1
|
Wang D, Guan F, Feng C, Mathivanan K, Zhang R, Sand W. Review on Microbially Influenced Concrete Corrosion. Microorganisms 2023; 11:2076. [PMID: 37630635 PMCID: PMC10458460 DOI: 10.3390/microorganisms11082076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Microbially influenced concrete corrosion (MICC) causes substantial financial losses to modern societies. Concrete corrosion with various environmental factors has been studied extensively over several decades. With the enhancement of public awareness on the environmental and economic impacts of microbial corrosion, MICC draws increasingly public attention. In this review, the roles of various microbial communities on MICC and corresponding protective measures against MICC are described. Also, the current status and research methodology of MICC are discussed. Thus, this review aims at providing insight into MICC and its mechanisms as well as the development of protection possibilities.
Collapse
Affiliation(s)
- Dongsheng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chao Feng
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
| | - Krishnamurthy Mathivanan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (D.W.); (F.G.); (K.M.)
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| |
Collapse
|
2
|
Liu R, Li X, Liu Y, Zhang Q, Li S, Sun Z, Zhang C. Influence of Marine Environment on Mechanical Properties of Grout-Reinforced Body. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
M. LE, S. H. Biomedical applications of novel green AgNPs synthesized from endophytic bacteria Cronobacter sakazakii. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Love Edet M.
- School of Life Sciences, B. S Abdul Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Hemalatha S.
- School of Life Sciences, B. S Abdul Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
4
|
Qiu L, Dong S, Ashour A, Han B. Antimicrobial concrete for smart and durable infrastructures: A review. CONSTRUCTION AND BUILDING MATERIALS 2020; 260:120456. [PMID: 32904479 PMCID: PMC7455550 DOI: 10.1016/j.conbuildmat.2020.120456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Concrete structures in sewer systems, marine engineering, underground engineering and other humid environments are easily subjected to microbial attachment, colonization and, eventually, deterioration. With careful selection and treatment, some additives including inorganic and organic antimicrobial agents were found to be able to endow concrete with excellent antimicrobial performance. This paper reviews various types of antimicrobial concrete fabricated with different types of antimicrobial agents. The classification and methods of applying antimicrobial agents into concrete are briefly introduced. The antimicrobial and mechanical properties as well as mass/weight loss of concrete incorporating antimicrobial agents are summarized. Applications reported in this field are presented and future research opportunities and challenges of antimicrobial concrete are also discussed in this review.
Collapse
Affiliation(s)
- Liangsheng Qiu
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| | - Sufen Dong
- School of Material Science and Engineering, Dalian University of Technology, Dalian 116024 China
| | - Ashraf Ashour
- Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, UK
| | - Baoguo Han
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| |
Collapse
|