1
|
Xu G, Li P, Xue Z, Qi Y, Li X, Zhu D, Ma H, Kong L. RecA inhibitor epicatechin prolongs the development of fluoroquinolone resistance in Pasteurella multocida. Int J Biol Macromol 2024; 255:128026. [PMID: 37952805 DOI: 10.1016/j.ijbiomac.2023.128026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Pasteurella multocida (P. multocida), a primary pathogen of bovine respiratory diseases, has become resistant to many antibiotics, including fluoroquinolones and aminoglycosides. A large number of studies have proved that SOS reaction plays a crucial role in the development of antibiotic resistance. We have shown that the deletion of SOS response-related genes (recA, recO) can delay the development of fluoroquinolone resistance in P. multocida, therefore, it can be used as potential targets for antibiotic resistance inhibitors. In this study, we have used molecular docking to screen RecA protein inhibitors with high throughput screening, and found that epicatechin as an inhibitor significantly inhibited the formation of fluoroquinolone resistance in P. multocida, while in vitro coadministration of epicatechin with and without ciprofloxacin improved the efficacy of the antimicrobial agent. In conclusion, our results indicate that epicatechin is an efficient RecA inhibitor, implying that combining it with ciprofloxacin is a highly promising method for treating P. multocida resistant to fluoroquinolones.
Collapse
Affiliation(s)
- Guanyi Xu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| | - Penghui Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiyang Xue
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yu Qi
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Xuesong Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Daomi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China.
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Gebicka L, Gebicki JL. Kinetics of the reactions of catechins with hypochlorite, peroxynitrite, and amino acid–derived peroxyl‐ radicals. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lidia Gebicka
- Faculty of ChemistryInstitute of Applied Radiation ChemistryLodz University of Technology (TUL) Lodz Poland
| | - Jerzy L. Gebicki
- Faculty of ChemistryInstitute of Applied Radiation ChemistryLodz University of Technology (TUL) Lodz Poland
| |
Collapse
|
3
|
Interference of carbidopa and other catechols with reactions catalyzed by peroxidases. Biochim Biophys Acta Gen Subj 2018; 1862:1626-1634. [DOI: 10.1016/j.bbagen.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
|
4
|
Zhang KY, Zhang J, Liu Y, Liu S, Zhang P, Zhao Q, Tang Y, Huang W. Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy. Chem Sci 2014; 6:301-307. [PMID: 28757940 PMCID: PMC5514630 DOI: 10.1039/c4sc02600d] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
Core-shell phosphorescent nanoparticles were used to detect intracellular ClO– via ratiometric and photoluminescence lifetime imaging.
We report a ratiometric phosphorescence sensory system for hypochlorite (ClO–) based on core–shell structured silica nanoparticles. Two phosphorescent iridium(iii) complexes were immobilised in the inner solid core and outer mesoporous layer of the nanoparticles, respectively. The former is insensitive to ClO– and thus serves as an internal standard to increase the accuracy and precision, while the latter exhibits a specific and significant luminogenic response to ClO–, providing high selectivity and sensitivity. Upon exposure to ClO–, the nanoparticles display a sharp luminescence colour change from blue to red. Additionally, intracellular detection of exogenous and endogenous ClO– has been demonstrated via ratiometric imaging and photoluminescence lifetime imaging microscopy. Compared to intensity-based sensing, ratiometric and lifetime-based measurements are independent of the probe concentration and are thus less affected by external influences, especially in intracellular applications.
