1
|
Li M, Zhang S, Wei J, Liu M, Zhang B, Li S, Xiao Y, Yu Y, Song R. The increase in the expression of circRNAs may contributes to a poor prognosis in acute myeloid leukemia: A systematic review and meta-analysis. Leuk Res 2025; 148:107639. [PMID: 39708434 DOI: 10.1016/j.leukres.2024.107639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE The primary methods for defining the prognostic risk of AML patients are cytogenetic and molecular analysis at the time of diagnosis. However, the prognosis of intermediate-risk patients is still not well assessed for biomarkers. The main objective of this meta-analysis is to evaluate the relationship between circRNAs and AML prognosis, to provide a theoretical basis for finding effective prognostic indicators in intermediate-risk patients, and to provide an important scientific basis for the development or revision of WHO practice guidelines and ELN risk classification, and to highlight the importance of continuing to focus on and evaluate the prognostic impact of circRNAs on AML in future studies. METHODS We performed a comprehensive literature search across PubMed, the Cochrane Library, and Web of Science databases for studies published up to September 15, 2024. Articles were selected based on inclusion criteria. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of studies. The outcome measure of overall survival (OS) was used, and hazard ratios (HR) and 95 % confidence intervals (CI) were pooled to estimate the relationship between circRNA expression and prognosis in AML using STATA 17.0 software. RESULTS A total of 13 studies involving 1401 AML patients were included. The studies showed a significantly increased hazard ratio (HR) of upregulated CircRNA expression for OS (HR=1.87, 95 % CI=1.51-2.32, P < 0.001). The results of subgroups analysis showed a significant increase in the hazard ratio (HR) for upregulation of CircRNA expression in EFS and circ_0012152(HR= 1.66, 95 % CI= 1.19-2.32, P < 0.005 and HR= 2.26,95 % CI= 1.27-4.00, P < 0.005), respectively. No significant heterogeneity or publication bias was detected. CONCLUSION Upregulated circRNA expression is significantly associated with poor prognosis in AML patients and may serve as a prognostic marker for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- RNA, Circular/genetics
- Prognosis
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Meng Li
- Nursing Department, The Third People's Hospital of Henan Province, Zhengzhou, China
| | - Shiming Zhang
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Junfan Wei
- Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfei Liu
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Li
- School of Rehabilitation, Henan Vocational College of Tuina, Luoyang, China
| | - Yue Xiao
- Nursing Department, The Third People's Hospital of Henan Province, Zhengzhou, China
| | - Yuandong Yu
- Department of Health Management Center, The Third People's Hospital of Henan Province, Zhengzhou, China
| | - Ruipeng Song
- Endocrinology Department, The Third People's Hospital of Henan Province, China.
| |
Collapse
|
2
|
Beylerli O, Beilerli A, Ilyasova T, Shumadalova A, Shi H, Sufianov A. CircRNAs in Alzheimer's disease: What are the prospects? Noncoding RNA Res 2024; 9:203-210. [PMID: 38125754 PMCID: PMC10730436 DOI: 10.1016/j.ncrna.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) is a fascinating covalently closed circular non-coding RNA that is abundantly present in the transcriptome of eukaryotic cells. Its versatile nature allows it to participate in a multitude of pathological and physiological processes within the organism. One of its crucial functions is acting as a microRNA sponge, modulating protein transcription levels, and forming interactions with essential RNA-binding proteins. Remarkably, circRNAs demonstrates a specific enrichment in various vital areas of the brain, including the cortex, hippocampus, white matter, and photoreceptor neurons, particularly in aging organisms. This intriguing characteristic has led scientists to explore its potential as a significant biological marker of neurodegeneration, offering promising insights into neurodegenerative diseases like Alzheimer's disease (AD). In AD, there has been an interesting observation of elevated levels of circRNAs in both peripheral blood and synaptic terminals of affected individuals. This intriguing finding raises the possibility that circRNAs may have a central role in the initiation and progression of AD. Notably, different categories of circRNAs, including HDAC9, HOMER1, Cwc27, Tulp4, and PTK2, have been implicated in driving the pathological changes associated with AD through diverse mechanisms. For instance, these circRNAs have been demonstrated to contribute to the