1
|
Gorur V, Kranc KR, Ganuza M, Telfer P. Haematopoietic stem cell health in sickle cell disease and its implications for stem cell therapies and secondary haematological disorders. Blood Rev 2024; 63:101137. [PMID: 37919142 DOI: 10.1016/j.blre.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Gene modification of haematopoietic stem cells (HSCs) is a potentially curative approach to sickle cell disease (SCD) and offers hope for patients who are not eligible for allogeneic HSC transplantation. Current approaches require in vitro manipulation of healthy autologous HSC prior to their transplantation. However, the health and integrity of HSCs may be compromised by a variety of disease processes in SCD, and challenges have emerged in the clinical trials of gene therapy. There is also concern about increased susceptibility to haematological malignancies during long-term follow up of patients, and this raises questions about genomic stability in the stem cell compartment. In this review, we evaluate the evidence for HSC deficits in SCD and then discuss their potential causation. Finally, we suggest several questions which need to be addressed in order to progress with successful HSC manipulation for gene therapy in SCD.
Collapse
Affiliation(s)
- Vishaka Gorur
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Kamil R Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Paul Telfer
- Blizard Institute, Queen Mary University of London, E1 2AT, UK.
| |
Collapse
|
2
|
Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients 2023; 15:nu15061454. [PMID: 36986182 PMCID: PMC10053245 DOI: 10.3390/nu15061454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We hypothesized that a rise in the levels of oxidative/nitrosative stress markers and a decline in antioxidants might take place in systemic and muscle compartments of chronic obstructive pulmonary disease (COPD) patients with non-anemic iron deficiency. In COPD patients with/without iron depletion (n = 20/group), markers of oxidative/nitrosative stress and antioxidants were determined in blood and vastus lateralis (biopsies, muscle fiber phenotype). Iron metabolism, exercise, and limb muscle strength were assessed in all patients. In iron-deficient COPD compared to non-iron deficient patients, oxidative (lipofuscin) and nitrosative stress levels were greater in muscle and blood compartments and proportions of fast-twitch fibers, whereas levels of mitochondrial superoxide dismutase (SOD) and Trolox equivalent antioxidant capacity (TEAC) decreased. In severe COPD, nitrosative stress and reduced antioxidant capacity were demonstrated in vastus lateralis and systemic compartments of iron-deficient patients. The slow- to fast-twitch muscle fiber switch towards a less resistant phenotype was significantly more prominent in muscles of these patients. Iron deficiency is associated with a specific pattern of nitrosative and oxidative stress and reduced antioxidant capacity in severe COPD irrespective of quadriceps muscle function. In clinical settings, parameters of iron metabolism and content should be routinely quantify given its implications in redox balance and exercise tolerance.
Collapse
|
3
|
Melatonin as a powerful antioxidant. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:335-354. [PMID: 36654092 DOI: 10.2478/acph-2021-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/20/2023]
Abstract
Melatonin is a hormone that has many body functions and, for several decades, its antioxidant potential has been increasingly talked about. There is a relationship between failure in melatonin production in the pineal gland, an insufficient supply of this hormone to the body, and the occurrence of free radical etiology diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, cancer and others. Despite the development of molecular biology, numerous in vitro and in vivo studies, the exact mechanism of melatonin antioxidant activity is still unknown. Nowadays, the use of melatonin supplementation is more and more common, not only to prevent insomnia, but also to slow down the aging process and provide protection against diseases. The aim of this study is to get acquainted with current reports on melatonin, antioxidative mechanisms and their importance in diseases of free radical etiology.
Collapse
|
4
|
Inheritance of the Bantu/Benin haplotype causes less severe hemolytic and oxidative stress in sickle cell anemia patients treated with hydroxycarbamide. J Hum Genet 2016; 61:605-11. [PMID: 26961071 DOI: 10.1038/jhg.2016.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
Beta S-globin gene cluster haplotypes (β(S)-haplotypes) can modulate the response to hydroxycarbamide (HC) treatment in sickle cell anemia (SCA) patients. In Brazil, the most common haplotypes are Bantu and Benin, and both confer a poor prognosis for patients when untreated with HC. We evaluated oxidative and hemolytic biomarkers in 48 SCA patients undergoing HC treatment separated in three subgroups: Bantu/Bantu, Bantu/Benin and Benin/Benin haplotype. On the basis of reduced haptoglobin (HP) levels, patients with Bantu/Bantu haplotypes had 3.0% higher hemolysis degree when compared with those with Bantu/Benin haplotypes (P=0.01). The Benin/Benin patients had 53.6% greater lipid peroxidation index than the Bantu/Bantu patients (P=0.01) because of evaluated thiobarbituric acid reactive species levels. The Bantu/Benin subgroup had intermediate levels of hemolytic and oxidative stress markers compared with the homozygous subgroups. Through strict inclusion criteria adopted, as well as consolidated and well-described hemolytic and the oxidative parameters evaluated, we suggest a haplotype-interaction response to HC treatment mediated by a 'balance' between the genetic factors of each haplotype studied.