Collapse
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Jie Zhang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Yahong Liu
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Shujuan Liu
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Pinglin Zhang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Yan Tang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ;
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P.R. China . ; .,Institute of Advanced Materials , Jiangsu-Singapore Joint Research Centre for Organic/Bio-Electronics & Information Displays , Nanjing Tech University , Nanjing 211816 , P.R. China
| |
Collapse
|
5
|
Morel A, Hamed AI, Oleszek W, Stochmal A, Głowacki R, Olas B. Protective action of proanthocyanidin fraction from Medemia argun nuts against oxidative/nitrative damages of blood platelet and plasma components. Platelets 2013; 25:75-80. [PMID: 23560434 DOI: 10.3109/09537104.2013.769511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The oxidative/nitrative stress induced by different factors plays an important role in the pathogenesis of various disorders, including cardiovascular diseases and cancer. Proanthocyanidins have antioxidative properties and may protect biomolecules (lipids, DNA, and proteins) exposed to reactive oxygen and nitrogen species, including peroxynitrite (ONOO(-)). The effects of proanthocyanidin fraction from Medemia argun nuts on oxidative/nitrative protein damages (determined by such parameters as level of thiol groups, carbonyl groups, and nitrotyrosine residues) and on the amount of glutathione (as an important component of redox status; using HPLC) in human blood platelets and plasma after treatment with peroxynitrite were studied in vitro. The preincubation of blood platelets and plasma with proanthocyanidin fraction from M. argun nuts (0.5-50 µg/ml) reduced the formation of 3-nitrotyrosine, diminished oxidation of thiol groups, and decreased the level of carbonyl groups in proteins caused by 100 µM peroxynitrite. An action of tested plant fraction and ONOO(-) evoked a significant increase of GSH in platelets and plasma in comparison with platelets and plasma treated with ONOO(-) only. The proanthocyanidin fraction from M. argun nuts can be useful as a protecting factor against oxidative/nitrative stress associated with different diseases (cancer, cardiovascular, and neurodegenerative diseases) and proanthocyanidins of M. argun nuts may be promising antioxidants.
Collapse
Affiliation(s)
- Agnieszka Morel
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz , Pomorska, Lodz , Poland
| | | | | | | | | | | |
Collapse
|
6
|
Gebicki JL, Meisner P, Stawowska K, Gebicka L. Pulse radiolysis study of the reactions of catechins with nitrogen dioxide. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Bijak M, Nowak P, Borowiecka M, Ponczek MB, Żbikowska HM, Wachowicz B. Protective effects of (-)-epicatechin against nitrative modifications of fibrinogen. Thromb Res 2012; 130:e123-8. [PMID: 22503653 DOI: 10.1016/j.thromres.2012.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/27/2012] [Accepted: 03/21/2012] [Indexed: 01/09/2023]
Abstract
Fibrinogen appears to be particularly sensitive to toxic action of peroxynitrite; a potent oxidizing and nitrating species. An increased nitration of fibrinogen has been reported in cardiovascular diseases. The defense mechanisms against PN are crucial for complex hemostasis process. Flavonoids have antioxidative properties and could protect biomolecules against action of peroxynitrite. The aim of our studies was to establish, if (-)-epicatechin may in vitro protect fibrinogen molecule against peroxynitrite-induced nitration of tyrosines and change its thrombin-catalyzed polymerization. The exposure of purified fibrinogen (6 μM) to peroxynitrite (1-100 μM) resulted in both structural modifications and clotting ability of this glycoprotein. Peroxynitrite at the concentration of 1 μM increased maximum velocity of Fg polymerization, whereas exposure to 100 μM PN resulted in a significant decrease of Vmax. (-)-Epicatechin (1-100 μM) caused a dose-dependent inhibition of 3-nitrotyrosine formation in fibrinogen treated with peroxynitrite (100 μM) in both Western blot assays and C-ELISA assays. At the highest concentration of (-)-epicatechin (100 μM) the level of 3-NT in fibrinogen reached the control values. At lower doses (-)-epicatechin reduced tyrosine nitration by approx. 23% and 40% at the concentration of 1 μM and 10 μM, respectively. (-)-Epicatechin also abolished the pro-thrombotic effect of peroxynitrite on fibrinogen clotting. The presented in vitro results demonstrated for the first time that (-)-epicatechin might have protective effects against the impairment of structure and properties of Fg, caused by action of the strong biologic oxidant/nitration and inflammatory mediators.
Collapse
Affiliation(s)
- Michał Bijak
- Department of General Biochemistry, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
Natsume M, Osakabe N, Yasuda A, Osawa T, Terao J. Inhibitory Effects of Conjugated Epicatechin Metabolites on Peroxynitrite-mediated Nitrotyrosine Formation. J Clin Biochem Nutr 2011; 42:50-3. [PMID: 18231630 PMCID: PMC2212348 DOI: 10.3164/jcbn.2008008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/18/2007] [Indexed: 11/22/2022] Open
Abstract
Previously, we identified four metabolites of (−)-epicatechin in blood and urine: (−)-epicatechin-3'-O-glucuronide (E3'G), 4'-O-methyl-(−)-epicatechin-3'-O-glucuronide (4'ME3'G), (−)-epicatechin-7-O-glucuronide (E7G), and 3'-O-methyl-(−)-epicatechin-7-O-glucuronide (3'ME7G) (Natsume et al. Free Radical Biol. Med. 34, 840-849, 2003). The aim of the current study was to compare the antioxidative activities of these metabolites with that of their parent compound. After oral administration of (−)-epicatechin, E3'G and 4'ME3'G were isolated from human urine, and E7G and 3'ME7G isolated from rat urine. We found that these compounds inhibited peroxynitrite-mediated tyrosine nitration, in the following order of potency: E3'G > (−)-epicatechin > E7G = 3'ME7G. = 4'ME3'G. These results demonstrate that the metabolites of (−)-epicatechin retain antioxidative activity on peroxynitrite-induced oxidative damages to some extent.
