1
|
Kuroiwa T, Nakagawa Y, Takayanagi R, Kanazawa A. Chitosanase-immobilized magnetite-agar gel particles as a highly stable and reusable biocatalyst for enhanced production of physiologically active chitosan oligosaccharides. Enzyme Microb Technol 2024; 178:110443. [PMID: 38593516 DOI: 10.1016/j.enzmictec.2024.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A novel immobilized chitosanase was developed and utilized to produce chitosan oligosaccharides (COSs) via chitosan hydrolysis. Magnetite-agar gel particles (average particle diameter: 338 μm) were prepared by emulsifying an aqueous agar solution dispersing 200-nm magnetite particles with isooctane containing an emulsifier at 80 °C, followed by cooling the emulsified mixture. The chitosanase from Bacillus pumilus was immobilized on the magnetite-agar gel particles chemically activated by introducing glyoxyl groups with high immobilization yields (>80%), and the observed specific activity of the immobilized chitosanase was 16% of that of the free enzyme. This immobilized chitosanase could be rapidly recovered from aqueous solutions by applying magnetic force. The thermal stability of the immobilized chitosanase improved remarkably compared with that of free chitosanase: the deactivation rate constants at 35 °C of the free and immobilized enzymes were 8.1 × 10-5 and 3.9 × 10-8 s-1, respectively. This immobilized chitosanase could be reused for chitosan hydrolysis at 75 °C and pH 5.6, and 80% of its initial activity was maintained even after 10 cycles of use. COSs with a degree of polymerization (DP) of 2-7 were obtained using this immobilized chitosanase, and the product content of physiologically active COSs (DP ≥ 5) reached approximately 50%.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan.
| | - Yuta Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Ryuichi Takayanagi
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
2
|
Chenafa A, Abdo AAA, Mahdi AA, Zhang Q, Chen C, Zhu Y, Li J, Fan G, Liu J. Functionalized electrospun nanofibers to enhance β-Galactosidase immobilization and catalytic activity for efficient galactooligosaccharide synthesis. Int J Biol Macromol 2024; 270:132312. [PMID: 38744370 DOI: 10.1016/j.ijbiomac.2024.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to immobilize β-galactosidase (β-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the β-GAL was immobilized in the different ENMs to produce the β-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of β-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized β-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized β-GAL produced in this study showed potential as an effective biocatalyst in the food industry.
Collapse
Affiliation(s)
- Aicha Chenafa
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abdullah A A Abdo
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chang Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunping Zhu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinlong Li
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Guangsen Fan
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Jia Liu
- Internal Trade Food Science Research Institue Co., Future Science and Technology Park South, BeiQiJia, Changping, Ltd, Beijing 102200, China
| |
Collapse
|
3
|
Ahmed Z, Arshad A, Bilal M, Iqbal HMN, Ahmed I. Nano-biocatalytic Systems for Cellulose de-polymerization: A Drive from Design to Applications. Top Catal 2023; 66:592-605. [DOI: 10.1007/s11244-023-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
|
4
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Mitchell DA, Krieger N. Estimation of selectivities in transglycosylation systems with multiple transglycosylation products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wang M, Wang L, Lyu X, Hua X, Goddard JM, Yang R. Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnol Adv 2022; 60:108021. [PMID: 35901861 DOI: 10.1016/j.biotechadv.2022.108021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Lactulose, a semisynthetic nondigestive disaccharide with versatile applications in the food and pharmaceutical industries, has received increasing interest due to its significant health-promoting effects. Currently, industrial lactulose production is exclusively carried out by chemical isomerization of lactose via the Lobry de Bruyn-Alberda van Ekenstein (LA) rearrangement, and much work has been directed toward improving the conversion efficiency in terms of lactulose yield and purity by using new chemo-catalysts and integrated catalytic-purification systems. Lactulose can also be produced by an enzymatic route offering a potentially greener alternative to chemo-catalysis with fewer side products. Compared to the controlled trans-galactosylation by β-galactosidase, directed isomerization of lactose with high isomerization efficiency catalyzed by the most efficient lactulose-producing enzyme, cellobiose 2-epimerase (CE), has gained much attention in recent decades. To further facilitate the industrial translation of CE-based lactulose biotransformation, numerous studies have been reported on improving biocatalytic performance through enzyme mediated molecular modification. This review summarizes recent developments in the chemical and enzymatic production of lactulose. Related catalytic mechanisms are also highlighted and described in detail. Emerging techniques that aimed at advancing lactulose production, such as the boronate affinity-based technique and molecular biological techniques, are reviewed. Finally, perspectives on challenges and opportunities in lactulose production and purification are also discussed.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China; Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