accumulation of beta-amyloid, which is a hallmark characteristic of AD. Additionally, these circRNAs contribute to the excessive phosphorylation of tau protein, a phenomenon associated with neurofibrillary tangles, further exacerbating the disease. Moreover, they are involved in aggravating neuroinflammation, which is known to play a critical role in AD's pathogenesis. Lastly, these circRNAs can cause mitochondrial dysfunction, disrupting cellular energy production and leading to cognitive impairment. As researchers delve deeper into the intricate workings of circRNAs, they hope to unlock its full potential as a diagnostic tool and therapeutic target for neurodegenerative disorders, paving the way for innovative treatments and better management of such devastating conditions.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Gao L, Fan J, He J, Fan W, Che X, Wang X, Han C. Circular RNA as Diagnostic and Prognostic Biomarkers in Hematological Malignancies:Systematic Review. Technol Cancer Res Treat 2024; 23:15330338241285149. [PMID: 39512224 PMCID: PMC11544746 DOI: 10.1177/15330338241285149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives: While various serum and tissue biomarkers have been explored for tumor diagnosis, the sensitivity and specificity have not yield optimal results. Circular RNAs (circRNAs) are more stable, conserved, and tissue-specific than linear RNA. Recent reports indicate that circRNAs could serve as potential biomarkers in the diagnosis or/and prognosis of tumors. In this study, we systematically examined the relationship between circRNA expression and diagnostic and prognostic outcomes in patients with hematological tumors. Methods: We searched several databases, including Google Scholar, MEDLINE, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang and SinoMed, with a cutoff date of June 12, 2024. The study protocol was PROSPERO (CRD42020188627). Result: A total of 73 studies were included in our review, comprising 39 diagnostic studies and 65 prognostic studies. Clinical parameters were assessed based on pooled adds ratios and 95% confidence intervals (CIs). Overall survival (OS) was evaluated using hazard ratios (HRs) and 95% CIs. The pooled area under the curve was 0.86, indicating the potential to identify hematological tumor patients, with sensitivity and specificity of 79% each. The diagnostic score for circRNAs related to hematological malignancies was 2.12. Notably, different hematological malignancies subgroups displayed varying prognoses. Specifically, lymphoid leukemia circRNA showed a negative impacct on prognosis (HR = 1.25, 95% CI: 1.10-1.43, P < 0.001). Conclusion: Our findings provide compelling evidence that circRNA may be serve as a promising alternative for the diagnosis and prognosis of hematological tumors.
Collapse
Affiliation(s)
- Liyun Gao
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Junfei Fan
- School of Humanities, Shangluo University, Shangluo, China
| | - Jiayin He
- School of Literature and Journalism, South-central Minzu University, Wuhan, China
| | - Wenyan Fan
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xiangxin Che
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xin Wang
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Chunhua Han
- Internal Medicine, Jiujiang First People's Hospital, Jiujiang, China
| |
Collapse
|
4
|
Wu J, Jiang Y, Sun J, Sun X. Identification and Validation of an Aging-Associated circRNA-miRNA-mRNA Network in Neovascular Age-Related Macular Degeneration. Gerontology 2023; 69:1218-1231. [PMID: 37604141 PMCID: PMC10614246 DOI: 10.1159/000531287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/22/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Neovascular age-related macular degeneration (NVAMD) is a leading cause of severe vision impairment in the elderly. Aging is one of the most pivotal underlying molecular mechanisms of NVAMD. METHODS In this study, we identified the potential aging-related genes involved in NVAMD. Considering that noncoding RNAs are vital regulators of NVAMD progression, we further explored and constructed an aging-originated circRNA-miRNA-mRNA network of NVAMD. Differential expression of 23 aging-associated genes was identified based on sequencing data and the Human Aging Genomic Resources tool at a threshold of p < 0.05, and log2|fold change| > 1. RESULTS We screened 12 microRNAs (miRNAs) using public datasets and miRNet database. A total of 13 circRNAs were subsequently mined using the starBase tool. Merging these 13 circRNAs, 12 miRNAs, and 15 genes together, we obtained 281 pairs of circRNA-miRNA and 30 pairs of miRNA-mRNA. CONCLUSION We created an aging-related circRNA-miRNA-mRNA network, which could be a promising target for future AMD treatments.
