1
|
Kumari D, Singh D, Meena M, Janmeda P, Siddiqui MH. Qualitative, Quantitative, In Vitro Antioxidant Activity and Chemical Profiling of Leptadenia pyrotechnica (Forssk.) Decne Using Advanced Analytical Techniques. Antioxidants (Basel) 2024; 13:794. [PMID: 39061862 PMCID: PMC11273909 DOI: 10.3390/antiox13070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Leptadenia pyrotechnica Forssk. Decne (LP) is a medicinal herb from the Asclepiadaceae family with many advantageous properties. The goal of this research is to identify, quantify, and evaluate the antioxidant potential of LP to validate its remarkable therapeutic advantages. The hot soxhlet extraction method was employed to prepare different extracts of LP (stem and root). These extracts were evaluated physiochemically to check their impurity, purity, and quality; qualitatively to detect different phytochemicals; and quantitatively for phenol, saponin, tannin, flavonoid, and alkaloid contents. Then, the in vitro antioxidant potential was estimated by DPPH, NO, H2O2 scavenging assays, and MC and FRAP assays. The most prevalent phytochemicals of LP were then analysed by AAS, FT-IR, UV-visible, and GC-MS techniques. A higher extractive yield was shown by LPSE and LPRE (7.37 ± 0.11 and 5.70 ± 0.02). The LP stem showed better physicochemical and qualitative results than the root. The quantitative and in vitro antioxidant results indicated maximal phenols, tannins, and alkaloid contents in LPSE, which was further confirmed by UV-visible, FT-IR, and GC-MS results. The extraction methods (soxhlation or ultrasonication) were optimized by utilizing RSM to determine the impacts of multiple parameters. The study concluded that the plant has remarkable therapeutic advantages to promote additional clinical investigations and the mechanisms of its action.
Collapse
Affiliation(s)
- Divya Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
2
|
Assessment of phytochemicals, antioxidants and in-silico molecular dynamic simulation of plant derived potential inhibitory activity of Thalictrum foliolosum DC. and Cordia dichotoma G. Forst. against jaundice. Biomed Pharmacother 2022; 156:113898. [DOI: 10.1016/j.biopha.2022.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
|
3
|
Sharma N, Gupta N, Orfali R, Kumar V, Patel CN, Peng J, Perveen S. Evaluation of the Antifungal, Antioxidant, and Anti-Diabetic Potential of the Essential Oil of Curcuma longa Leaves from the North-Western Himalayas by In Vitro and In Silico Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227664. [PMID: 36431765 PMCID: PMC9695312 DOI: 10.3390/molecules27227664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Essential oils (EOs) have gained immense popularity due to considerable interest in the health, food, and pharmaceutical industries. The present study aimed to evaluate the antimicrobial and antioxidant activity and the anti-diabetic potential of Curcuma longa leaf (CLO) essential oil. Further, major phytocompounds of CLO were analyzed for their in-silico interactions with antifungal, antioxidant, and anti-diabetic proteins. CLO was found to have a strong antifungal activity against the tested Candida species with zone of inhibition (ZOI)-11.5 ± 0.71 mm to 13 ± 1.41 mm and minimum inhibitory concentration (MIC) was 0.63%. CLO also showed antioxidant activity, with IC50 values of 5.85 ± 1.61 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and 32.92 ± 0.64 µM using ferric reducing antioxidant power (FRAP) assay. CLO also showed anti-diabetic activity with an IC50 of 43.06 ± 1.24 µg/mL as compared to metformin (half maximal inhibitory concentration, IC50-16.503 ± 0.66 µg/mL). Gas chromatography-mass spectrometry (GC-MS) analysis of CLO showed the presence of (-)-zingiberene (17.84%); 3,7-cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-(15.31%); cyclohexene, 4-methyl-3-(1-methylethylidene) (12.47%); and (+)-4-Carene (11.89%) as major phytocompounds. Molecular docking of these compounds with antifungal proteins (cytochrome P450 14 alpha-sterol demethylase, PDB ID: 1EA1, and N-myristoyl transferase, PDB ID: 1IYL), antioxidant (human peroxiredoxin 5, PDB ID: 1HD2), and anti-diabetic proteins (human pancreatic alpha-amylase, PDB ID: 1HNY) showed strong binding of 3,7-cyclodecadien-1-one with all the selected protein targets. Furthermore, molecular dynamics (MD) simulations for a 100 ns time scale revealed that most of the key contacts of target proteins were retained throughout the simulation trajectories. Binding free energy calculations using molecular mechanics generalized born surface area (MM/GBSA), and drug-likeness and toxicity analysis also proved the potential for 3,7-cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene) to replace toxic synthetic drugs and act as natural antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Biotechnology, Chandigarh College of Technology, CGC, Landran, Mohali 140307, India
- Correspondence: (N.S.); (S.P.)
