cancer cell lines-HeLa, SiHa, A549, and SH-SY-5Y. In addition, bench-scale LA production was conducted in a 5-L bioreactor using moringa leaves as cost-effective substrate.
Collapse
Affiliation(s)
- Payal Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Ajay Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Reena Agarwal-Rajput
- Immunology Lab, Indian Institute of Advanced Research (IIAR), Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Bharti Dave
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Haren Gosai
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India.
| |
Collapse
|
7
|
Keivani H, Jahadi M. Solid-state fermentation for the production of Monascus pigments from soybean meals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB. Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. CHEMOSPHERE 2022; 294:133712. [PMID: 35081402 DOI: 10.1016/j.chemosphere.2022.133712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Annually, a huge amount of waste is generated by the industries that use agricultural biomass. Researchers have looked into employing this cheap and renewable agro-biomass as a substrate for enzyme production via fermentation processes to meet the ever-increasing worldwide need. Although there are a number of sources for enzyme extraction, microbial sources have dominated industrial sectors due to their easy availability and rapid growth. Microbial enzymes are currently used in a variety of industries, including pharmaceuticals, food, biofuels, textiles, paper, detergents, and so on, and using these nutritious feedstocks not only reduces production costs but also helps to reduce environmental concerns. The present review focuses on the therapeutic microbial enzymes produced using different agro-industrial biomass as raw materials, with down-streaming techniques for obtaining a final pure product. Additionally, the article also discussed biomass pretreatment processes, including physical, chemical and biological. The type of pretreatment method to be used is mostly governed by the intended use of the major molecular components of biomass (cellulose, hemicelluloses and lignin). Finally, purification challenges are included. All of this information will be useful in the industrial synthesis of high-purity targeted enzymes if the crucial aspects that have been discussed are taken into account.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022; 13:81-105. [PMID: 35711326 PMCID: PMC9196846 DOI: 10.1080/21501203.2021.1974111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
11
|
Sharma D, Mishra A. L-asparaginase production in solid-state fermentation using Aspergillus niger: process modeling by artificial neural network approach. Prep Biochem Biotechnol 2021; 52:549-560. [PMID: 34528863 DOI: 10.1080/10826068.2021.1972426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
L-asparaginase has proven itself as a potential anti-cancer drug and in the mitigation of acrylamide formation in the food industry. In the present investigation, a novel utilization of niger (Guizotia abyssinica) de-oiled cake as the sole source for the cost-effective production of L-asparaginase was evaluated and compared with different agro-substrates in solid-state fermentation. The substrate provided a favorable C/N content for the L-asparaginase production as evident from the chemical composition (CHNS analysis) of the substrate. The influential process parameters viz; autoclaving time, moisture content, temperature and pH were optimized and modeled using machine-learning based artificial neural network (ANN) and statistical-based response surface methodology (RSM). The maximum enzyme activity of 34.65 ± 2.18 IU/gds was observed at 30.3 min of autoclaving time, 62% moisture content, 30 °C temperature and 6.2 pH in 96 h. A 1.36 fold improvement in enzyme activity was observed on utilizing optimized parameters. In comparison with RSM, the ANN model showed superior prediction with a low mean squared error of 0.072, low root mean squared error of 0.268 and 0.99 value of regression coefficient. The present study demonstrates the novel utilization of inexpensive and readily available agro-industrial waste for the development of cost-effective L-asparaginase production process.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
12
|
Jia R, Wan X, Geng X, Xue D, Xie Z, Chen C. Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9081659. [PMID: 34442737 PMCID: PMC8400838 DOI: 10.3390/microorganisms9081659] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) hydrolyzes L-asparagine to L-aspartic acid and ammonia, which has been widely applied in the pharmaceutical and food industries. Microbes have advantages for L-asparaginase production, and there are several commercially available forms of L-asparaginase, all of which are derived from microbes. Generally, L-asparaginase has an optimum pH range of 5.0-9.0 and an optimum temperature of between 30 and 60 °C. However, the optimum temperature of L-asparaginase from hyperthermophilic archaea is considerable higher (between 85 and 100 °C). The native properties of the enzymes can be enhanced by using immobilization techniques. The stability and recyclability of immobilized enzymes makes them more suitable for food applications. This current work describes the classification, catalytic mechanism, production, purification, and immobilization of microbial L-asparaginase, focusing on its application as an effective reducer of acrylamide in fried potato products, bakery products, and coffee. This highlights the prospects of cost-effective L-asparaginase, thermostable L-asparaginase, and immobilized L-asparaginase as good candidates for food application in the future.
Collapse
Affiliation(s)
- Ruiying Jia
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xiao Wan
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xu Geng
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
- Correspondence: (X.G.); (C.C.)
| | - Deming Xue
- School of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
- Correspondence: (X.G.); (C.C.)
