1
|
Ivanova I, Slavkova M, Popova T, Tzankov B, Stefanova D, Tzankova V, Tzankova D, Spassova I, Kovacheva D, Voycheva C. Agar Graft Modification with Acrylic and Methacrylic Acid for the Preparation of pH-Sensitive Nanogels for 5-Fluorouracil Delivery. Gels 2024; 10:165. [PMID: 38534583 DOI: 10.3390/gels10030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Agar, a naturally occurring polysaccharide, has been modified by grafting it with acrylic (AcA) and methacrylic (McA) acid monomers, resulting in acrylic or methacrylic acid grafted polymer (AA-g-AcA or AA-g-McA) with pH-sensitive swelling behavior. Different ratios between agar, monomers, and initiator were applied. The synthesized grades of both new polymer series were characterized using FTIR spectroscopy, NMR, TGA, DSC, and XRD to ascertain the intended grafting. The percentage of grafting (% G), grafting efficiency (% GE), and % conversion (% C) were calculated, and models with optimal characteristics were further characterized. The swelling behavior of the newly synthesized polymers was studied over time and in solutions with different pH. These polymers were subsequently crosslinked with varying amounts of glutaraldehyde to obtain 5-fluorouracil-loaded nanogels. The optimal ratios of polymer, drug, and crosslinker resulted in nearly 80% loading efficiency. The performed physicochemical characterization (TEM and DLS) showed spherical nanogels with nanometer sizes (105.7-250 nm), negative zeta potentials, and narrow size distributions. According to FTIR analysis, 5-fluorouracil was physically incorporated. The swelling and release behavior of the prepared nanogels was pH-sensitive, favoring the delivery of the chemotherapeutic to tumor cells. The biocompatibility of the proposed nanocarrier was proven using an in vitro hemolysis assay.
Collapse
Affiliation(s)
- Ivelina Ivanova
- Faculty of Pharmacy, Department Pharmaceutical Technology and Biopharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Marta Slavkova
- Faculty of Pharmacy, Department Pharmaceutical Technology and Biopharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Faculty of Pharmacy, Department Pharmaceutical Technology and Biopharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Faculty of Pharmacy, Department Pharmaceutical Technology and Biopharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Denitsa Stefanova
- Faculty of Pharmacy, Department of Pharmacology, Pharmacotherapy and Toxicology, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Department of Pharmacology, Pharmacotherapy and Toxicology, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Diana Tzankova
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Christina Voycheva
- Faculty of Pharmacy, Department Pharmaceutical Technology and Biopharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Alkattan A, Alkhalifah A, Alsalameen E, Alghanim F, Radwan N. Polymorphisms of genes related to phase II metabolism and resistance to clopidogrel. Pharmacogenomics 2021; 23:61-79. [PMID: 34866404 DOI: 10.2217/pgs-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug's efficacy.
Collapse
Affiliation(s)
- Abdullah Alkattan
- Planning and Research Department, General Directorate of School Health, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Ahmed Alkhalifah
- Department of Sales, Fresenius Kabi, Alhaya Medical Company, Riyadh, Saudi Arabia
| | - Eman Alsalameen
- Department of Pharmacy, King Khalid University Hospital, Medical City King Saud University, Riyadh, Saudi Arabia
| | - Fatimah Alghanim
- Department of General Medicine, Faculty of Medicine, Imam Abdulrahman bin Faisal University
| | - Nashwa Radwan
- Department of Public Health & Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt.,Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Heath, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Seven novel glucose-6-phosphate dehydrogenase (G6PD) deficiency variants identified in the Qatari population. Hum Genomics 2021; 15:61. [PMID: 34620237 PMCID: PMC8499492 DOI: 10.1186/s40246-021-00358-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase deficiency (G6PDD) is the most common red cell enzymopathy in the world. In Qatar, the incidence of G6PDD is estimated at around 5%; however, no study has investigated the genetic basis of G6PDD in the Qatari population yet. Methods In this study, we analyzed whole-genome sequencing data generated by the Qatar Genome Programme for 6045 Qatar Biobank participants, to identify G6PDD variants in the Qatari population. In addition, we assessed the impact of the novel variants identified on protein function both in silico and by measuring G6PD enzymatic activity in the subjects carrying them. Results We identified 375 variants in/near G6PD gene, of which 20 were high-impact and 16 were moderate-impact variants. Of these, 14 were known G6PDD-causing variants. The most frequent G6PD-causing variants found in the Qatari population were p.Ser188Phe (G6PD Mediterranean), p.Asn126Asp (G6PD A +), p.Val68Met (G6PD Asahi), p.Ala335Thr (G6PD Chatham), and p.Ile48Thr (G6PD Aures) with allele frequencies of 0.0563, 0.0194, 0.00785, 0.0050, and 0.00380, respectively. Furthermore, we have identified seven novel G6PD variants, all of which were confirmed as G6PD-causing variants and classified as class III variants based on the World Health Organization’s classification scheme. Conclusions This is the first study investigating the molecular basis of G6PDD in Qatar, and it provides novel insights about G6PDD pathogenesis and highlights the importance of studying such understudied population. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00358-9.