Collapse
Affiliation(s)
- Midori Natsume
- Food and Health Laboratories, Meiji Seika Kaisha. Ltd., 5-3-1 Chiyoda, Sakado-shi, Saitama 350-0289, Japan
| | | | | | | | | |
Collapse
|
9
|
Konkimalla VB, Blunder M, Bauer R, Efferth T. Inhibition of inducible nitric oxide synthase by bis(helenalinyl)glutarate in RAW264.7 macrophages. Biochem Pharmacol 2010; 79:1573-80. [DOI: 10.1016/j.bcp.2010.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 12/31/2022]
|
10
|
Pavlovic R, Santaniello E. Peroxynitrite and nitrosoperoxycarbonate, a tightly connected oxidizing-nitrating couple in the reactive nitrogen-oxygen species family: new perspectives for protection from radical-promoted injury by flavonoids. J Pharm Pharmacol 2010; 59:1687-95. [DOI: 10.1211/jpp.59.12.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
Peroxynitrite is the product of the reaction of nitric oxide with superoxide radical and is implicated in the pathogenesis of a wide variety of human diseases, being responsible for in-vivo oxidation/nitration events. Nitrosoperoxycarbonate anion, formed by the interaction of peroxynitrite with CO2/bicarbonate at physiological concentrations, provides a new interpretation of oxidative/nitrative processes formerly attributed to peroxynitrite. The aim of this review is to summarize the chemistry and biology of peroxynitrite and radical species related to nitrosoperoxycarbonate anion, as well as the information available regarding the molecular mechanisms that determine and regulate radical-promoted injury by the two tightly connected species at physiological concentrations. Interception of carbonate and nitro radicals produced by interaction of peroxynitrite with CO2/bicarbonate, as in-vivo prevention of pathological events, creates new perspectives for the evaluation of safe scavengers of oxidative/nitrative stress at the physiological level. In this respect, natural products such as flavonoids hold a preeminent position among the vast array of compounds endowed with such properties.
Collapse
Affiliation(s)
- Radmila Pavlovic
- Department of Medicine, Surgery and Dentistry, School of Medicine, University of Milan, S. Paolo Hospital — Via A. Di Rudinì, 8, 20142 Milano, Italy
| | - Enzo Santaniello
- Department of Medicine, Surgery and Dentistry, School of Medicine, University of Milan, S. Paolo Hospital — Via A. Di Rudinì, 8, 20142 Milano, Italy
| |
Collapse
|
11
|
Abstract
Blood platelets, in analogy to other circulating blood cells, can generate reactive oxygen/nitrogen species (ROS/RNS) that may behave as second messengers and may regulate platelet functions. Accumulating evidence suggest a role of ROS/RNS in platelet activation. On the other hand, an increased production of ROS/RNS causes oxidative stress, and thus, may contribute to the development of different diseases, including vascular complications, inflammatory and psychiatric illnesses. Oxidative stress in platelets leads to chemical changes in a wide range of their components, and platelet proteins may be initial targets of ROS/RNS action. It has been demonstrated that reaction of proteins with ROS/RNS results in the oxidation and nitration of some amino acid residues, formation of aggregates or fragmentation of proteins. In oxidized proteins new carbonyl groups and protein hydroperoxides are also formed. In platelets, low molecular weight thiols such as glutathione (GSH), cysteine and cysteinylglycine and protein thiols may be also target for ROS/RNS action. This review describes the chemical structure and biological activities of reactive nitrogen species, mainly nitric oxide ((*)NO) and peroxynitrite (ONOO(-)) and their effects on blood platelet functions, and the mechanisms involved in their action on platelets.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | |
Collapse
|
12
|
Steffen Y, Schewe T, Sies H. Myeloperoxidase-mediated LDL oxidation and endothelial cell toxicity of oxidized LDL: attenuation by (−)-epicatechin. Free Radic Res 2009; 40:1076-85. [PMID: 17015252 DOI: 10.1080/10715760600883247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( - )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( - )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( - )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( - )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.