Collapse
|
5
|
Shimauti EL, Silva DGH, de Souza EM, de Almeida EA, Leal FP, Bonini-Domingos CR. Prevalence of β(S)-globin gene haplotypes, α-thalassemia (3.7 kb deletion) and redox status in patients with sickle cell anemia in the state of Paraná, Brazil. Genet Mol Biol 2015; 38:316-23. [PMID: 26500435 PMCID: PMC4612597 DOI: 10.1590/s1415-475738320140231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/24/2015] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to determine the frequency of beta S-globin gene (βS globin) haplotypes and alpha thalassemia with 3.7 kb deletion (−α3.7kb thalassemia) in the northwest region of Paraná state, and to investigate the oxidative and clinical-hematological profile of βS globin carriers in this population. Of the 77 samples analyzed, 17 were Hb SS, 30 were Hb AS and 30 were Hb AA. The βSglobin haplotypes and −α3.7kb thalassemia were identified using polymerase chain reaction.Trolox equivalent antioxidant capacity (TEAC) and lipid peroxidation (LPO) were assessed spectophotometrically. Serum melatonin levels were determined using high-performance liquid chromatography coupled to coulometric electrochemical detection. The haplotype frequencies in the SS individuals were as follows: Bantu- 21 (62%), Benin - 11 (32%) and Atypical- 2 (6%). Bantu/Benin was the most frequent genotype. Of the 47 SS and AS individuals assessed, 17% (n = 8) had the −α3.7kb mutation. Clinical manifestations, as well as serum melatonin, TEAC and LPO levels did not differ between Bantu/Bantu and Bantu/Benin individuals (p > 0.05). Both genotypes were associated with high LPO and TEAC levels and decreased melatonin concentration. These data suggest that the level of oxidative stress in patients with Bantu/Bantu and Bantu/Benin genotypes may overload the antioxidant capacity.
Collapse
Affiliation(s)
- Eliana LitsukoTomimatsu Shimauti
- Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil. ; Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Danilo Grunig Humberto Silva
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | | | - Eduardo Alves de Almeida
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | | | - Claudia Regina Bonini-Domingos
- Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| |
Collapse
|
6
|
da Silva DGH, Ricci O, de Almeida EA, Bonini-Domingos CR. Potential utility of melatonin as an antioxidant therapy in the management of sickle cell anemia. J Pineal Res 2015; 58:178-88. [PMID: 25545035 DOI: 10.1111/jpi.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
This study aimed to assess antioxidant effects of melatonin treatment compared to N-acetylcysteine (NAC) and to their combination in a sickle cell suspension. Sickle erythrocytes were suspended in phosphate-buffered saline, pH 7.4, composing external control group. They were also suspended and incubated at 37°C either in the absence (experimental control group) or in the presence of NAC, melatonin and their combination at concentrations of 100 pm, 100 nm and 100 μm for 1 hr (treatment groups). The melatonin influences were evaluated by spectrophotometric [hemolysis degree, catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), and superoxide dismutase (SOD) activities] and chromatographic methods [glutathione (GSH) and malondialdehyde (MDA) levels]. Incubation period was able to cause a rise about 64% on hemolysis degree as well as practically doubled the lipid peroxidation levels (P < 0.01). However, almost all antioxidants tested treatments neutralized this incubation effect observed in MDA levels. Among the antioxidant biomarkers evaluated, we observed a modulating effect of combined treatment on GPx and SOD activities (P < 0.01), which showed ~25% decrease in their activities. In addition, we found an antioxidant dose-dependent effect for melatonin on lipid peroxidation (r = -0.29; P = 0.03) and for combined antioxidant treatments also on MDA levels (r = -0.37; P = 0.01) and on SOD activity (r = -0.54; P < 0.01). Hence, these findings contribute with important insight that melatonin individually or in combination with NAC may be useful for sickle cell anemia management.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, UNESP - Sao Paulo State University, Sao Paulo, Brazil; Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
7
|
Silva DGH, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med 2013; 65:1101-1109. [PMID: 24002011 DOI: 10.1016/j.freeradbiomed.2013.08.181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023]
Abstract
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2(-)) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.