Collapse
|
4
|
Maloukh L, Kumarappan A, El-Din El-Wakil H, Al-Kamali F, Gomma F, Akhondi A, T V RL. Development of allelic discrimination assay to detect Mediterranean G6PD mutation and its linked inheritance with normal vision and/colorblindness loci for 4 generations among Egyptian and Emirati families. Saudi J Biol Sci 2021; 28:5028-5033. [PMID: 34466078 PMCID: PMC8381007 DOI: 10.1016/j.sjbs.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/26/2022] Open
Abstract
G6PD deficiency c563T is the most common inherent blood disease among the Mediterranean populations and its molecular diagnosis is critical as the enzyme assay fails for heterozygous individuals. The purpose of the study is to estimate the ubiquity of the heterozygous G6PD Med (c563T) variants among Egyptians and UAE nationals living in Dubai. We validated two molecular methods, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and qPCR allelic discrimination assay for detection of G6PD Med variants. Among 100 screened individuals, G6PD c563T variants are 30% of whom 15% are carriers. Sanger sequencing validated the qPCR discrimination assays. In search of a phenotypic marker to detect G6PD heterozygous variants, inheritance of G6PD locus and red-green color vision genes is studied in 1 Egyptian and 2 Emirati families. Among the 3 families, G6PD is polymorphic, displaying 4 phenotypes: in phenotype-1, person is normal, in phenotype-2 the person has no G6PD deficiency but with deuteranopia/deuteranomaly, in phenotype-3 the person is G6PD Med variant with deuteranopia/deuteranomaly and in phenotype 4 the person is G6PD Med variant has normal vision. Based on the molecular analysis of G6PD and Ishihara vision test it can be concluded that the two mutations at the two loci arose independent of each other without any interaction (epistatic effect) between them. Following the pedigree analysis of the two genes for 4 generations it is presumed that it is infeasible to use "deuteranopia /deuteranomaly" as a phenotypic marker to detect G6PD c563T heterozygous individuals among the Egyptian populations.
