1
|
Amin A, Mekadim C, Modrackova N, Bolechova P, Mrazek J, Neuzil-Bunesova V. Microbiome composition and presence of cultivable commensal groups of Southern Tamanduas (Tamandua tetradactyla) varies with captive conditions. Anim Microbiome 2024; 6:21. [PMID: 38698458 PMCID: PMC11064412 DOI: 10.1186/s42523-024-00311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Southern Tamanduas (Tamandua tetradactyla) belong to the specialized placental myrmecophages. There is not much information about their intestinal microbiome. Moreover, due to their food specialization, it is difficult to create an adequate diet under breeding conditions. Therefore, we used 16S rDNA amplicon sequencing to analyze the fecal microbiome of captive Southern Tamanduas from four locations in the Czech Republic and evaluated the impact of the incoming diet and facility conditions on microbiome composition. Together with the microbiome analysis, we also quantified and identified cultivable commensals. The anteater fecal microbiome was dominated by the phyla Bacillota and Bacteroidota, while Pseudomonadota, Spirochaetota, and Actinobacteriota were less abundant. At the taxonomic family level, Lachnospiraceae, Prevotellaceae, Bacteroidaceae, Oscillospiraceae, Erysipelotrichaceae, Spirochaetaceae, Ruminococcaceae, Leuconostocaceae, and Streptococcaceae were mainly represented in the fecal microbiome of animals from all locations. Interestingly, Lactobacillaceae dominated in the location with a zoo-made diet. These animals also had significantly lower diversity of gut microbiome in comparison with animals from other locations fed mainly with a complete commercial diet. Moreover, captive conditions of analyzed anteater included other factors such as the enrichment of the diet with insect-based products, probiotic interventions, the presence of other animals in the exposure, which can potentially affect the composition of the microbiome and cultivable microbes. In total, 63 bacterial species from beneficial commensal to opportunistic pathogen were isolated and identified using MALDI-TOF MS in the set of more than one thousand selected isolates. Half of the detected species were present in the fecal microbiota of most animals, the rest varied across animals and locations.
Collapse
Affiliation(s)
- Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, v. v. i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Petra Bolechova
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, v. v. i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic.
| |
Collapse
|
2
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
3
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Mallakpour S, Tabesh F, Hussain CM. Potential of tragacanth gum in the industries: a short journey from past to the future. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Medina-López SV, Zuluaga-Domínguez CM, Fernández-Trujillo JP, Hernández-Gómez MS. Nonconventional Hydrocolloids’ Technological and Functional Potential for Food Applications. Foods 2022; 11:foods11030401. [PMID: 35159551 PMCID: PMC8834643 DOI: 10.3390/foods11030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
This review aims to study the alternatives to conventional industrial starches, describing uncommon sources along with their technological characteristics, processing, and performance on food products. Minor components remaining after extraction play an important role in starch performance despite their low percentage, as happens with tuber starches, where minerals may affect gelatinization. This feature can be leveraged in favor of the different needs of the food industry, with diversified applications in the market being considered in the manufacture of both plant and animal-based products with different sensory attributes. Hydrocolloids, different from starch, may also modify the technological outcome of the amylaceous fraction; therefore, combinations should be considered, as advantages and disadvantages linked to biological origin, consumer perception, or technological performance may arise. Among water-based system modifiers, starches and nonstarch hydrocolloids are particularly interesting, as their use reaches millions of sales in a multiplicity of specialties, including nonfood businesses, and could promote a diversified scheme that may address current monocrop production drawbacks for the future sustainability of the food system.
Collapse
Affiliation(s)
- Sandra Viviana Medina-López
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogota 111321, Colombia; (S.V.M.-L.); (M.S.H.-G.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | | | | | - María Soledad Hernández-Gómez
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogota 111321, Colombia; (S.V.M.-L.); (M.S.H.-G.)