Collapse
Affiliation(s)
- Danilo Grunig Humberto Silva
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil; Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Edis Belini Junior
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Eduardo Alves de Almeida
- Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Claudia Regina Bonini-Domingos
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
8
|
Shimauti ELT, Belini Junior E, Baracioli LMDSV, Souza EMD, Granzotto D, Almeida EAD, Silva DGH, Ricci Junior O, Bonini-Domingos CR. Influence of βS allele in the lipid peroxidation and antioxidant capacity parameters. Int J Lab Hematol 2013; 36:205-12. [PMID: 24118969 DOI: 10.1111/ijlh.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The oxidative process plays a fundamental role in the pathophysiology of sickle cell anemia (SCA), and population and environmental characteristics may influence redox balance. The aim of this study was to evaluate lipid peroxidation and antioxidant capacity in Brazilian Hb S carriers undergoing different therapies. METHODS Blood samples from 270 individuals were analyzed (Hb SS, n = 68; Hb AS, n = 53, and Hb AA, n = 149). Hemoglobin genotypes were assessed through cytological, electrophoretic, chromatographic, and molecular methods. Plasma lipid peroxidation and antioxidant capacity were measured by spectrophotometric methods. RESULTS Patients with SCA who used iron-chelating drugs combined with hydroxyurea, associated with regular transfusions, showed lower levels of TBARS (P ≤ 0.05), higher levels of TEAC (P ≤ 0.01), and lower TBARS/TEAC ratio (R = 255.8). The redox profile of Hb AS subjects was not statistically different (P > 0.05) from that of Hb AA subjects. CONCLUSION The data suggest that oxidative stress is lower in the patients with SCA who received regular blood transfusions associated with the combined use of HU and iron chelators than the group received only HU. The redox system of the Hb AS carriers is compatible with the control group.
Collapse
Affiliation(s)
- E L T Shimauti
- Department of Biology, Laboratory of Hemoglobin and Genetics of Hematological Diseases, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil; Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM), Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE Melatonin (MEL) is an effective antioxidant in numerous experimental models, both in vitro and in vivo. However, it should be stressed that there are also papers reporting limited antioxidative activity of MEL or even giving evidence for its pro-oxidative properties. In the present paper we investigated the influence of MEL on the oxidative damage of human erythrocytes during prolonged incubation. MATERIAL/METHODS Human erythrocytes suspended in phosphate-buffered saline (PBS), pH 7.4 were incubated at 37ºC either in absence or presence of melatonin at concentration range 0.02 mM-3 mM for up to 96 hrs. The influence of MEL on erythrocyte damage was assessed on the basis of the intensity of intracellular oxidation processes (the oxidation of HbO₂, GSH, fluorescent label DCFH₂) as well as damage to the plasma membrane (lipid peroxidation, the potassium leakage) and the kinetics of hemolysis. RESULTS The prolonged incubation of erythrocytes induced a progressive destruction of erythrocytes. Melatonin prevented lipid peroxidation and hemolysis whereas the oxidation of HbO₂ and DCFH₂ was enhanced by melatonin at concentrations higher than 0.6 mM. In the case of erythrocytes incubated with 3 mM of MEL, the hemolysis rate constant (0.0498±0.0039 H%•h⁻¹) was 50% lower than that of the control while the HbO₂ oxidation rate constants were about 1.4 and 1.5 times higher for 1.5 and 3 mM of MEL, respectively. Melatonin had no influence on the oxidation of GSH and the potassium leakage. CONCLUSIONS Probably, MEL can stabilize the erythrocyte membrane due to interaction with lipids, thus prolonging the existence of cells. On the contrary, in the presence of MEL the accelerated oxidation of HbO₂ and generally, increased oxidative stress was observed in erythrocytes. Pro- and antioxidative properties of melatonin depend on the type of cells, redox state, as well as experimental conditions.
Collapse
|
10
|
Elias DBD, Rocha LBDS, Cavalcante MB, Pedrosa AM, Justino ICB, Gonçalves RP. Correlation of low levels of nitrite and high levels of fetal hemoglobin in patients with sickle cell disease at baseline. Rev Bras Hematol Hemoter 2012; 34:265-9. [PMID: 23049438 PMCID: PMC3460400 DOI: 10.5581/1516-8484.20120069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/02/2012] [Indexed: 12/03/2022] Open
Abstract
Background Sickle cell disease is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and recurrent vaso-occlusive crises that reduces the quality of life of sufferers. Objective To evaluate the correlation of the levels of lactate dehydrogenase, malonaldehyde and nitrite to fetal hemoglobin in patients with sickle cell disease not under treatment with hydroxyurea in outpatients at a university hospital in Fortaleza, Ceará, Brazil. Methods Forty-four patients diagnosed with sickle cell disease were enrolled at baseline. Diagnosis was confirmed by evaluating the beta globin gene using polymerase chain reaction-restriction fragment length polymorphism. The concentration of fetal hemoglobin was obtained by high-performance liquid chromatography. Serum levels of nitrite, malonaldehyde and lactate dehydrogenase were measured by biochemical methods. Results Significantly higher levels of lactate dehydrogenase, nitrite and malonaldehyde were observed in patients with sickle cell disease compared to a control group. The study of the correlation between fetal hemoglobin levels and these variables showed a negative correlation with nitrite levels. No correlation was found between fetal hemoglobin and malonaldehyde or lactate dehydrogenase. When the study population was stratified according to fetal hemoglobin levels, a decrease in the levels of nitrite was observed with higher levels of fetal hemoglobin (p-value = 0.0415). Conclusion The results show that, similar to fetal hemoglobin levels, the concentration of nitrite can predict the clinical course of the disease, but should not be used alone as a modulator of prognosis in patients with sickle cell disease.
