1
|
Xie Q, Gu J. Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. Curr Stem Cell Res Ther 2024; 19:1351-1368. [PMID: 37807649 DOI: 10.2174/011574888x260690230921174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.
Collapse
Affiliation(s)
- Qiong Xie
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Jundong Gu
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| |
Collapse
|
2
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Shamsasenjan K, Timari H, Saleh M. The effect of mesenchymal stem cell-derived microvesicles on differentiation of umbilical cord blood-derived CD34+ cells toward myeloid lineage. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Abbaszadeh H, Ghorbani F, Derakhshani M, Abbasi B, Jalili Z, Talebi M, Yousefi M, Shamsasenjan K, Edalati M, Hakimi P, Sanei M, Yaghoubi R, Movassaghpour AA. The effect of Acellularized Wharton's Jelly-derived exosomes on myeloid differentiation of umbilical cord blood-derived CD34+ hematopoietic stem cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Moghadasi MH, Hajifathali A, Azad M, Rahmani M, Soleimani M. Expansion of cord blood stem cells in fibronectin-coated microfluidic bioreactor. Hematol Transfus Cell Ther 2021; 44:504-511. [PMID: 34593367 PMCID: PMC9605910 DOI: 10.1016/j.htct.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hematopoietic stem/progenitor cell transplantation is the main treatment option for hematological malignancies and disorders. One strategy to solve the problem of low stem cell doses used in transplantation is pre-transplant expansion. We hypothesized that using fibronectin-coated microfluidic channels would expand HSPCs and keep self-renewal potential in a three-dimensional environment, compared to the conventional method. We also compared stem cell homing factors expression in microfluidic to conventional cultures. Materials and methods A microfluidic device was created and characterized by scanning electron microscopy. The CD133+ cells were collected from cord blood and purified. They were subsequently cultured in 24-well plates and microfluidic bioreactor systems using the StemSpan serum-free medium. Eventually, we analyzed cell surface expression levels of the CXCR4 molecule and CXCR4 mRNA expression in CD133+ cells cultured in different systems. Results The expansion results showed significant improvement in CD133+ cell expansion in the microfluidic system than the conventional method. The median expression of the CXCR4 in the expanded cell was lower in the conventional system than in the microfluidic system. The CXCR4 gene expression up-regulated in the microfluidic system. Conclusion Utilizing microfluidic systems to expand desired cells effectively is the next step in cell culture. Comparative gene expression profiling provides a glimpse of the effects of culture microenvironments on the genetic program of HSCs grown in different systems.
Collapse
Affiliation(s)
| | - Abbas Hajifathali
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Masoud Soleimani
- School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
|
7
|
Jie Z, Huan Y, Mengyun W, Yasha L, Huafeng P, Ke Y. Nrf2 modulates immunosuppressive ability and cellular senescence of human umbilical cord mesenchymal stem cells. Biochem Biophys Res Commun 2020; 526:1021-1027. [PMID: 32317184 DOI: 10.1016/j.bbrc.2020.03.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
In the application of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) as clinical therapeutics, long term cells ex vivo expansion results in decline in their function. It has been widely concerned that cellular senescence is associated with UC-MSCs immunomodulatory ability. In this study, we evaluated the effects of consecutive passages on cellular senescence and the immunomodulatory abilities of UC-MSCs. Long term-cultured UC-MSCs showed decreased proliferation, senescence phenotypes and impaired immunosuppressive effects on PHA induced peripheral blood mononuclear cell (PBMC) proliferation. We found that Nrf2, a transcription factor that responds to oxidative stress, that showed decreased expression in long term-cultured UC-MSCs, and the further knock-down of Nrf2 in UC-MSCs induced premature senescence, decreased proliferation ability and immunosuppressive abilities. Furthermore, the protein expression of IDO-1 were decreased in response to the downregulation of Nrf2 in UC-MSCs, suggesting that Nrf2 regulates the immunosuppressive properties of UC-MSCs via Nrf2-mediated IDO-1 expression. In conclusion, our results demonstrate that Nrf2 plays a key role in the regulation of the immunosuppressive properties of UC-MSCs, and we suggest that these findings might provide a strategy to enhance the functionality of UC-MSCs for use in therapeutic applications.