Collapse
Affiliation(s)
- Jiali Wu
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China,
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China,
| | - Yuxin Jiang
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Junran Sun
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- School of Medicine, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
5
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Zhong B, Ling X, Meng J, Han Y, Zhang H, Liu Z, Chen J, Zhang H, Pan Z, Liu L. Hsa_circ_0001944 regulates apoptosis by regulating the binding of PARP1 and HuR in leukemia and malignant transformed cells induced by hydroquinone. ENVIRONMENTAL TOXICOLOGY 2023; 38:381-391. [PMID: 36448377 DOI: 10.1002/tox.23719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Hydroquinone (HQ) is one of the major metabolites of benzene and can cause abnormal gene expression. It is a known carcinogen that alters cell cycle disruption and cell proliferation. However, its chemical mechanism remain a mystery. Circular RNAs (circRNAs) are a subtype of noncoding RNAs (ncRNAs) that play a variety of roles in biological processes. Hsa_circ_001944 expression was upregulated in 30 leukemia patients and HQ-induced malignant transformed TK6 cells. Hsa_circ_001944 silencing inhibited the growth of HQ-TK6 cells and halted the cell cycle. The silencing of hsa_circ_0001944 led to increased cell accumulation in G1 versus S phase, increased apoptosis in the sh1944 versus the shNC group, and increased levels of DNA damage (γ-H2AX), leading to cell cycle arrest. In summary, inhibition of hsa_circ_001944 restricted cell growth by inhibiting cell cycle arrest and induced growth of HQ-TK6 cells by modulating PARP1 expression. Hsa_circ_0001944 targeted HuR, which is a kind of RNA-binding protein, to control PARP1 expression via RNAinter, RBPmap, and RBPdb. Fluorescence in situ hybridization combined with immunofluorescent labeling and western blotting experiments showed that hsa_circ_001944 was able to dissociate HuR and PARP1 binding in HQ-TK6 cells, control PARP1 production, and ultimately alter the PARP1/H-Ras pathway.
Collapse
Affiliation(s)
- Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Hospital Infection Management, Dongguan Maternal and Child Health Care Hospital, Dongguan, People's Republic of China
| | - Zhidong Liu
- Department of Occupational Disease, Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, People's Republic of China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
7
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
8
|
Zhou M, Gao X, Zheng X, Luo J. Functions and clinical significance of circular RNAs in acute myeloid leukemia. Front Pharmacol 2022; 13:1010579. [PMID: 36506538 PMCID: PMC9729264 DOI: 10.3389/fphar.2022.1010579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNA molecules. Four types of circRNAs have been reported in animal cells, and they have typical characteristics in their biogenesis, nuclear export and degradation. Advances in our understanding of the molecular functions of circRNAs in sponging microRNAs, modulating transcription, regulating RNA-binding proteins, as well as encoding proteins have been made very recently. Dysregulated circRNAs are associated with human diseases such as acute myeloid leukemia (AML). In this review, we focus on the recently described mechanisms, role and clinical significance of circRNAs in AML. Although great progress of circRNAs in AML has been achieved, substantial efforts are still required to explore whether circRNAs exert their biological function by other mechanisms such as regulation of gene transcription or serving as translation template in AML. It is also urgent that researchers study the machineries regulating circRNAs fate, the downstream effectors of circRNAs modulatory networks, and the clinical application of circRNAs in AML.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China,*Correspondence: Min Zhou, ; Jing Luo,
| | - Xianling Gao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zheng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- Department of Anesthesiology, The First People’s Hospital of Yunnan Province, Kunming, China,Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Min Zhou, ; Jing Luo,
| |
Collapse
|
9
|