7
|
Zhao SW, Zhou Q, Long NB, Zhang RF. Efficient synthesis of N-acetyllactosamine using immobilized β-galactosidase on a novel 3D polymer support. Enzyme Microb Technol 2022; 160:110070. [DOI: 10.1016/j.enzmictec.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 11/03/2022]
|
8
|
Galacto-Oligosaccharide (GOS) Synthesis during Enzymatic Lactose-Free Milk Production: State of the Art and Emerging Opportunities. BEVERAGES 2022. [DOI: 10.3390/beverages8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Much attention has recently been paid to β-Galactosidases (β-D-galactoside galactohidrolase; EC 3.2.1.23), commonly known as lactases, due to the lactose intolerance of the human population and the importance of dairy products in the human diet. This enzyme, produced by microorganisms, is being used in the dairy industry for hydrolyzing the lactose found in milk to produce lactose-free milk (LFM). Conventionally, β-galactosidases catalyze the hydrolysis of lactose to produce glucose and galactose in LFM; however, they can also catalyze transgalactosylation reactions that produce a wide range of galactooligosaccharides (GOS), which are functional prebiotic molecules that confer health benefits to human health. In this field, different works aims to identify novel microbial sources of β-galactosidase for removing lactose from milk with the relative GOS production. Lactase extracted from thermophilic microorganisms seems to be more suitable for the transgalactosylation process at relatively high temperatures, as it inhibits microbial contamination. Different immobilization methods, such as adsorption, covalent attachment, chemical aggregation, entrapment and micro-encapsulation, have been used to synthesize lactose-derived oligosaccharides with immobilized β-galactosidases. In this mini-review, particular emphasis has been given to the immobilization techniques and bioreactor configurations developed for GOS synthesis in milk, in order to provide a more detailed overview of the biocatalytic production of milk oligosaccharides at industrial level.
Collapse
|
9
|
Potential and Scale-Up of Pore-Through-Flow Membrane Reactors for the Production of Prebiotic Galacto-Oligosaccharides with Immobilized β-Galactosidase. Catalysts 2021. [DOI: 10.3390/catal12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The production of prebiotics like galacto-oligosaccharides (GOS) on industrial scale is becoming more important due to increased demand. GOS are synthesized in batch reactors from bovine lactose using the cost intensive enzyme β-galactosidase (β-gal). Thus, the development of sustainable and more efficient production strategies, like enzyme immobilization in membrane reactors are a promising option. Activated methacrylatic monoliths were characterized as support for covalent immobilized β-gal to produce GOS. The macroporous monoliths act as immobilized pore-through-flow membrane reactors (PTFR) and reduce the influence of mass-transfer limitations by a dominating convective pore flow. Monolithic designs in the form of disks (0.34 mL) and for scale-up cylindric columns (1, 8 and 80 mL) in three different reactor operation configurations (semi-continuous, continuous and continuous with recirculation) were studied experimentally and compared to the free enzyme system. Kinetic data, immobilization efficiency, space-time-yield and long-term stability were determined for the immobilized enzyme. Furthermore, simulation studies were conducted to identify optimal operation conditions for further scale-up. Thus, the GOS yield could be increased by up to 60% in the immobilized PTFRs in semi-continuous operation compared to the free enzyme system. The enzyme activity and long-time stability was studied for more than nine months of intensive use.
Collapse
|
10
|
Tavernini L, Romero O, Aburto C, López-Gallego F, Illanes A, Wilson L. Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of β-Galactosidase. Molecules 2021; 26:molecules26144152. [PMID: 34299429 PMCID: PMC8303607 DOI: 10.3390/molecules26144152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Collapse
Affiliation(s)
- Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (O.R.); (L.W.)
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Correspondence: (O.R.); (L.W.)
| |
Collapse
|
11
|
Synthesis of fucosylated oligosaccharides with α-L-fucosidase from Thermotoga maritima immobilized on Eupergit ® CM. Extremophiles 2021; 25:311-317. [PMID: 33938983 DOI: 10.1007/s00792-021-01230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.
Collapse
|
12
|
Kidibule PE, Costa J, Atrei A, Plou FJ, Fernandez-Lobato M, Pogni R. Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 2021; 11:5529-5536. [PMID: 35423100 PMCID: PMC8694723 DOI: 10.1039/d0ra10409d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal exo-chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers. The immobilized enzyme gained operational stability with increasing temperature and acidic pH values, especially when using chitosan beads-genipin that retained more than 80% activity at pH 3. Biocatalysts generated COS from colloidal chitin and different chitosan types. The immobilized enzyme showed higher hydrolytic activity than free enzyme on chitosan, and produced COS mixtures with higher variability of size and acetylation degree. In addition, biocatalysts were reusable, easy to handle and to separate from the reaction mixture.