Collapse
Affiliation(s)
- Zhang Jie
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yao Huan
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wu Mengyun
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Li Yasha
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Pan Huafeng
- Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Yang Ke
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.
| |
Collapse
|
8
|
Zhang N, Wei MY, Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front Bioeng Biotechnol 2019; 7:369. [PMID: 31850329 PMCID: PMC6892756 DOI: 10.3389/fbioe.2019.00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blood disorder diseases (BDDs), also known as hematologic, is one of the diseases owing to hematopoietic system disorder. Chemotherapy, bone marrow transplantation, and stem cells therapy have been used to treat BDDs. However, the cure rates are still low due to the availability of the right type of bone marrow and the likelihood of recurrence and infection. With the rapid development of nanotechnology in the field of biomedicine, artificial blood or blood substitute has shown promising features for the emergency treatment of BDDs. Herein, we surveyed recent advances in the development of artificial blood components: gas carrier components (erythrocyte substitutes), immune response components (white blood cell substitutes), and hemostasis-responsive components (platelet substitutes). Platelet-inspired nanomedicines for cancer treatment were also discussed. The challenges and prospects of these treatment options in future nanomedicine development are discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Ming-Yuan Wei
- Texas Commission on Environmental Quality, Austin, TX, United States
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
9
|
Zhao B, Hu M, Wu H, Ren C, Chen J, Zhang X, Cui S. Peroxisome proliferator-activated receptor-γ and its related pathway in bone marrow mesenchymal stem cell differentiation co-cultured with mechanically stretched ligament fibroblasts. Int J Mol Med 2018; 42:219-227. [PMID: 29568896 PMCID: PMC5979932 DOI: 10.3892/ijmm.2018.3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2018] [Indexed: 01/21/2023] Open
Abstract
The occurrence of pelvic floor dysfunctional disease (PFD) is closely related with elasticity, toughness, and functional changes of the connective tissue of the pelvic support tissue. Bone marrow mesenchymal stem cells (BMSCs) have been confirmed to have the capacity to differentiate into a variety of cell types such as osteoblasts, chondroblasts, adipocytes and fibroblasts. Therefore, BMSCs have the potential to improve the clinical outcomes for PFD. Peroxisome proliferator-activated receptor-γ (PPAR-γ), a ligand activated transcription factor, has acquired a great deal of attention as it is involved in the fibrosis and cell differentiation. However, how it is regulated during the process of the differentiation of BMSCs into fibroblasts remains to be defined. The present study investigated the underlying mechanisms of PPAR-γ effect of mechanical stretch on the differentiation of BMSCs induced by pelvic ligament fibroblasts. PPAR-γ expression was decreased during the differentiation of BMSCs into fibroblasts by co-cultured stretched fibroblasts. Addition of transforming growth factor-β1 (TGF-β1) reduced PPAR-γ expression and promoted the differentiation of BMSCs. With the employment of endogenous ligand, activation of PPAR-γ suppressed the BMSC differentiation. Similar effects were also observed with overexpression of PPAR-γ gene. In addition, decrease of PPAR-γ by the use of shRNA targeting rat PPAR-γ significantly contributed to BMSC differentiation to fibroblasts. These results indicate that PPAR-γ negatively regulates the differentiation of BMSCs into fibroblasts.
Collapse
Affiliation(s)
- Bing Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mengcai Hu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiyan Wu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenchen Ren
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Chen
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaodan Zhang
- Zhengzhou Maternal and Child Health Care Hospital, Jinshui, Zhengzhou, Henan 450052, P.R. China
| | - Shihong Cui
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Chandramoorthy HC, Bajunaid AM, Kariri HN, Al-Hakami A, Sham AA, Al-Shahrani MBS, Al-Humayed SM, Rajagopalan P. Feasibility of cord blood bank in high altitude Abha: preclinical impacts. Cell Tissue Bank 2018; 19:413-422. [PMID: 29460118 DOI: 10.1007/s10561-018-9687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
We explored the possibility of the cryo-storage of cord blood hematopoietic stem cells (CBHPSC) with respect to the quantity, quality and biologic efficacy of high altitude (HA) region Abha against sea level (SL) region. The results of the post-processed total nucleated cell count was 8.03 ± 0.31 × 107 and 8.44 ± 0.23 × 107 cells in the HA and SL regions respectively. The mean post processing viability of the nucleated cells was about 87.03 ± 1.39 (HA) and 88.33 ± 1.55% (SL) while post thaw cells were 85.61 ± 1.44 (HA) and 86.58 ± 1.61% (SL) after transient cryo-storage. The proliferation of CBHSCs after thawing were comparable between the HA and SL regions. The results of the colony forming unit (CFU) assays of CFU-E, CFU-GEMM, CFU-GM and BFU-E were comparable between HA and SL in both fresh and post thaw, while a declining trend with viability was significant. The differentiation capability of post thaw samples into adipocytes and osteocytes were comparable between HA and SL regions. Overall from the results, it can be evidenced that HA cord blood collection, processing or storage does not hinder the quality or biological efficacy of the CBHPSC.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia. .,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | - Hussian Nasser Kariri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Abdullah Abu Sham
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Misfer Bin Safer Al-Shahrani
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Suliman M Al-Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Timari H, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Pashoutan Sarvar D, Aqmasheh S. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate. Adv Pharm Bull 2017; 7:531-546. [PMID: 29399543 PMCID: PMC5788208 DOI: 10.15171/apb.2017.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs) are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs). Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT) and inhibition of graft versus host disease (GVHD). HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.
