1
|
Shi H, Sun X, Wu Y, Cui Q, Sun S, Ji N, Liu Y. Targeting the tumor microenvironment in primary central nervous system lymphoma: Implications for prognosis. J Clin Neurosci 2024; 124:36-46. [PMID: 38642434 DOI: 10.1016/j.jocn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma, and there is limited research on its tumor microenvironment (TME). Nevertheless, more and more studies have evidence that TME has essential effects on tumor cell proliferation, immune escape, and drug resistance. Thus, it is critical to elucidate the role of TME in PCNSL. The understanding of the PCNSL TME is gradually unfolding, including factors that distinguish it from systemic diffuse large B-cell lymphoma (DLBCL). The TME in PCNSL exhibits both transcriptional and spatial intratumor heterogeneity. Cellular interactions between tumor cells and stroma cells reveal immune evasion signaling. The comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely to be an immunologically deficient tumor. In PCNSL, T cell exhaustion and downregulation of macrophage immune function are accompanied by suppressive microenvironmental factors such as M2 polarized macrophages, endothelin B receptor, HLA depletion, PD-L1, and TIM-3. MMP-9, Integrin-β1, and ICAM-1/LFA-1 play crucial roles in transendothelial migration towards the CNS, while CXCL13/CXCR5, CD44, MAG, and IL-8 are essential for brain parenchymal invasion. Further, macrophages, YKL-40, CD31, CD105, PD-1/PD-L1 axis, osteopontin, galectin-3, aggregative perivascular tumor cells, and HLA deletion may contribute to poor outcomes in patients with PCNSL. This article reviews the effect of various components of TME on the progression and prognosis of PCNSL patients to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Han Shi
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuchen Wu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shengjun Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Nan Ji
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China.
| |
Collapse
|
2
|
Zheng X, Wang C, Chen F, Li S, Zhang H, Dong G, Yang S, Kang X, Kang Z, Han C, Yin S, Li W. Zanubrutinib delays selinexor resistance evolution in biopsy sample-derived primary central nervous system lymphoma models. iScience 2024; 27:109799. [PMID: 38726367 PMCID: PMC11079464 DOI: 10.1016/j.isci.2024.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma of the brain with poor prognosis. The scarcity of cell lines established using PCNSL makes it difficult to conduct preclinical studies on new drugs. We aimed to explore the effect of selinexor combined with zanubrutinib in PCNSL using established PCNSL cells and an orthotopic PCNSL model. Primary PCNSL cells were successfully cultured. Selinexor inhibited proliferation, induced G1 phase arrest, and promoted apoptosis, however, induced drug resistance in PCNSL. Selinexor combined with zanubrutinib had a synergistic effect on PCNSL and prevented the onset of selinexor resistance in PCNSL by inhibiting AKT signaling. Moreover, selinexor combined with zanubrutinib notably slowed tumor growth and prolonged survival compared to that of the control. Overall, the addition of zanubrutinib to selinexor monotreatment had a synergistic effect in vitro and prolonged survival in vivo.
Collapse
Affiliation(s)
- Xiaohong Zheng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenglan Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Kang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuo Yin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Primary central nervous system lymphoma: clinicopathological and genomic insights for therapeutic development. Brain Tumor Pathol 2021; 38:173-182. [PMID: 34255226 DOI: 10.1007/s10014-021-00408-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is a highly aggressive, extra-nodal non-Hodgkin lymphoma that is confined to the central nervous system (CNS) and the eyes. Most PCNSLs arise in immunocompetent older patients and less frequently in immunocompromised patients with Epstein-Barr virus infection. Although a patient's initial response to chemotherapy and radiation therapy is favorable, the clinical outcome of PCNSL remains poor compared to that of systemic lymphoma. Radiation-induced neurotoxicity is also a critical problem for patients with PCNSL. Therefore, a novel therapeutic strategy is required to overcome these challenges. Recent studies have largely uncovered the genomic landscape and associated histopathological features of PCNSL. Based on this background, novel therapeutic agents, such as Bruton's tyrosine kinase inhibitors and immune checkpoint inhibitors, have been introduced for patients with PCNSL. Here, we provide an overview of the updated histopathological and genomic characterization of PCNSL and summarize the current therapeutic strategies. We also review current preclinical PCNSL models for translational research.
Collapse
|
5
|
You H, Wei L, Kaminska B. Emerging insights into origin and pathobiology of primary central nervous system lymphoma. Cancer Lett 2021; 509:121-129. [PMID: 33766752 DOI: 10.1016/j.canlet.2021.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/03/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive cancer typically confined to the brain, eyes, leptomeninges and spinal cord, without evidence of systemic involvement. PCNSL remains a challenge for scientists and clinicians due to insufficient biological knowledge, a lack of appropriate animal models and validated diagnostic biomarkers. We summarize recent findings on genomic, transcriptomic and epigenetic alterations identified in PCNSL. These findings help to define pathobiology of the disease and delineate defects in B cell differentiation. Evidence from genomic and transcriptomic studies helps to separate PCNSL from other hematological malignancies, improves diagnostics and reveals new therapeutic targets for treatment. Discovery of the CNS lymphatic system may be instrumental in better understanding the origin of the disease. We critically assess the attempts to model PCNSL in rodents, and conclude that there is a lack of a genetic/transgenic model that adequately mimics pathogenesis of the disease. Contribution of the tumor microenvironment in tumorigenesis and aggressiveness of PCNSL remains understudied. Assessing heterogeneity of immune infiltrates, cytokine profiling and molecular markers, may improve diagnostics and put forward new therapeutic strategies.