Collapse
|
11
|
|
12
|
Belini Junior E, da Silva DGH, Torres LDS, de Almeida EA, Cancado RD, Chiattone C, Bonini-Domingos CR. Oxidative stress and antioxidant capacity in sickle cell anaemia patients receiving different treatments and medications for different periods of time. Ann Hematol 2011; 91:479-89. [PMID: 21947087 DOI: 10.1007/s00277-011-1340-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/11/2011] [Indexed: 01/29/2023]
Abstract
To evaluate, in a longitudinal study, the profile of lipid peroxidation and antioxidant capacity markers in sickle cell anaemia patients receiving different treatments and medication over different time periods. The three groups were: patients undergoing transfusion therapy and receiving iron chelator deferasirox (DFX group, n = 20); patients receiving deferasirox and hydroxyurea (DFX + HU group, n = 10), and patients receiving only folic acid (FA group, n = 15). Thiobarbituric acid-reactive substance (TBARS) assays and trolox-equivalent antioxidant capacity (TEAC) assays were evaluated during two different periods of analysis, T0 and T1 (after ~388 days). Higher FA group TBARS values were observed compared with the DFX + HU group (p = 0.016) at T0; and at T1, higher FA group TBARS values were also observed compared with both the DFX group (p = 0.003) and the DFX + HU group (p = 0.0002). No variation in TEAC values was seen between groups, at either T0 or T1. The mean values of TBARS and TEAC for both the DFX and DFX + HU groups decreased at T1. The antioxidant effects of HU and DFX were observed by through an increase in TEAC levels in DFX and DFX + HU groups when compared with those of normal subjects. Increased TEAC values were not recorded in the FA group, and lipid peroxidation was seen to decrease after DFX and HU use.
Collapse
Affiliation(s)
- Edis Belini Junior
- Department of Biology, Haemoglobin and Haematologic Diseases Genetic Laboratory, UNESP-Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
13
|
Silva DGH, Belini Junior E, Torres LDS, Ricci Júnior O, Lobo CDC, Bonini-Domingos CR, de Almeida EA. Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia. Blood Cells Mol Dis 2011; 47:23-8. [PMID: 21489839 DOI: 10.1016/j.bcmd.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 01/16/2023]
Abstract
This study evaluated the oxidative stress and antioxidant capacity markers in sickle cell anemia (SCA) patients with and without treatment with hydroxyurea. We assessed GSTT1, GSTM1 and GSTP1 polymorphisms in patients and a control group. The study groups were composed of 48 subjects without hemoglobinopathies and 28 SCA patients, 13 treated with HU [SCA (+HU)], and 15 SCA patients not treated with HU [SCA (-HU)]. We observed a significant difference for GSTP1 polymorphisms in SCA patients with the V/V genotype that showed higher glutathione (GSH) and Trolox equivalent antioxidant capacity (TEAC) (p=0.0445 and p=0.0360), respectively, compared with the I/I genotype. HU use was associated with a 35.2% decrease in the lipid peroxidation levels of the SCA (+HU) group (p<0.0001). Moreover, the SCA (+HU) group showed higher TEAC as compared to the control group (p=0.002). We did not find any significant difference in glutathione-S-transferase (GST) activity between the groups (p=0.76), but the catalase (CAT) activity was about 17% and 30% decreased in the SCA (+HU) and SCA (-HU) groups, respectively (p<0.00001). Whereas the plasma GSH levels were ~2 times higher in the SCA patients than the control group (p=0.0005). HU use has contributed to higher CAT activity and TEAC, and lower lipid peroxidation in patients under treatment. These findings may explain the influence of HU in ameliorating oxidative stress on SCA subjects.
Collapse
Affiliation(s)
- Danilo Grünig Humberto Silva
- UNESP-Sao Paulo State University, Department of Biology, Hemoglobin and Hematologic Genetic Diseases Laboratory, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|