Collapse
Affiliation(s)
- Hamze Timari
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology Oncology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Aqmasheh
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Martins GR, Marinho RC, Q. Bezerra-Junior R, Câmara LM, Albuquerque-Pinto LC, Teixeira MF. Isolation, culture and characterization of multipotent mesenchymal stem cells from goat umbilical cord blood. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000600019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT: Mesenchymal stem cells (MSC) reside in small numbers in many adult tissues and organs, and play an active role in the homeostasis of these sites. Goat derived multipotent MSC have been established from bone marrow, adipose tissues and amniotic fluid. Umbilical cord blood (UCB) is considered an important source of these cells. However, the MSC isolation from the goat UCB has not been demonstrated. Therefore, the aim of the present study was to isolate, culture and characterize goat umbilical cord blood derived mesenchymal stem cells. MSC were isolated from UCB by Ficoll-Paque density centrifugation and cultured in DMEM supplemented with 10% or 20% FBS. FACS analysis was performed and induction lineage differentiation was made to characterize these cells. They exhibited two different populations in flow cytometry, and revealed the positive expression of CD90, CD44 and CD105, but negative staining for CD34 in larger cells, and positive stained for CD90 and CD105, but negative for CD44 and CD34 in the smaller cells. MSC from goat UCB showed capability to differentiate into chondrocytes and osteoblasts when incubated with specific differentiation medium. Present study established that goat mesenchymal stem cells can be derived successfully from umbilical cord blood.
Collapse
|
13
|
Doi H, Kitajima Y, Luo L, Yan C, Tateishi S, Ono Y, Urata Y, Goto S, Mori R, Masuzaki H, Shimokawa I, Hirano A, Li TS. Potency of umbilical cord blood- and Wharton's jelly-derived mesenchymal stem cells for scarless wound healing. Sci Rep 2016; 6:18844. [PMID: 26728342 PMCID: PMC4700425 DOI: 10.1038/srep18844] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Postnatally, scars occur as a consequence of cutaneous wound healing. Scarless wound healing is highly desired for patients who have undergone surgery or trauma, especially to exposed areas. Based on the properties of mesenchymal stem cells (MSCs) for tissue repair and immunomodulation, we investigated the potential of MSCs for scarless wound healing. MSCs were expanded from umbilical cord blood (UCB-MSCs) and Wharton’s jelly (WJ-MSCs) from healthy donors who underwent elective full-term pregnancy caesarean sections. UCB-MSCs expressed lower levels of the pre-inflammatory cytokines IL1A and IL1B, but higher levels of the extracellular matrix (ECM)-degradation enzymes MMP1 and PLAU compared with WJ-MSCs, suggesting that UCB-MSCs were more likely to favor scarless wound healing. However, we failed to find significant benefits for stem cell therapy in improving wound healing and reducing collagen deposition following the direct injection of 1.0 × 105 UCB-MSCs and WJ-MSCs into 5 mm full-thickness skin defect sites in nude mice. Interestingly, the implantation of UCB-MSCs tended to increase the expression of MMP2 and PLAU, two proteases involved in degradation of the extracellular matrix in the wound tissues. Based on our data, UCB-MSCs are more likely to be a favorable potential stem cell source for scarless wound healing, although a better experimental model is required for confirmation.