Collapse
Affiliation(s)
- Lina Maloukh
- Zayed University, College of Natural and Health Sciences, Abu Dhabi, Khalifa City, United Arab Emirates
| | - Alagappan Kumarappan
- Al Qassimi Women's and Children's Hospital, Molecular Biology Laboratory (Pure Health), Wasit Street, Sharjah, United Arab Emirates
| | | | | | - Fatma Gomma
- Science Tribune Software House, Dubai, United Arab Emirates
| | - Amin Akhondi
- University of Modern Sciences, College of Biotechnology, Dubai, United Arab Emirates
| | - Rajya Lakshmi T V
- Beaconhouse International College, Science Department, Ontario, Canada
| |
Collapse
|
5
|
Sirdah M, Reading NS, Vankayalapati H, Prchal JT. A computational study of structural differences of binding of NADP + and G6P substrates to G6PD Mediterranean c.563T, G6PD A- c.202A/c.376G, G6PD Cairo c.404C and G6PD Gaza c.536A mutations. Blood Cells Mol Dis 2021; 89:102572. [PMID: 33957359 DOI: 10.1016/j.bcmd.2021.102572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder that may lead to transfusion-requiring acute hemolytic anemia (AHA) triggered by fava beans ingestion, infection or some drugs. The gene encoding for G6PD carries a large number of genetic variants that have varying pathogenicity. We reported on three G6PD variants in the Gaza Strip Palestinian population with differing clinical impacts and frequencies: G6PD Mediterraneanc.563T, African G6PD A-c.202A/c.376G, and G6PD Cairoc.404C. We also identified a novel G6PD missense (Ser179Asn) mutation c.536G > A "G6PD Gaza". In this work we explore the effect of these four genetic variants on the structural and substrate (NADP+ and G6P) binding characteristics of the G6PD enzyme using the Monte Carlo (MC) flexible docking and molecular dynamics (MD) simulation approaches. We report that G6PD A-c.202A/c.376G, G6PD Mediterraneanc.563T, G6PD Cairoc.404C and G6PD Gazac.536A mutations cause significant structural changes in G6PD enzyme to induce conformational instability leading to the loss of binding of one or both substrates and are causative of G6PD deficiency.
Collapse
Affiliation(s)
- Mahmoud Sirdah
- Biology Department, Al Azhar University-Gaza, Palestine; Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| | - N Scott Reading
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America; Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, United States of America; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Hariprasad Vankayalapati
- Department of Medicinal Chemistry, Huntsman Cancer Institute and College of Pharmacy, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Josef T Prchal
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
6
|
Genotype-Phenotype Correlation of G6PD Mutations among Central Thai Children with G6PD Deficiency. Anemia 2021; 2021:6680925. [PMID: 33628497 PMCID: PMC7886513 DOI: 10.1155/2021/6680925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common X-linked inherited erythroenzymopathy in Thailand. The clinical and hematological manifestations of G6PD deficiency are variable. Objective This study aimed to characterize the genotype-phenotype correlation of G6PD mutations in Thai pediatric patients who were followed-up in Phramongkutklao Hospital, a tertiary center in central Thailand. Material and Method. A total of 102 children including 73 males (71.6%) and 29 females (28.4%) were included in our study. Mutation analysis was performed by direct DNA sequencing of all coding exons of the G6PD gene. Ninety-one patients (89.2%) were presented with neonatal hyperbilirubinemia and 11 patients (10.8%) were presented with acute hemolytic anemia beyond the neonatal period. Results Molecular analysis of the G6PD gene in 102 G6PD-deficient Thai children identified 12 different mutations. G6PD Viangchan (871G > A) and G6PD Canton (1376G > T) were the first (46.2%) and the second (15.4%) most common identified mutations among both male and female G6PD-deficient individuals, respectively. All affected males were hemizygous for G6PD mutations and had an average G6PD level of 16.7 ± 11.5 (3–76) IU/ml.RBC. Majority of female patients (27 in 29, 93.1%) were heterozygous for G6PD mutations and had an average G6PD level of 133.6 ± 43.4 (9–195) IU/ml.RBC. Two female patients (6.9%) were either homozygous or compound heterozygous for the mutations and had G6PD level in the affected male range (35 and 10 IU/ml.RBC). Only 1 in 27 heterozygous females (3.7%) had G6PD level in the affected male range (9 IU/ml.RBC) which is possibly explained by nonrandom X-chromosome inactivation. The correlation of genotypes, G6PD levels, and clinical phenotypes was not demonstrated in our study in which all of the included G6PD-deficient patients were presented with neonatal hyperbilirubinemia and acute hemolytic anemia, since the genotype-phenotype correlation is normally demonstrated in chronic nonspherocytic hemolytic anemia (CNSHA) G6PD-deficient individuals. Conclusion This study characterizes the molecular heterogeneity of G6PD variants causing G6PD deficiency in Thai children. Our study demonstrated the efficiency of direct DNA sequencing which can identify 12 missense mutations in Thai children.