| | - Nidhi Gupta
- Department of Biotechnology, Chandigarh College of Technology, CGC, Landran, Mohali 140307, India
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics, and Climatic Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Jiangnan Peng
- Department of Medicinal, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Shagufta Perveen
- Department of Medicinal, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
- Correspondence: (N.S.); (S.P.)
| |
Collapse
|
4
|
Raghuvanshi D, Sharma K, Verma R, Kumar D, Kumar H, Khan A, Valko M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Phytochemistry, and pharmacological efficacy of Cordia dichotoma G. Forst. (Lashuda): A therapeutic medicinal plant of Himachal Pradesh. Biomed Pharmacother 2022; 153:113400. [DOI: 10.1016/j.biopha.2022.113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
|
5
|
Arya A, Kumar S, Paul R, Suryavanshi A, Kain D, Sahoo RN. Ethnopharmacological survey of indigenous medicinal plants of Palampur, Himachal Pradesh in north-western Himalaya, India. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Mishra MK, Pandey S, Niranjan A, Misra P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Rolta R, Sharma A, Sourirajan A, Mallikarjunan PK, Dev K. Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113420. [PMID: 32998023 DOI: 10.1016/j.jep.2020.113420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. is a traditional Chinese medicine used for the treatment of malaria, jaundice and intense fever. AIM OF THE STUDY The aim of the present study was to investigate the phytochemicals, antioxidants, antimicrobial and synergistic potential of methanolic and petroleum ether extracts of A. annua against bacterial and fungal pathogens. METHOD Antioxidant activity of different concentrations of methanolic and petroleum ether extracts of A. annua was determined by DPPH free radical scavenging assay. Antimicrobial activity was determined by agar well diffusion, whereas MIC and synergistic activity was done by broth dilution method.TLC and GC-MS were done to identify active phytocompounds present in methanolic and petroleum ether extracts. RESULTS Methanolic extract of A. annua showed higher antioxidant potential (IC50 37 0.75 ± 0.34 μg ml-1) as compared to petroleum ether extract. In antimicrobial analysis, methanolic and petroleum ether extracts of A. annua produced potent inhibitory activity against Candida strains as compared to bacterial strains. Methanolic and petroleum ether extracts of A. annua produced synergistic potential with decrease in MIC from 4 to 264 folds against bacterial (S. aureus and E. coli) and Candida strains in combination with antibacterial and antifungal antibiotics. Sub fraction I of methanolic and petroleum ether extracts was isolated through silica TLC and showed 10-fold more antimicrobial activity as compared to crude extract. GC-MS analysis of sub-fraction I of A. annua revealed 13 major phytocompounds with area more than 1%. Interestingly, 2-Propenoic acid and ridecyl ester (25.88%) were the major phytocompounds. CONCLUSION Phytocompounds of A. annua can be used as bioenhancer of antibacterial and antifungal agents to control drug resistance.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anshika Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | | | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
8
|
Phytochemical screening, antimicrobial, antioxidant and cytotoxic potential of different extracts of Psidium guajava leaves. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42535-020-00151-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|