Cao J, Huang S, Li X. Rapamycin inhibits the progression of human acute myeloid leukemia by regulating circ_0094100/miR-217/ATP1B1 axis. Exp Hematol 2022; 112-113:60-69.e2. [PMID: 35901982 DOI: 10.1016/j.exphem.2022.07.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Rapamycin has been reported to inhibit the progression of diverse tumor cells. However, the functions of rapamycin in acute myeloid leukemia (AML) are little known. Cell Counting Kit-8 (CCK-8) assay was conducted to evaluate cell viability. Flow cytometry analysis was employed to analyze cell apoptosis and cell cycle process. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to determine the levels of circRNA_0094100 (circ_0094100) and microRNA-217 (miR-217). Western blot assay was carried out to measure the protein levels of proliferating cell nuclear antigen (PCNA), cyclin D1, B-cell lymphoma-2 (Bcl-2) and ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the relationship between miR-217 and circ_0094100 or ATP1B1. Rapamycin treatment suppressed AML cell viability and promoted apoptosis in a dose-dependent way. Circ_0094100 was elevated in AML tissues and cells. Moreover, the circ_0094100 level was reduced in AML cells treated with rapamycin. Circ_0094100 knockdown further inhibited rapamycin-mediated AML cell viability, and cell cycle, and promoted cell apoptosis. Circ_0094100 silencing reduced the protein levels of PCNA, cyclin D1, and Bcl-2 in rapamycin-treated AML cells. For mechanism analysis, circ_0094100 acted as the sponge for miR-217 and miR-217 inhibition reversed circ_0094100 knockdown-mediated malignant behaviors of rapamycin-treated AML cells. Furthermore, miR-217 overexpression suppressed cell viability and cell cycle and facilitated apoptosis in rapamycin-exposed AML cells, which were abolished by increasing ATP1B1. Rapamycin inhibited AML cell viability and cell cycle process and induced apoptosis through regulating circ_0094100/miR-217/ATP1B1 axis.
Collapse
Affiliation(s)
- Jiufang Cao
- Department of Hematolgy, The Second People's Hospital of Yibin City, Sichuan 644000, China
| | - Shihua Huang
- Department of Hematolgy, The Second People's Hospital of Yibin City, Sichuan 644000, China.
| | - Xiaoming Li
- Department of Hematolgy, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
10
|
Deng F, Zhang C, Lu T, Liao EJ, Huang H, Wei S. Roles of circRNAs in hematological malignancies. Biomark Res 2022; 10:50. [PMID: 35840998 PMCID: PMC9284813 DOI: 10.1186/s40364-022-00392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
As one of the leading causes of death, hematologic malignancies are associated with an ever-increasing incidence, and drug resistance and relapse of patients after treatment represent clinical challenges. Therefore, there are pressing demands to uncover biomarkers to indicate the development, progression, and therapeutic targets for hematologic malignancies. Circular RNAs (circRNAs) are covalently closed circular-single-stranded RNAs whose biosynthesis is regulated by various factors and is widely-expressed and evolutionarily conserved in many organisms and expressed in a tissue−/cell-specific manner. Recent reports have indicated that circRNAs plays an essential role in the progression of hematological malignancies. However, circRNAs are difficult to detect with low abundance using conventional techniques. We need to learn more information about their features to develop new detection methods. Herein, we sought to retrospect the current knowledge about the characteristics of circRNAs and summarized research on circRNAs in hematological malignancies to explore a potential direction.
Collapse
Affiliation(s)
- Fahua Deng
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Chengsi Zhang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Tingting Lu
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Ezhong Joshua Liao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.,Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Hai Huang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Sixi Wei
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
11
|
Liccardo F, Iaiza A, Śniegocka M, Masciarelli S, Fazi F. Circular RNAs Activity in the Leukemic Bone Marrow Microenvironment. Noncoding RNA 2022; 8:50. [PMID: 35893233 PMCID: PMC9326527 DOI: 10.3390/ncrna8040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy originating from defective hematopoietic stem cells in the bone marrow. In spite of the recent approval of several molecular targeted therapies for AML treatment, disease recurrence remains an issue. Interestingly, increasing evidence has pointed out the relevance of bone marrow (BM) niche remodeling during leukemia onset and progression. Complex crosstalk between AML cells and microenvironment components shapes the leukemic BM niche, consequently affecting therapy responsiveness. Notably, circular RNAs are a new class of RNAs found to be relevant in AML progression and chemoresistance. In this review, we provided an overview of AML-driven niche remodeling. In particular, we analyzed the role of circRNAs and their possible contribution to cell-cell communication within the leukemic BM microenvironment. Understanding these mechanisms will help develop a more effective treatment for AML.