Collapse
Affiliation(s)
- Peter E Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC Marie Curie, 2. Cantoblanco 28049 Madrid Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| |
Collapse
|
13
|
Ahumada D, Arenas F, Martínez-Gómez F, Guerrero C, Illanes A, Vera C. Synthesis of Butyl-β-D-Galactoside in the Ternary System: Acetone/1-Butanol/Aqueous Solution. Front Bioeng Biotechnol 2020; 8:859. [PMID: 32793582 PMCID: PMC7390968 DOI: 10.3389/fbioe.2020.00859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 01/31/2023] Open
Abstract
The enzymatic synthesis of short-tailed alkyl glucosides is generally carried out in an aqueous-organic biphasic reaction medium with a rather low fatty alcohol concentration in the aqueous phase (where the synthesis occurs). Thus, hydrolytic reactions have a significant impact on the synthesis performance. Given this background, the use of acetone as cosolvent was studied for the synthesis of butyl-β-galactoside with Aspergillus oryzae β-galactosidase. The liquid-liquid equilibrium of the reaction mixture components (acetone/1-butanol/aqueous solution) was determined and the single- and two-phase regions were defined at 30, 40, and 50°C. It was observed that the liquid-liquid equilibrium of the ternary system acetone/1-butanol/water differs significantly from the one obtained using an aqueous solution (50 mM McIlvaine buffer pH 4.5; 5 g L-1) instead of water. This is mainly because of the salting-out effect of the buffer; nevertheless, the presence of lactose also altered the equilibrium. Having this in mind, the effects of temperature (30 and 50°C) and reaction mixture composition were assessed. Three general conditions were evaluated: single-phase ternary system (30% acetone), two-phase ternary system (10% acetone) and two-phase binary system (0% acetone). Acetone had a deleterious effect on enzyme stability at 50°C, leading to low reaction yields. However, no enzyme deactivation was detected at 30°C. Moreover, a reaction yield of 0.98 mol mol-1 was attained in the 30/50/20% (w/w) mixture of acetone/1-butanol/aqueous solution. This very high yield can be explained by the huge increase in the concentration of 1-butanol and the reduction of water activity. The synthesis was carried out using also the β-galactosidase immobilized in glyoxal-agarose and amino-glyoxal-agarose, and by aggregation and crosslinking. In the case of agarose-derived catalysts, two average particle diameters were assessed to evaluate the presence of internal mass transfer limitations. Best yield (0.88 mol mol-1) was obtained with glyoxal-agarose derivatives and the particle size had non-effect on yield. The chemical structure of butyl-β-galactoside was determined by NMR and FT-IR.
Collapse
Affiliation(s)
- Diego Ahumada
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Fabián Martínez-Gómez
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos Vera
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
14
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
15
|
Vera C, Guerrero C, Aburto C, Cordova A, Illanes A. Conventional and non-conventional applications of β-galactosidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140271. [DOI: 10.1016/j.bbapap.2019.140271] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
|
16
|
Simović M, Milivojević A, Ćorović M, Banjanac K, Bezbradica D. Whey valorization using transgalactosylation activity of immobilized β‐galactosidase. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Ana Milivojević
- Innovation Center Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| | - Katarina Banjanac
- Innovation Center Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
- Directorate of Measures and Precious Metals Group for Metrology in Chemistry Mike Alasa 1411000 Beograd Serbia
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Beograd Serbia
| |
Collapse
|
17
|
Guerrero C, Valdivia F, Ubilla C, Ramírez N, Gómez M, Aburto C, Vera C, Illanes A. Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. BIORESOURCE TECHNOLOGY 2019; 278:296-302. [PMID: 30708333 DOI: 10.1016/j.biortech.2018.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Lactulose synthesis from fructose and lactose in continuous packed-bed reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae β-galactosidase is reported for the first time. Alternative strategies to conventional batch synthesis have been scarcely explored for lactulose synthesis. The effect of flow rate, substrates ratio and biocatalyst-inert packing material mass ratio (MB/MIM) were studied on reactor performance. Increase in any of these variables produced an increase in lactulose yield (YLu) being higher than obtained in batch synthesis at comparable conditions. Maximum YLu of 0.6 g·g-1 was obtained at 50 °C, pH 4.5, 50% w/w total sugars, 15 mL·min-1, fructose/lactose molar ratio of 12 and MB/MIM of 1/8 g·g-1; at such conditions yield of transgalactosylated oligosaccharides (YTOS) was 0.16 g·g-1, selectivity (lactulose/TOS molar ratio) was 5.4 and lactose conversion (XLactose) was 28%. Reactor operation with recycle had no significant effect on yield, producing only some decrease in productivity.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Felipe Valdivia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Matías Gómez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|