1
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
2
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Park SJ, Sharma A, Lee HJ. An Update on the Chemical Constituents and Biological Properties of Selected Species of an Underpinned Genus of Red Algae: Chondrus. Mar Drugs 2024; 22:47. [PMID: 38248672 PMCID: PMC10817618 DOI: 10.3390/md22010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Macroalgae, particularly red seaweeds, have attracted significant attention due to their economic and health benefits. Chondrus, a red algae genus, despite its economic importance, seems to be undervalued. Among all its species, Chondrus crispus has been meticulously documented for its biological properties, and little is known about other species. No comprehensive review of the biological properties of this genus has been acknowledged. Thus, this review aimed to summarize the available information on the chemical constituents and biological properties of a few selected species, including Chondrus crispus, Chondrus ocellatus, Mazzaella canaliculata, and Chondrus armatus. We compiled and discovered that the genus is offering most of the important health-promoting benefits evidenced from in vitro and in vivo studies focused on antimicrobial, immunomodulation, neuroprotection, anti-atopic, anti-inflammatory, anti-viral, anti-diabetic, cytoprotective, antioxidant, anti-coagulation, nephroprotective, anti-tumor, and anti-venom activity, which speaks about the potential of this genus. Data on clinical studies are limited. Further, around 105 chemical constituents have been reported from Chondrus spp. Given its significance, further investigation is warranted, in the form of meticulously planned cell, animal, and clinical studies that concentrate on novel health-enhancing endeavors, in order to unveil the full potential of this genus. The review also outlines challenges and future directions.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Ghosh S, Sarkar T, Chakraborty R. Ankol plant (Alangium salvifolium)-The treasure trove of bioactives and medicinal potential. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. PLANTS 2022; 11:plants11111391. [PMID: 35684164 PMCID: PMC9182764 DOI: 10.3390/plants11111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The human blood sugar level is important and should be controlled to avoid any damage to nerves and blood vessels which could lead to heart disease and many other problems. Several market-available treatments for diabetes could be used, such as insulin therapy, synthetic drugs, herbal drugs, and transdermal patches, to help control blood sugar. In a double-blind human study, four kinds of honey from bees fed on acacia, sea buckthorn, chlorella alga, and green walnut extracts were used in fortifying yogurt for controlling human blood sugar. The impact of a previously fortified honey was investigated on blood levels and other parameters of healthy individuals in a human study with 60 participants. The participants received 150 mL of yogurt mixed with 30 g of honey every morning for 21 days. Before and after the study period, the basic blood parameters were tested, and the participants filled out standardized self-report questionnaires. Acacia honey was the traditional honey used as a control; the special honey products were produced by the patented technology. The consumption of green walnut honey had a significant effect on the morning blood sugar level, which decreased for every participant in the group (15 people). The average blood sugar level at the beginning in the walnut group was 4.81 mmol L−1, whereas the value after 21 days was 3.73 mmol L−1. The total decrease level of the individuals was about 22.45% (1.08 mmol L−1). Concerning the sea buckthorn and chlorella alga-based honey product groups, there was no significant change in the blood sugar level, which were recorded at 4.91 and 5.28 mmol L−1 before treatment and 5.28 and 5.07 mmol L−1 after, respectively. In the case of the acacia honey group, there was a slight significant decrease as well, it was 4.77 mmol L−1 at the beginning and 4.27 mmol L−1 at the end with a total decrease rate of 10.48%. It could thus be concluded that the active ingredients of green walnut can significantly decrease the blood sugar level in humans. This study, as a first report, is not only a new innovative process to add herbs or healthy active ingredients to honey but also shows how these beneficial ingredients aid the honey in controlling the human blood sugar level.
Collapse
|
6
|
Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloğlu MC, Zheleva-Dimitrova D, Gevrenova R, Lobine D, Mahomoodally MF, Etienne OK, Zengin G, Mahmud S, Capasso R. LC-MS/HRMS Analysis, Anti-Cancer, Anti-Enzymatic and Anti-Oxidant Effects of Boerhavia diffusa Extracts: A Potential Raw Material for Functional Applications. Antioxidants (Basel) 2021; 10:2003. [PMID: 34943106 PMCID: PMC8698501 DOI: 10.3390/antiox10122003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Boerhavia diffusa is a great tropical plant and is widely used for various traditional purposes. In the present study, we examined the influence of solvents (dichloromethane, ethyl acetate, methanol and infusion (water)) on chemical composition and biological capabilities of B. diffusa. An UHPLC-HRMS method was used to determine the chemical characterization. The biological ability was examined for antioxidant, enzyme inhibitory and anti-cancer effects. To evaluate antioxidant effects, different chemical methods (ABTS, DPPH, CUPRAC, FRAP, metal chelating and phosphomolybdenum) were applied. With regard to enzyme inhibitory properties, cholinesterases, amylase, glucosidase and tyrosinase were used. The MDA-MB-231 breast cancer cell line was chosen to determine anticancer activity. Based on the UHPLC-HRMS analysis, 37 specialized metabolites were dereplicated and identified in the studied extracts. Results revealed the presence of 15 hydroxybenzoic, hydroxycinnamic, acylquinic acids, and their glycosides, one rotenoid, seven flavonoids, 12 fatty acids and two other glycosides. Among the tested extracts, the methanol extract showed a stronger antioxidant ability compared with other extracts. The methanol extract also showed the best inhibitory effects on tyrosinase and glucosidase. In the anti-cancer evaluation, the methanol extract showed stronger anticancer effects compared with water extract. In summary, our observations can contribute to the establishment of B. diffusa as a potential candidate for functional applications in the preparation.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Uğur Akpulat
- Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37150, Turkey;
| | - Afaf A. Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia;
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|