Collapse
Affiliation(s)
| | | | | | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| |
Collapse
|
12
|
Du J, Jia F, Wang L. Advances in the Study of circRNAs in Hematological Malignancies. Front Oncol 2022; 12:900374. [PMID: 35795049 PMCID: PMC9250989 DOI: 10.3389/fonc.2022.900374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Circular RNAs (circRNAs) are non–protein-coding RNAs that have a circular structure and do not possess a 5` cap or 3` poly-A tail. Their structure is more stable than that of linear RNAs, and they are difficult to deform via hydrolysis. Advancements in measurement technology such as RNA sequencing have enabled the detection of circRNAs in various eukaryotes in both in vitro and in vivo studies. The main function of circRNAs involves sponging of microRNAs (MiRNAs) and interaction with proteins associated with physiological and pathological processes, while some circRNAs are involved in translation. circRNAs act as tumor suppressors or oncogenes during the development of many tumors and are emerging as new diagnostic and prognostic biomarkers. They also affect resistance to certain chemotherapy drugs such as imatinib. The objective of this review is to investigate the expression and clinical significance of circRNAs in hematological malignancies. We will also explore the effect of circRNAs on proliferation and apoptosis in hematological malignancy cells and their possible use as biomarkers or targets to determine prognoses. The current literature indicates that circRNAs may provide new therapeutic strategies for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Jingyi Du
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Feiyu Jia
- Department of Education and Teaching, Linyi People’s Hospital, Linyi, China
- *Correspondence: Lijuan Wang, ; Feiyu Jia,
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, China
- Linyi Key Laboratory of Tumor Biology, Linyi, China
- *Correspondence: Lijuan Wang, ; Feiyu Jia,
| |
Collapse
|
13
|
Guo L, Kou R, Song Y, Li G, Jia X, Li Z, Zhang Y. Serum hsa_circ_0079480 is a novel prognostic marker for acute myeloid leukemia. J Clin Lab Anal 2022; 36:e24337. [PMID: 35297094 PMCID: PMC8993661 DOI: 10.1002/jcla.24337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background The dysregulated expression of serum circular RNAs (circRNAs) has previously been linked to the prognosis of acute myeloid leukemia (AML) patients, but the clinical and prognostic relevance of serum hsa_circ_0079480 levels in this oncogenic setting have yet to be established. Herein, we assessed the putative prognostic relevance of circulating hsa_circ_0079480 levels in AML patient serum. Methods Serum was prepared from blood samples collected from 236 AML patients and 160 healthy controls, with hsa_circ_0079480 levels therein being quantified by quantitative real‐time reverse transcription‐polymerase chain reaction (qRT‐PCR) after which the clinical value of these levels was assessed. Results Acute myeloid leukemia patients were found to exhibit significant hsa_circ_0079480 upregulation in their serum as compared to serum from healthy controls, with such upregulation being most profound in individuals with M4/M5 type disease and to be more common in patients with poor cytogenic risk or high white blood cell counts. Receiver operating characteristic (ROC) curves demonstrated that serum hsa_circ_0079480 levels were able to effectively differentiate between patients with AML and healthy controls. Moreover, the upregulation of serum hsa_circ_0079480 was found to be closely related to clinicopathological findings and to be an independent predictor of reduced overall and relapse‐free survival among individuals diagnosed with AML. Furthermore, serum hsa_circ_0079480 levels were markedly decreased after treatment in this patient population, with these levels being lower in patients that achieved complete remission as compared to those patients that did not. Conclusion Levels of hsa_circ_0079480 in patient serum may offer value as a prognostic biomarker in AML.
