1
|
Izhar SK, Rizvi SF, Afaq U, Fatima F, Siddiqui S. Bioprospecting of Metabolites from Actinomycetes and their Applications. Recent Pat Biotechnol 2024; 18:273-287. [PMID: 38817008 DOI: 10.2174/0118722083269904231114154017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 06/01/2024]
Abstract
Actinomycetes are present in various terrestrial and aquatic habitats, predominantly in the soil rhizosphere, encompassing marine and freshwater ecosystems. These microorganisms exhibit characteristics that resemble both bacteria and fungi. Numerous actinomycetes exhibit a mycelial existence and undergo significant morphological transformations. These bacteria are widely recognized as biotechnologically significant microorganisms utilized for the production of secondary metabolites. In all, over 45% of all bioactive microbial metabolites are produced by actinomycetes, which are responsible for producing around 10,000 of them. The majority of actinomycetes exhibit substantial saprophytic characteristics in their natural environment, enabling them to effectively decompose a diverse range of plant and animal waste materials during the process of decomposition. Additionally, these organisms possess a sophisticated secondary metabolic system, which enables them to synthesize almost two-thirds of all naturally occurring antibiotics. Moreover, they can create a diverse array of chemical compounds with medical or agricultural applications, including anticancer, antiparasitic, and antibacterial agents. This review aims to provide an overview of the prominent biotechnological domains in which actinobacteria and their metabolites demonstrate noteworthy applicability. The graphical abstract provides a preview of the primary sections covered in this review. This paper presents a comprehensive examination of the biotechnological applications and metabolites of actinobacteria, highlighting their potential for patent innovations.
Collapse
Affiliation(s)
| | - Shareen Fatima Rizvi
- Protein Research Laboratory, Department of Biosciences, Integral University Lucknow, 226026, India
| | - Uzma Afaq
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Faria Fatima
- Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, 226026, India
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, 226026, India
| |
Collapse
|
2
|
Song C, Yang J, Zhang M, Ding G, Jia C, Qin J, Guo L. Marine Natural Products: The Important Resource of Biological Insecticide. Chem Biodivers 2021; 18:e2001020. [PMID: 33855815 DOI: 10.1002/cbdv.202001020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Gang Ding
- Institute of Medicinal Plant Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
3
|
Rashiya N, Padmini N, Ajilda AAK, Prabakaran P, Durgadevi R, Veera Ravi A, Ghosh S, Sivakumar N, Selvakumar G. Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microb Pathog 2020; 150:104693. [PMID: 33352215 DOI: 10.1016/j.micpath.2020.104693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The alternative antimicrobial strategies that mitigate the threat of antibiotic resistance is the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer dependent virulence gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum ATCC 12472. In the present study, the marine sponge Haliclona fibulata symbiont Brevibacterium casei strain Alu 1 showed potential QSI activity in a concentration-dependent manner (0.5-2% v/v) against the N-acyl homoserine lactone (AHL)-mediated violacein production in C. violaceum (75-95%), and biofilm formation (53-96%), protease (27-82%), pyocyanin (82-95%) and pyoverdin (29-38%) productions in P. aeruginosa. Further, the microscopic analyses validated the antibiofilm activity of the cell-free culture supernatant (CFCS) of B. casei against P. aeruginosa. Subsequently, the biofilm and pyoverdin inhibitory efficacy of the ethyl acetate extract of B. casei CFCS was assessed against P. aeruginosa. Further, the gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of variety of components in which diethyl phthalate was found to be a major active component. This phthalate ester, known as diethyl ester of phthalic acid, could act as a potential therapeutic agent for preventing bacterial biofilm and virulence associated infectious diseases.
Collapse
Affiliation(s)
- Nagasundaram Rashiya
- Department of Microbiology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Nagarajan Padmini
- Department of Microbiology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | - Pandiyan Prabakaran
- Department of Biomedical Sciences, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, 360020, India
| | - Natesan Sivakumar
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Gopal Selvakumar
- Department of Microbiology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|