Collapse
Affiliation(s)
- Hanako Doi
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuriko Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lan Luo
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chan Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Seiko Tateishi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Akiyoshi Hirano
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
14
|
Il'yasova D, Kloc N, Kinev A. Cord Blood Cells for Developmental Toxicology and Environmental Health. Front Public Health 2015; 3:265. [PMID: 26697419 PMCID: PMC4668287 DOI: 10.3389/fpubh.2015.00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
The Tox21 program initiated a shift in toxicology toward in vitro testing with a focus on the biological mechanisms responsible for toxicological response. We discuss the applications of these initiatives to developmental toxicology. Specifically, we briefly review current approaches that are widely used in developmental toxicology to demonstrate the gap in relevance to human populations. An important aspect of human relevance is the wide variability of cellular responses to toxicants. We discuss how this gap can be addressed by using cells isolated from umbilical cord blood, an entirely non-invasive source of fetal/newborn cells. Extension of toxicological testing to collections of human fetal/newborn cells would be useful for better understanding the effect of toxicants on fetal development in human populations. By presenting this perspective, we aim to initiate a discussion about the use of cord blood donor-specific cells to capture the variability of cellular toxicological responses during this vulnerable stage of human development.
Collapse
Affiliation(s)
- Dora Il'yasova
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University , Atlanta, GA , USA
| | - Noreen Kloc
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University , Atlanta, GA , USA
| | | |
Collapse
|
15
|
Canha-Gouveia A, Rita Costa-Pinto A, Martins AM, Silva NA, Faria S, Sousa RA, Salgado AJ, Sousa N, Reis RL, Neves NM. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication 2015; 7:035009. [PMID: 26335618 DOI: 10.1088/1758-5090/7/3/035009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton's jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas; Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang RF, Liu TH, Zhao K, Xiong CL. Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice. Asian J Androl 2015; 16:698-704. [PMID: 24830694 PMCID: PMC4215652 DOI: 10.4103/1008-682x.129209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells (HUC-MSCs), which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC-MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efficiently. HUC-MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan-treated mice (saline and HEK293 cells injections were performed in a separate set of mice) and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression (2–8 fold) in HUC-MSCs injected testes compared to the contralateral uninjected testes (five mice). Protein levels for germ cell-specific genes, miwi, vasa and synaptonemal complex protein (Scp3) were also higher in MSC-treated testes compared to injected controls 3 weeks after treatment. However, no different expression was detected in saline water and HEK293 cells injection control group. We have demonstrated HUC-MSCs could affect mouse germ cell-specific genes expression. The results also provide a possibility that the transplanted HUC-MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC-MSCs, and explores a new approach to the treatment of azoospermia.
Collapse
Affiliation(s)
| | | | | | - Cheng-Liang Xiong
- Center of Reproductive Medicine, Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
17
|
Zhou J, Tian G, Wang J, Luo X, Zhang S, Li J, Li L, Xu B, Zhu F, Wang X, Jia C, Zhao W, Zhao D, Xu A. Neural cell injury microenvironment induces neural differentiation of human umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 7:2689-97. [PMID: 25337115 PMCID: PMC4200737 DOI: 10.3969/j.issn.1673-5374.2012.34.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation. hUCMSCs were co-cultured with normal or Aβ1-40-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural cells.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Guoping Tian
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Jinge Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xiaoguang Luo
- First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Siyang Zhang
- College of Basic Medical Sciences, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jianping Li
- Liaoning Provincial Blood Center, Shenyang 110044, Liaoning Province, China
| | - Li Li
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Bing Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Feng Zhu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xia Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Chunhong Jia
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Weijin Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Danyang Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Aihua Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| |
Collapse
|
18
|
Mosaad YM. Hematopoietic stem cells: an overview. Transfus Apher Sci 2014; 51:68-82. [PMID: 25457002 DOI: 10.1016/j.transci.2014.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications.
Collapse
Affiliation(s)
- Youssef Mohamed Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
19
|
Isasi R, Dalpe G, Knoppers BM. Fostering public cord blood banking and research in Canada. Stem Cells Dev 2014; 22 Suppl 1:29-34. [PMID: 24304072 DOI: 10.1089/scd.2013.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In June 2013, Canadian Blood Services (CBS) established the National Public Cord Blood Bank (NPCBB) accessible to Canadian and international patients and researchers. The NPCBB promotes efforts that contribute to research and improved clinical care by making units not suitable for banking or transplantation available for research. In the context of the NPCBB of the CBS, this article will focus on the practical tools (e.g., consent protocols) developed to optimize umbilical cord blood (UCB) banking and research while enabling ethical provenance of UCB stem cells. The Canadian approach represents an ideal model for comparison as it is a country in which the national public bank (and other regional/provincial public banks) coexists with private companies.