- Instituto Amazónico de Investigaciones Científicas (SINCHI), Bogota 110311, Colombia
| |
Collapse
|
7
|
Wang Y, Liu Y, Ivusic Polic I, Chandran Matheyambath A, LaPointe G. Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep 2021; 11:15273. [PMID: 34315970 PMCID: PMC8316555 DOI: 10.1038/s41598-021-94824-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Bifidobacteria, which commonly inhabit the primate gut, are beneficial contributors to host wellbeing. Anatomical differences and natural habitat allow an arrangement of primates into two main parvorders; New World monkeys (NWM) and Old World monkeys (OWM). The number of newly described bifidobacterial species is clearly elevated in NWM. This corresponds to our finding that bifidobacteria were the dominant group of cultivated gut anaerobes in NWM, while their numbers halved in OWM and were often replaced by Clostridiaceae with sarcina morphology. We examined an extended MALDI-TOF MS database as a potential identification tool for rapid screening of bifidobacterial distribution in captive primates. Bifidobacterial isolates of NWM were assigned mainly to species of primate origin, while OWM possessed typically multi-host bifidobacteria. Moreover, bifidobacterial counts reflected the feed specialization of captive primates decreasing from frugivore-insectivores, gummivore-insectivores, frugivore-folivores to frugivore-omnivores. Amplicon sequencing analysis supported this trend with regards to the inverse ratio of Actinobacteria and Firmicutes. In addition, a significantly higher diversity of the bacterial population in OWM was found. The evolution specialization of primates seems to be responsible for Bifidobacterium abundance and species occurrence. Balanced microbiota of captive primates could be supported by optimized prebiotic and probiotic stimulation based on the primate host.
Collapse
|
9
|
Liang N, Neužil-Bunešová V, Tejnecký V, Gänzle M, Schwab C. 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri. Food Microbiol 2021; 98:103720. [PMID: 33875197 DOI: 10.1016/j.fm.2020.103720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
Strains of Limosilactobacillus reuteri are used as starter and bioprotective cultures and contribute to the preservation of food through the production of fermentation metabolites lactic and acetic acid, and of the antimicrobial reuterin. Reuterin consists of acrolein and 3-hydroxypropionaldehyde (3-HPA), which can be further metabolized to 1,3-propanediol and 3-hydroxypropionic acid (3-HP). While reuterin has been the focus of many investigations, the contribution of 3-HP to the antimicrobial activity of food related reuterin-producers is unknown. We show that the antibacterial activity of 3-HP was stronger at pH 4.8 compared to pH 5.5 and 6.6. Gram-positive bacteria were in general more resistant against 3-HP and propionic acid than Gram-negative indicator strains including common food pathogens, while spoilage yeast and molds were not inhibited by ≤ 640 mM 3-HP. The presence of acrolein decreased the minimal inhibitory activity of 3-HP against E. coli indicating synergistic antibacterial activity. 3-HP was formed during the growth of the reuterin-producers, and by resting cells of L. reuteri DSM 20016. Taken together, this study shows that food-related reuterin producers strains synthesize a second antibacterial compound, which might be of relevance when strains are added as starter or bioprotective cultures to food products.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science, University of Alberta, Edmonton, Canada
| | - Věra Neužil-Bunešová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, Prague 6, 165 00 Prague, Czechia
| | - Václav Tejnecký
- Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Michael Gänzle
- Department of Food Science, University of Alberta, Edmonton, Canada
| | - Clarissa Schwab
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, Prague 6, 165 00 Prague, Czechia; Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
10
|
Neuzil-Bunesova V, Lugli GA, Modrackova N, Vlkova E, Bolechova P, Burtscher J, Longhi G, Mancabelli L, Killer J, Domig K, Ventura M. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int J Syst Evol Microbiol 2020; 71. [PMID: 33226935 DOI: 10.1099/ijsem.0.004573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five Bifidobacterium strains, VB23T, VB24T, VB25T, VB26T and VB31T, were isolated from chimpanzee (Pan troglodytes), cotton-top tamarin (Saguinus oedipus), Goeldi's marmoset (Callimico goeldii), moustached tamarin (Saguinus mystax) and patas monkey (Erythrocebus patas), respectively, which were kept in two Czech zoos. These strains were isolated from faecal samples and were Gram-positive, non-motile, non-sporulating, anaerobic and fructose-6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA revealed close relatedness between VB23T and Bifidobacterium angulatum LMG 11039T (96.0 %), VB24T and Bifidobacterium pullorum subsp. pullorum DSM 20433T (96.1 %), VB25T and Bifidobacterium goeldii LMG 30939T (96.5 %), VB26T and Bifidobacterium imperatoris LMG 30297T (98.1 %), and VB31T and B. angulatum LMG 11039T (99.40 %). Internal transcribed spacer profiling revealed that VB23T, VB24T, VB25T, VB26T and VB31T had highest similarity to Bifidobacterium breve LMG 13208T (77.2 %), Bifidobacterium longum subsp. infantis ATCC 15697T (85.8 %), Bifidobacterium biavatii DSM 23969T (76.9 %), B. breve LMG 13208T (81.2 %) and B. angulatum LMG 11039T (88.2 %), respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with their closest neighbours supported the independent phylogenetic positions of the strains with values between 86.3 and 94.3 % for ANI and 25.8 and 54.9 % for dDDH. These genomic and phylogenetic analyses suggested that the evaluated strains were novel Bifidobacterium species named Bifidobacterium erythrocebi sp. nov. (VB31T=DSM 109960T=CCUG 73843T), Bifidobacterium moraviense sp. nov. (VB25T=DSM 109958T=CCUG 73842T), Bifidobacterium oedipodis sp. nov. (VB24T=DSM 109957T=CCUG 73932T), Bifidobacterium olomucense sp. nov. (VB26T=DSM 109959T=CCUG 73845T) and Bifidobacterium panos sp. nov. (VB23T=DSM 109963T=CCUG 73840T).
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Petra Bolechova
- Department of Ethology and Companion Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jiri Killer
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia.,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Konrad Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Appert O, Garcia AR, Frei R, Roduit C, Constancias F, Neuzil-Bunesova V, Ferstl R, Zhang J, Akdis C, Lauener R, Lacroix C, Schwab C. Initial butyrate producers during infant gut microbiota development are endospore formers. Environ Microbiol 2020; 22:3909-3921. [PMID: 32686173 DOI: 10.1111/1462-2920.15167] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The acquisition of the infant gut microbiota is key to establishing a host-microbiota symbiosis. Microbially produced metabolites tightly interact with the immune system, and the fermentation-derived short-chain fatty acid butyrate is considered an important mediator linked to chronic diseases later in life. The intestinal butyrate-forming bacterial population is taxonomically and functionally diverse and includes endospore formers with high transmission potential. Succession, and contribution of butyrate-producing taxa during infant gut microbiota development have been little investigated. We determined the abundance of major butyrate-forming groups and fermentation metabolites in faeces, isolated, cultivated and characterized the heat-resistant cell population, which included endospores, and compared butyrate formation efficiency of representative taxa in batch cultures. The endospore community contributed about 0.001% to total cells, and was mainly composed of the pioneer butyrate-producing Clostridium sensu stricto. We observed an increase in abundance of Faecalibacterium prausnitzii, butyrate-producing Lachnospiraceae and faecal butyrate levels with age that is likely explained by higher butyrate production capacity of contributing taxa compared with Clostridium sensu stricto. Our data suggest that a successional arrangement and an overall increase in abundance of butyrate forming populations occur during the first year of life, which is associated with an increase of intestinal butyrate formation capacity.
Collapse
Affiliation(s)
- Olivia Appert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Alejandro Ramirez Garcia
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Remo Frei
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,University Children's Hospital Zürich, Zürich, Switzerland.,Children's Hospital St. Gallen, St. Gallen, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Jianbo Zhang
- Laboratory of Toxicology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Cezmi Akdis
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital St. Gallen, St. Gallen, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.,Division of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Potential prebiotic properties of flours from different varieties of sweet potato (Ipomoea batatas L.) roots cultivated in Northeastern Brazil. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific. Microorganisms 2020; 8:microorganisms8060839. [PMID: 32503148 PMCID: PMC7355683 DOI: 10.3390/microorganisms8060839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.
Collapse
|