Collapse
|
7
|
Huang S, Xu Y, Liu X, Zhou M, Wu X, Jia Y. Molecular newborn screening of four genetic diseases in Guizhou Province of South China. Gene 2016; 591:119-122. [DOI: 10.1016/j.gene.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
|
8
|
Reading NS, Sirdah MM, Shubair ME, Nelson BE, Al-Kahlout MS, Al-Tayeb JM, Aboud LN, Shaban MA, Luzzatto L, Prchal JT. Favism, the commonest form of severe hemolytic anemia in Palestinian children, varies in severity with three different variants of G6PD deficiency within the same community. Blood Cells Mol Dis 2016; 60:58-64. [DOI: 10.1016/j.bcmd.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
9
|
Sirdah MM, Al-Kahlout MS, Reading NS. National G6PD neonatal screening program in Gaza Strip of Palestine: rationale, challenges and recommendations. Clin Genet 2016; 90:191-8. [PMID: 27064064 DOI: 10.1111/cge.12786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Congenital genetic disorders affecting neonates or young children can have serious clinical consequences if undiagnosed and left untreated. Early detection and an accurate diagnosis are, therefore, of major importance for preventing negative patient outcomes. Even though the occurrence of each specific metabolic disorder may be rare, their collective impact of preventable complications may be of considerable importance to the public health. Our previous studies showed that glucose-6-phosphate dehydrogenase (G6PD) deficiency is a problem of public health importance that has been shown to be a predominant cause of acute hemolytic anemia requiring hospitalization in Palestinian young children in Gaza Strip. Intriguingly, the majority of these children had one of the three variants, Mediterranean(c.) (563T) , African G6PD A-(c.) (202A) (/c.) (376G) and heretofore unrecognized as a common G6PD-deficient variant G6PD Cairo(c.) (404C) . The high prevalence of G6PD deficiency, as well as dietary factors in the region that precipitate anemia, argues for a need to protect the Palestinian children from a treatable and manageable genetic and metabolic disorder. This work reviews and discusses rationales and challenges of G6PD screening program in Gaza Strip. We advocate adopting a national neonatal G6PD screening program in Gaza Strip to identify children at risk and promote wellness and health for Palestine.
Collapse
Affiliation(s)
- M M Sirdah
- Biology Department, Al Azhar University-Gaza, Gaza, Palestine.,Division of Hematology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M S Al-Kahlout
- Al Nasser Pediatric Hospital, Palestinian Ministry of Health, Gaza, Palestine
| | - N S Reading
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA.,Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Wu YH, Chiu DTY, Lin HR, Tang HY, Cheng ML, Ho HY. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling. Viruses 2015; 7:6689-706. [PMID: 26694452 PMCID: PMC4690889 DOI: 10.3390/v7122966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/22/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes-tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)-in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP⁺ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-yuan 333, Taiwan.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-yuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Tao-yuan 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Lin-Kou 333, Taiwan.
| | - Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Tao-yuan 333, Taiwan.
| | - Hsiang-Yu Tang
- Healthy Aging Research Center, Chang Gung University, Tao-yuan 333, Taiwan.
| | - Mei-Ling Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-yuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Tao-yuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan 333, Taiwan.
| | - Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-yuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Tao-yuan 333, Taiwan.
| |
Collapse
|
11
|
Xu JZ, Francis RO, Lerebours Nadal LE, Shirazi M, Jobanputra V, Hod EA, Jhang JS, Stotler BA, Spitalnik SL, Nicholas SW. G6PD Deficiency in an HIV Clinic Setting in the Dominican Republic. Am J Trop Med Hyg 2015; 93:722-9. [PMID: 26240158 DOI: 10.4269/ajtmh.14-0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/04/2015] [Indexed: 11/07/2022] Open
Abstract
Because human immunodeficiency virus (HIV)-infected patients receive prophylaxis with oxidative drugs, those with glucose-6-phosphate dehydrogenase (G6PD) deficiency may experience hemolysis. However, G6PD deficiency has not been studied in the Dominican Republic, where many individuals have African ancestry. Our objective was to determine the prevalence of G6PD deficiency in Dominican HIV-infected patients and to attempt to develop a cost-effective algorithm for identifying such individuals. To this end, histories, chart reviews, and G6PD testing were performed for 238 consecutive HIV-infected adult clinic patients. The overall prevalence of G6PD deficiency (8.8%) was similar in males (9.3%) and females (8.5%), and higher in Haitians (18%) than Dominicans (6.4%; P = 0.01). By logistic regression, three clinical variables predicted G6PD status: maternal country of birth (P = 0.01) and a history of hemolysis (P = 0.01) or severe anemia (P = 0.03). Using these criteria, an algorithm was developed, in which a patient subset was identified that would benefit most from G6PD screening, yielding a sensitivity of 94.7% and a specificity of 97.2%, increasing the pretest probability (8.8-15.1%), and halving the number of patients needing testing. This algorithm may provide a cost-effective strategy for improving care in resource-limited settings.