Collapse
Affiliation(s)
- Rosario Isasi
- Centre of Genomics and Society, McGill University , Montreal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW A review of articles published since January 2012 on the topic of cord blood banking and cord blood stem cell transplantation was conducted for this the 25th anniversary year of the first cord blood transplant performed in a human. RECENT FINDINGS Cord blood banking is performed throughout the world. Umbilical cord blood (UCB) transplantation is recognized as an acceptable alternative stem cell source for paediatric and adults requiring a haematopoietic transplant, particularly for patients of racial and ethnic minorities. To further advance the use of UCB, methods to enhance UCB stem cell expansion, engraftment and maintenance may be required. Controversy on the most effective and economically sustainable model for banking and storing an optimal UCB product continues to persist. SUMMARY Cord blood banking and transplantation of cord blood stem cells has advanced rapidly over the initial 25 years, as more than 30 ,000 patients have benefited from the therapy. New concepts on the use of methods to expand UCB stem cells for transplantation and use for nonhaematopoietic indications may increase demand for UCB over the next few decades.
Collapse
|
21
|
Human Umbilical Cord Blood-Derived CD34-Positive Endothelial Progenitor Cells Stimulate Osteoblastic Differentiation of Cultured Human Periosteal-Derived Osteoblasts. Tissue Eng Part A 2014; 20:940-53. [DOI: 10.1089/ten.tea.2013.0329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Havens AM, Sun H, Shiozawa Y, Jung Y, Wang J, Mishra A, Jiang Y, O'Neill DW, Krebsbach PH, Rodgerson DO, Taichman RS. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 2014; 23:689-701. [PMID: 24372153 DOI: 10.1089/scd.2013.0362] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.
Collapse
Affiliation(s)
- Aaron M Havens
- 1 Department of Periodontics and Oral Medicine, University of Michigan , School of Dentistry, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adult and cord blood endothelial progenitor cells have different gene expression profiles and immunogenic potential. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s367-74. [PMID: 23867184 DOI: 10.2450/2013.0042-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFC) are endowed with vascular regenerative ability in vivo and in vitro. In this study we compared the genotypic profile and the immunogenic potential of adult and cord blood ECFC, in order to explore the feasibility of using them as a cell therapy product. MATERIALS AND METHODS ECFC were obtained from cord blood samples not suitable for haematopoietic stem cell transplantation and from adult healthy blood donors after informed consent. Genotypes were analysed by commercially available microarray assays and results were confirmed by real-time polymerase chain reaction analysis. HLA antigen expression was evaluated by flow-cytometry. Immunogenic capacity was investigated by evaluating the activation of allogeneic lymphocytes and monocytes in co-cultures with ECFC. RESULTS Microarray assays revealed that the genetic profile of cord blood and adult ECFC differed in about 20% of examined genes. We found that cord blood ECFC were characterised by lower pro-inflammatory and pro-thrombotic gene expression as compared to adult ECFC. Furthermore, whereas cord blood and adult ECFCs expressed similar amount of HLA molecules both at baseline and after incubation with γ-interferon, cord blood ECFC elicited a weaker expression of pro-inflammatory cytokine genes. Finally, we observed no differences in the amount of HLA antigens expressed among cord blood ECFC, adult ECFC and mesenchymal cells. CONCLUSIONS Our observations suggest that cord blood ECFC have a lower pro-inflammatory and pro-thrombotic profile than adult ECFC. These preliminary data offer level-headed evidence to use cord blood ECFC as a cell therapy product in vascular diseases.
Collapse
|
24
|
Moreno-Pérez DA, Ruíz JA, Patarroyo MA. Reticulocytes: Plasmodium vivax target cells. Biol Cell 2013; 105:251-60. [PMID: 23458497 DOI: 10.1111/boc.201200093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 02/05/2023]
Abstract
Reticulocytes represent the main invasion target for Plasmodium vivax, the second most prevalent parasite species around the world causing malaria in humans. In spite of these cells' importance in research into malaria, biological knowledge related to the nature of the host has been limited, given the technical difficulties present in working with them in the laboratory. Poor reticulocyte recovery from total blood, by different techniques, has hampered continuous in vitro P. vivax cultures being developed, thereby delaying basic investigation in this parasite species. Intense research during the last few years has led to advances being made in developing methodologies orientated towards obtaining enriched reticulocytes from differing sources, thereby providing invaluable information for developing new strategies aimed at preventing infection caused by malaria. This review describes the most recent studies related to obtaining reticulocytes and discusses approaches which could contribute towards knowledge regarding molecular interactions between target cell proteins and their main infective agent, P. vivax.