| |
Collapse
|
13
|
Low-cost agro-industrial sources as a substrate for the production of l-asparaginase using filamentous fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Shabana AMI, Shetaia YM, Abdelwahed NAM, Esawy MA, Alfarouk OR. Optimization, Purification and Antitumor Activity of Kodamaea ohmeri ANOMY L-Asparaginase Isolated from Banana Peel. Curr Pharm Biotechnol 2021; 22:654-671. [PMID: 32707027 DOI: 10.2174/1389201021666200723122300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE L-Asparaginase is an important enzyme that converts L-asparagine to L-aspartate and ammonia. Microbial L-asparaginase has important applications as anticancer and food processing agents. METHODS This study reported the isolation, screening of a local yeast isolate from banana peel for L-asparaginase production using submerged fermentation, optimization of the production, purification, and anticancer assay of L-asparaginase. The yeast isolate was identified as Kodamaea ohmeri ANOMY based on the analysis of nuclear large subunit (26S) rDNA partial sequences. It was a promising L-asparaginase producer with a specific activity of 3059±193 U/mg in a non-optimized medium. The classical one-variable-at-a-time method was used to optimize the production medium components, and it was found that the elimination of K2HPO4 from the medium increased L-asparaginase specific activity (3100.90±180 U/mg). RESULTS Statistical optimization of L-asparaginase production was done using Plackett-Burman and Box-Behnken designs. The production medium for the maximum L-asparaginase specific activity (8500±578U/mg) was as follows (g/L): L-asparagine (7.50), NaNO3 (0.50), MgSO4.7H2O (0.80), KCl (0.80) associated with an incubation period of 5 days, inoculum size of 5.60 %, and pH (7.0). The optimization process increased L-asparaginase production by 2.78-fold compared to the non-optimized medium. L-Asparaginase was purified using ammonium sulphate precipitation followed by gel filtration on a Sephadex G-100 column. Its molecular weight was 66 KDa by SDS-PAGE analysis. CONCLUSION The cell morphology technique was used to evaluate the anticancer activity of L-asparaginase against three different cell lines. L-Asparaginase inhibited the growth of HepG-2, MCF-7, and HCT-116 cells at a concentration of 20, 50, and 60 μL, respectively.
Collapse
Affiliation(s)
- Ahmed M I Shabana
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| | - Yousseria M Shetaia
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Buhouth St. (Former El Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Buhouth St. (Former El Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Omar R Alfarouk
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Sahu R, Meghavarnam AK, Janakiraman S. Response surface methodology: An effective optimization strategy for enhanced production of nitrile hydratase (NHase) by Rhodococcus rhodochrous (RS-6). Heliyon 2020; 6:e05111. [PMID: 33088939 PMCID: PMC7560586 DOI: 10.1016/j.heliyon.2020.e05111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Nitrile hydratase is an enzyme which catalyze the hydration of nitriles into amide and their role as catalysts for acrylamide production in industries are well known. The present study aims at statistically optimizing physiological and nutritional parameters for NHase production from Rhodococcus rhodochrous (RS-6). The effect of incubation period, temperature, pH, carbon and nitrogen sources on the production of NHase was investigated by one factor at a time strategy. Further optimization process was carried out by response surface methodology for studying the interactive effect of these variables using central composite design. The optimized levels of variables obtained by statistical analysis were: incubation period 48 h, temperature 33 °C, pH 7.0, glycerol 1% and urea 0.75%, which resulted in maximum NHase production. The results of ANOVA were significant with the F-value of the model being 296.78, value of R 2 is 0.9983 and the lack of fit test was not significant. The contour and response surface plots showed significant interaction between the variables. The NHase yield was enhanced up to 6.22 fold by statistical optimization using RSM. Thus, the developed experimental design is effective towards process optimization for NHase production from R. rhodochrous (RS-6).
Collapse
Affiliation(s)
- Ruchi Sahu
- Department of Microbiology and Biotechnology, Bangalore University, 560056, Bangalore, Karnataka, India
| | | | - Savitha Janakiraman
- Department of Microbiology and Biotechnology, Bangalore University, 560056, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Mejias L, Estrada M, Barrena R, Gea T. A novel two-stage aeration strategy for Bacillus thuringiensis biopesticide production from biowaste digestate through solid-state fermentation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Vieira WF, Correa HT, Silveira Campos E, Sette LD, Pessoa A, Cardoso VL, Coutinho Filho U. A novel multiple reactor system for the long-term production of L-asparaginase by Penicillium sp. LAMAI 505. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Tang J, Chen TT, Hu Q, Lei D, Sun Q, Zhang SM, Zeng CY, Zhang Q. Improved protease activity of Pixian broad bean paste with cocultivation of Aspergillus oryzae QM-6 and Aspergillus niger QH-3. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Fungal L-asparaginase: Strategies for production and food applications. Food Res Int 2019; 126:108658. [DOI: 10.1016/j.foodres.2019.108658] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022]
|
20
|
de Oliveira CC, de Souza AKS, de Castro RJS. Bioconversion of Chicken Feather Meal by Aspergillus niger: Simultaneous Enzymes Production Using a Cost-Effective Feedstock Under Solid State Fermentation. Indian J Microbiol 2019; 59:209-216. [PMID: 31031436 DOI: 10.1007/s12088-019-00792-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
This study reported for the first time the simultaneous production of hydrolytic enzymes by Aspergillus niger under solid state fermentation using chicken feather meal as substrate. The effect of some culture parameters for production of protease, lipase, phytase and keratinase enzymes was evaluated using a central composite rotatable design. The results obtained demonstrated that the independent variables initial moisture of the culture medium and incubation temperature presented as highly significant on the enzymes production. The production of protease and lipase followed a similar profile, in which the highest values of enzymatic activities were detected after 48 h of fermentation. The conduction of the fermentative process using an initial moisture of 50%, 30 °C as incubation temperature and supplementation of the feather meal with 15% wheat bran resulted in higher yields of protease (> 300 U g-1) and lipase (> 90 U g-1) after 48 h and satisfactory values of phytase activity (> 70 U g-1) after 72 h. No significant effects of the independent variables on keratinase production were observed. However, under the selected conditions for the other enzymes, keratinase production reached values higher than 13 U g-1 after 72 h fermentation. Thus, our work contributed to the proposal of an alternative process for the simultaneous production of proteases, lipases, phytases and keratinases in a single and simplified process using chicken feather meal.
Collapse
Affiliation(s)
- Cassio Carmo de Oliveira
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP Brazil
| | - Ana Karoliny Santos de Souza
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP Brazil
| |
Collapse
|
21
|
L-asparaginase – A promising biocatalyst for industrial and clinical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|