Collapse
Affiliation(s)
- Liang Guo
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| | - Ru Kou
- Department of Clinical Laboratory, Xi'an Central Hospital, Xi'an, China
| | - Yanping Song
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| | - Guang Li
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| | - Xueyou Jia
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| | - Zhenzhen Li
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| | - Yunjie Zhang
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, China
| |
Collapse
|
14
|
Ye Q, Li N, Zhou K, Liao C. Homo sapiens circular RNA 0003602 (Hsa_circ_0003602) accelerates the tumorigenicity of acute myeloid leukemia by modulating miR-502-5p/IGF1R axis. Mol Cell Biochem 2022; 477:635-644. [PMID: 34988853 DOI: 10.1007/s11010-021-04277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has become a worldwide malignant cancer. We intended to investigate the critical roles and mechanism underlying homo sapiens circular RNA 0003602 (hsa_circ_0003602) in AML progression, especially in tumor cell proliferation, migration, invasion, and apoptosis. Real-time PCR was applied to identify the differential expression of hsa_circ_0003602 and miR-502-5p in AML bone marrow tissues and cell lines. In addition, western blot analysis was employed to determine the levels insulin-like growth factor 1 receptor (IGF1R) protein. The biological behaviors were assessed by CCK-8 cell viability assay, flow cytometry assay for apoptosis detection, and Transwell migration and invasion assay. The relationships between target miRNA and downstream mRNA were investigated by bioinformatics, luciferase reporter assay, and biotin-labeled RNA pull-down assay. Hsa_circ_0003602 was upregulated and predicted poor survival in AML. Knockdown of hsa_circ_0003602 in AML cell lines induced the inhibition of proliferation, migration, and invasion and caused apoptosis. Hsa_circ_0003602 sequestered miR-502-5p by functioning as a competitive endogenous RNA (ceRNA), thereby regulating IGF1R expression. Hsa_circ_0003602 acted as a tumor promoter in AML via miR-502-5p/IGF1R axis. Our study provides evidence that hsa_circ_0003602, miR-502-5p, and IGF1R might form a regulatory axis to affect the carcinogenicity of AML cells and provide potential targets for the treatment of AML.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- THP-1 Cells
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China.
| | - Nan Li
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Kai Zhou
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| |
Collapse
|
15
|
Singh V, Uddin MH, Zonder JA, Azmi AS, Balasubramanian SK. Circular RNAs in acute myeloid leukemia. Mol Cancer 2021; 20:149. [PMID: 34794438 PMCID: PMC8600814 DOI: 10.1186/s12943-021-01446-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although mechanistic studies clarifying the molecular underpinnings of AML have facilitated the development of several novel targeted therapeutics, most AML patients still relapse. Thus, overcoming the inherent and acquired resistance to current therapies remains an unsolved clinical problem. While current diagnostic modalities are primarily defined by gross morphology, cytogenetics, and to an extent, by deep targeted gene sequencing, there is an ongoing demand to identify newer diagnostic, therapeutic and prognostic biomarkers for AML. Recent interest in exploring the role of circular RNA (circRNA) in elucidating AML biology and therapy resistance has been promising. This review discerns the circular RNAs’ evolving role on the same scientific premise and attempts to identify its potential in managing AML.
Collapse
Affiliation(s)
- Vijendra Singh
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Jeffrey A Zonder
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Suresh Kumar Balasubramanian
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA.