Collapse
|
25
|
In vitro transdifferentiation of umbilical cord stem cells into cardiac myocytes: Role of growth factors. EGYPTIAN JOURNAL OF CRITICAL CARE MEDICINE 2013. [DOI: 10.1016/j.ejccm.2013.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Abstract
Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. However, apart from hematopoietic stem cell (HSC) transplantation, essentially all other stem cell treatments remain experimental. High hopes have inspired numerous clinical trials, but it has been difficult to obtain unequivocal evidence for robust clinical benefit. In recent years, unproven therapies have been widely practiced outside the standard clinical trial network, threatening the cause of legitimate clinical investigation. Numerous challenges and technical barriers must be overcome before novel stem cell therapies can achieve meaningful clinical impact.
Collapse
|
28
|
Jaime-Pérez JC, Colunga-Pedraza JE, Monreal-Robles R, Colunga-Pedraza PR, Méndez-Ramírez N, Salazar-Riojas R, Gómez-Almaguer D. Acute maternal cytomegalovirus infection is associated with significantly decreased numbers of CD34+ cells in umbilical cord blood. Blood Cells Mol Dis 2012; 49:166-9. [PMID: 22818857 DOI: 10.1016/j.bcmd.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/19/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE AND BACKGROUND There is little information regarding the serologic status of umbilical cord blood (UCB) donors. Cytomegalovirus (CMV) is the most frequent agent transmitted by blood products and studies have reported that CMV can inhibit myelopoiesis, however, its effects on the cellular content of UCB have not been documented. STUDY DESIGN AND METHODS We investigated, retrospectively, the prevalence of serological evidence of infection in 857 women donating their UCB at a public university hospital and studied the influence of acute CMV exposure on UCB content of CD34+ cells. The biological characteristics of UCB from serology positive-donors were compared with those of women with negative tests. RESULTS We found that 51 of 857 (6%) UCB units were positive for infectious disease markers; anti-CMV IgM was the most prevalent marker, 43 of 51 (86%) of cases with infectious markers. UCB collected from anti-CMV IgM-positive donors more frequently met rejection criteria for use as a transplanation product. The CD34+ cell count was the most often affected, 2.48×10(6) in anti-CMV IgM-positive donors compared to 1.48×10(6) in unaffecetd donors( p=0.006). The probability of a UCB meeting a CD34+ cell content≥2×10(6) was significantly lower in units from IgM anti-CMV+ women compared to unaffecetd donors [Odds ratio (OR)=0.428 (95% CI 0.182-0.632; p=0.015]; the total nucleated cell count (TNC) was lower but not statistically significant [p=0.068]. CONCLUSION UCB donated by anti-CMV IgM-positive women has a high probability of not meeting the criteria required for cryopreservation for future use as a transplantation product, because of the low number of CD34+ cells.
Collapse
Affiliation(s)
- José C Jaime-Pérez
- Hematology Department, Dr. José Eleuterio González University Hospital of the School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| | | | | | | | | | | | | |
Collapse
|
29
|
Potential of mesenchymal stem cell applications in plastic and reconstructive surgery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:55-67. [PMID: 23128957 DOI: 10.1007/10_2012_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
: Novel therapy with mesenchymal stem cells from bone marrow, adipose tissue, or other sources has raised high hopes for treatment of a variety of diseases. For plastic and reconstructive surgery, first pilot studies and clinical trials using stem cells for treatment of chronic wounds, radiation injury, or soft tissue augmentation have furnished encouraging results compared with the limitations of standard therapy, for example autologous fat grafting. Further research must be conducted to reveal the complex physiological interactions between activated stem cells and the host environment. Long-term effects and safety aspects of these novel treatment options also require randomized controlled studies. For future clinical applications, guidelines and standardized procedures for stem cell isolation and preparation, and techniques for application must be established.
Collapse
|