Collapse
Affiliation(s)
- Julia Z Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Leonel E Lerebours Nadal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Maryam Shirazi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Jeffrey S Jhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Brie A Stotler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| | - Stephen W Nicholas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; Clínica de Familia La Romana, La Romana, Dominican Republic; IFAP Global Health Program, Columbia University Medical Center, New York, New York
| |
Collapse
|
12
|
Recent approaches for reducing hemolytic activity of chemotherapeutic agents. J Control Release 2015; 211:10-21. [DOI: 10.1016/j.jconrel.2015.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023]
|
13
|
Alharbi KK, Khan IA. Prevalence of glucose-6-phosphate dehydrogenase deficiency and the role of the A- variant in a Saudi population. J Int Med Res 2014; 42:1161-7. [PMID: 25169987 DOI: 10.1177/0300060514531923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To estimate the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among Saudi men, and to establish the frequency of the two mutations/polymorphisms associated with the G6PD A- mutation--G to A at nucleotide 202 (G202A) and A to G at nucleotide 376 (A376G)--in those found to have G6PD deficiency. METHODS Blood samples were obtained from healthy male Saudi donors and screened for G6PD deficiency using a fluorescent spot test. Samples from subjects shown to be G6PD deficient and controls were then analysed for the presence of the G202A and A376G mutations on exons 4 and 5, respectively, of the G6PD gene using polymerase chain reaction followed by restriction fragment length polymorphism. RESULT A total of 2100 male subjects were screened; of these, 100 (4.76%) were shown to be G6PD deficient. The G6PD A- mutation (presence of both G202A and A376G) was observed in two (2%) of the 100 subjects with G6PD deficiency. There was no significant difference in the frequency of this mutation between those with G6PD deficiency and controls. CONCLUSION The G6PD A- mutation (G202A and A376G) does not appear to have a role in G6PD deficiency in a Saudi population.
Collapse
Affiliation(s)
- Khalid Khalaf Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Jamornthanyawat N, Awab GR, Tanomsing N, Pukrittayakamee S, Yamin F, Dondorp AM, Day NPJ, White NJ, Woodrow CJ, Imwong M. A population survey of the glucose-6-phosphate dehydrogenase (G6PD) 563C>T (Mediterranean) mutation in Afghanistan. PLoS One 2014; 9:e88605. [PMID: 24586352 PMCID: PMC3931629 DOI: 10.1371/journal.pone.0088605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/12/2014] [Indexed: 11/19/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36-9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73-4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.
Collapse
Affiliation(s)
- Natsuda Jamornthanyawat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ghulam R. Awab
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Ministry of Public Health, Islamic Republic of Afghanistan, Kabul, Afghanistan
| | - Naowarat Tanomsing
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Fazel Yamin
- Ministry of Public Health, Islamic Republic of Afghanistan, Kabul, Afghanistan
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Charles J. Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, Ho HY, Lo SJ, Chiu DTY. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis 2013; 4:e616. [PMID: 23640458 PMCID: PMC3674345 DOI: 10.1038/cddis.2013.132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans, which are possibly associated with enhanced oxidative stress and altered MAPK pathways, respectively.
Collapse
Affiliation(s)
- H-C Yang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Gaza Strip Palestinians. Blood Cells Mol Dis 2012; 49:152-8. [DOI: 10.1016/j.bcmd.2012.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/23/2022]
|