| |
Collapse
|
16
|
Wu Y, Zhao B, Chen X, Geng X, Zhang Z. Circ_0009910 sponges miR-491-5p to promote acute myeloid leukemia progression through modulating B4GALT5 expression and PI3K/AKT signaling pathway. Int J Lab Hematol 2021; 44:320-332. [PMID: 34709725 DOI: 10.1111/ijlh.13742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous group of leukemias with an overall poor prognosis. Circular RNAs (circRNAs) have been verified to play important regulatory roles in AML progression. However, the role and molecular mechanism of circ_0009910 in AML development have not be completely clarified. METHODS The expression levels of circ_0009910, microRNA-491-5p (miR-491-5p), and β-1, 4-galactosyltransferase 5 (B4GALT5) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Cell proliferation and self-renewal ability were assessed via Cell Counting Kit-8 (CCK-8) and sphere formation assay. Cell cycle distribution and cell apoptosis were evaluated by flow cytometry. Caspase-3 activity was tested by Caspase-3 Activity Assay Kit. Western blot was used to examine the protein levels of autophagy-related markers and PI3K/AKT pathway-related markers. The interaction between miR-491-5p and circ_0009910 or B4GALT5 was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. RESULTS Circ_0009910 was highly expressed in AML tissues and cells. Silenced circ_0009910 could significantly inhibit the proliferation, sphere formation, and autophagy and promoted the apoptosis of AML cells. Circ_0009910 bound to miR-491-5p in AML cells, and circ_0009910 promoted AML progression partly through sponging miR-491-5p in vitro. B4GALT5 was a target of miR-491-5p, and miR-491-5p overexpression-mediated influences in AML cells were effectually overturned by the addition of B4GALT5 overexpression plasmid. Furthermore, circ_0009910 could regulate the expression of B4GALT5 by downregulating miR-491-5p in AML cells. Additionally, circ_0009910 could activate the PI3K/AKT signaling pathway by sponging miR-491-5p. CONCLUSION Circ_0009910 could suppress the proliferation, sphere formation, and autophagy and accelerated apoptosis by modulating B4GALT5 expression and activating the PI3K/AKT signaling pathway via sponging miR-491-5p in AML cells, suggesting that circ_0009910 might be a potential biomarker for the treatment of AML.
Collapse
Affiliation(s)
- Yingwei Wu
- Department of Blood Transfusion, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bo Zhao
- Department of Blood Transfusion, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xianghua Chen
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xueli Geng
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zhihua Zhang
- Department of Hematology, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
17
|
Zhao P, Li X, Li Y, Zhu J, Sun Y, Hong J. Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function. Int Urol Nephrol 2021; 53:2177-2187. [PMID: 33881703 DOI: 10.1007/s11255-021-02853-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is one of the most serious complications of diabetes that leads to decline of renal function. Although numerous studies have revealed that microRNAs (miRNAs) play essential roles in the progression of DN, whether miR-365 is involved remains elusive. METHODS The successful construction of DN model was confirmed by ELSIA, hematoxylin-eosin (HE) and Masson staining assay. The expression of miR-365 was detected through RT-qPCR. The levels of BDNF, p-TrkB, α-smooth muscle actin (SMA), collagen IV (Col.IV), transforming growth factor-β1 (TGF-β1), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were evaluated by western blot, IF or ELISA assays. Luciferase reporter assay was used to detect the interaction between miR-365 and BDNF. RESULTS The DN mice model was induced by streptozotocin (STZ). Then miR-365 expression was found to upregulate in tissues of DN rat. Furthermore, elevated expression of miR-365 was found in high glucose (HG)-treated HK-2 cells. Silencing of miR-365 suppressed the accumulation of ECM components and secretion of inflammatory cytokines in HK-2 cells. In addition, it was demonstrated that miR-365 could target BDNF. The protein levels of BDNF and p-TrkB were negatively regulated by miR-365 in HK-2 cells. Moreover, inhibition of miR-365 suppressed the levels of SMA, Col.IV, TGF-β1, TNF-α, and IL-6, indicating the renal fibrosis was inhibited by miR-365 knockdown. CONCLUSION MiR-365 could regulate BDNF-TrkB signal axis in STZ induced DN fibrosis and renal function. The results of the current study might provide a promising biomarker for the treatment of DN in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China
| | - Xiaqiu Li
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China
| | - Yang Li
- Department of General Medicine, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - Jiaying Zhu
- Department of Endocrinology, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - Yu Sun
- Department of Nephrology, Haining People's Hospital, No. 2, Qianjiang West Road, Haizhou Street, Haining, 314400, Zhejiang, China.
| | - Jianli Hong
- Department of Endocrinology, Hengdian Wenrong Hospital, 99 Yingbin Road, Dongyang, 322118, Zhejiang, China.
| |
Collapse
|