Collapse
Affiliation(s)
- Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
6
|
Tateishi K, Miyake Y, Kawazu M, Sasaki N, Nakamura T, Sasame J, Yoshii Y, Ueno T, Miyake A, Watanabe J, Matsushita Y, Shiba N, Udaka N, Ohki K, Fink AL, Tummala SS, Natsumeda M, Ikegaya N, Nishi M, Ohtake M, Miyazaki R, Suenaga J, Murata H, Aoki I, Miller JJ, Fujii Y, Ryo A, Yamanaka S, Mano H, Cahill DP, Wakimoto H, Chi AS, Batchelor TT, Nagane M, Ichimura K, Yamamoto T. A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma. Cancer Res 2020; 80:5330-5343. [PMID: 33067267 DOI: 10.1158/0008-5472.can-20-2425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is an isolated type of lymphoma of the central nervous system and has a dismal prognosis despite intensive chemotherapy. Recent genomic analyses have identified highly recurrent mutations of MYD88 and CD79B in immunocompetent PCNSL, whereas LMP1 activation is commonly observed in Epstein-Barr virus (EBV)-positive PCNSL. However, a lack of clinically representative preclinical models has hampered our understanding of the pathogenic mechanisms by which genetic aberrations drive PCNSL disease phenotypes. Here, we establish a panel of 12 orthotopic, patient-derived xenograft (PDX) models from both immunocompetent and EBV-positive PCNSL and secondary CNSL biopsy specimens. PDXs faithfully retained their phenotypic, metabolic, and genetic features, with 100% concordance of MYD88 and CD79B mutations present in PCNSL in immunocompetent patients. These models revealed a convergent functional dependency upon a deregulated RelA/p65-hexokinase 2 signaling axis, codriven by either mutated MYD88/CD79B or LMP1 with Pin1 overactivation in immunocompetent PCNSL and EBV-positive PCNSL, respectively. Notably, distinct molecular alterations used by immunocompetent and EBV-positive PCNSL converged to deregulate RelA/p65 expression and to drive glycolysis, which is critical for intracerebral tumor progression and FDG-PET imaging characteristics. Genetic and pharmacologic inhibition of this key signaling axis potently suppressed PCNSL growth in vitro and in vivo. These patient-derived models offer a platform for predicting clinical chemotherapeutics efficacy and provide critical insights into PCNSL pathogenic mechanisms, accelerating therapeutic discovery for this aggressive disease. SIGNIFICANCE: A set of clinically relevant CNSL xenografts identifies a hyperactive RelA/p65-hexokinase 2 signaling axis as a driver of progression and potential therapeutic target for treatment and provides a foundational preclinical platform. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5330/F1.large.jpg.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan. .,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery, Kyorin University Graduate School of Medicine, Mitaka, Tokyo, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akio Miyake
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Alexandria L Fink
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Shilpa S Tummala
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mayuko Nishi
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryohei Miyazaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jun Suenaga
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Julie J Miller
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Papas Center for Neuro-Oncology, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Ryo
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
7
|
Jiménez I, Carabia J, Bobillo S, Palacio C, Abrisqueta P, Pagès C, Nieto JC, Castellví J, Martínez-Ricarte F, Escoda L, Perla C, Céspedes Torrez DH, Boix J, Purroy N, Puigdefàbregas L, Seoane J, Bosch F, Crespo M. Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition. J Neurooncol 2020; 149:13-25. [PMID: 32691208 PMCID: PMC7452938 DOI: 10.1007/s11060-020-03580-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients diagnosed with primary central nervous system lymphoma (PCNSL) often face dismal outcomes due to the limited availability of therapeutic options. PCNSL cells frequently have deregulated B-cell receptor (BCR) signaling, but clinical responses to its inhibition using ibrutinib have been brief. In this regard, blocking nuclear export by using selinexor, which covalently binds to XPO1, can also inhibit BCR signaling. Selinexor crosses the blood-brain barrier and was recently shown to have clinical activity in a patient with refractory diffuse large B-cell lymphoma in the CNS. We studied selinexor alone or in combination with ibrutinib in pre-clinical mouse models of PCNSL. METHODS Orthotopic xenograft models were established by injecting lymphoma cells into the brain parenchyma of athymic mice. Tumor growth was monitored by bioluminescence. Malignant cells and macrophages were studied by immunohistochemistry and flow cytometry. RESULTS Selinexor blocked tumor growth and prolonged survival in a bioluminescent mouse model, while its combination with ibrutinib further increased survival. CNS lymphoma in mice was infiltrated by tumor-promoting M2-like macrophages expressing PD-1 and SIRPα. Interestingly, treatment with selinexor and ibrutinib favored an anti-tumoral immune response by shifting polarization toward inflammatory M1-like and diminishing PD-1 and SIRPα expression in the remaining tumor-promoting M2-like macrophages. CONCLUSIONS These data highlight the pathogenic role of the innate immune microenvironment in PCNSL and provide pre-clinical evidence for the development of selinexor and ibrutinib as a new promising therapeutic option with cytotoxic and immunomodulatory potential.
Collapse
Affiliation(s)
- Isabel Jiménez
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Júlia Carabia
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sabela Bobillo
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Department of Hematology, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Carles Palacio
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Department of Hematology, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Pau Abrisqueta
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Department of Hematology, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Carlota Pagès
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Juan C Nieto
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Josep Castellví
- Department of Pathology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Francisco Martínez-Ricarte
- Department of Neurosurgery, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Lourdes Escoda
- Department of Hematology, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Cristóbal Perla
- Department of Neurosurgery, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | - Joan Boix
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Noelia Purroy
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts and Broad Institute of MIT and Harvard, Cambridge, MA, UK
| | - Lluís Puigdefàbregas
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Joan Seoane
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, 08035, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), CIBERONC, Barcelona, Spain
| | - Francesc Bosch
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Department of Hematology, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Marta Crespo
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, Barcelona, 08035, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|