Collapse
Affiliation(s)
- Yvonne Steffen
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Duesseldorf, PO Box 101007, D-40001 Duesseldorf, Germany
| | | | | |
Collapse
|
13
|
Li Y, Ambrosone CB, McCullough MJ, Ahn J, Stevens VL, Thun MJ, Hong CC. Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 2009; 30:777-84. [PMID: 19255063 DOI: 10.1093/carcin/bgp053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary antioxidants may interact with endogenous sources of pro- and antioxidants to impact breast cancer risk. A nested case-control study of postmenopausal women (505 cases and 502 controls) from the Cancer Prevention Study-II Nutrition Cohort was conducted to examine the interaction between oxidative stress-related genes and level of vegetable and fruit intake on breast cancer risk. Genetic variations in catalase (CAT) (C-262T), myeloperoxidase (MPO) (G-463A), endothelial nitric oxide synthase (NOS3) (G894T) and heme oxygenase-1 (HO-1) [(GT)(n) dinucleotide length polymorphism] were not associated with breast cancer risk. Women carrying the low-risk CAT CC [odds ratio (OR) = 0.75, 95% confidence interval (CI) 0.50-1.11], NOS3 TT (OR = 0.54, 95% CI = 0.26-1.12, P-trend = 0.10) or HO-1 S allele and MM genotype (OR = 0.56, 95% CI = 0.37-0.55), however, were found to be at non-significantly reduced breast cancer risk among those with high vegetable and fruit intake (> or = median; P-interactions = 0.04 for CAT, P = 0.005 for NOS3 and P = 0.07 for HO-1). Furthermore, those with > or = 4 putative low-risk alleles in total had significantly reduced risk (OR = 0.53, 95% CI = 0.32-0.88, P-interaction = 0.006) compared with those with < or = 2 low-risk alleles. In contrast, among women with low vegetable and fruit intake (< median), the low-risk CAT CC (OR = 1.33, 95% CI = 0.89-1.99), NOS3 TT (OR = 2.93, 95% CI = 1.38-6.22) and MPO AA (OR = 2.09, 95% CI = 0.73-5.95) genotypes appeared to be associated with raised breast cancer risk, with significantly increased risks observed in those with > or = 4 low-risk alleles compared with participants with < or = 2 low-risk alleles (OR = 1.77, 95% CI = 1.05-2.99, P-interaction = 0.006). Our results support the hypothesis that there are joint effects of endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
- Yulin Li
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamazaki KG, Romero-Perez D, Barraza-Hidalgo M, Cruz M, Rivas M, Cortez-Gomez B, Ceballos G, Villarreal F. Short- and long-term effects of (-)-epicatechin on myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2008; 295:H761-7. [PMID: 18567705 DOI: 10.1152/ajpheart.00413.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiological studies have shown a correlation between flavonoid-rich diets and improved cardiovascular prognosis. Cocoa contains large amounts of flavonoids, in particular flavanols (mostly catechins and epicatechins). Flavonoids possess pleiotropic properties that may confer protective effects to tissues during injury. We examined the ability of epicatechin to reduce short-and long-term ischemia-reperfusion (I/R) myocardial injury. Epicatechin (1 mg.kg(-1).day(-1)) pretreatment (Tx) was administered daily via oral gavage to male rats for 2 or 10 days. Controls received water. Ischemia was induced via a 45-min coronary occlusion. Reperfusion was allowed until 48 h or 3 wk while Tx continued. We measured infarct (MI) size (%), hemodynamics, myeloperoxidase activity, tissue oxidative stress, and matrix metalloproteinase-9 (MMP-9) activity in 48-h groups. Cardiac morphometry was also evaluated in 3-wk groups. With 2 days of Tx, no reductions in MI size occurred. After 10 days, a significant approximately 50% reduction in MI size occurred. Epicatechin rats demonstrated no significant changes in hemodynamics. Tissue oxidative stress was reduced significantly in the epicatechin group vs. controls. MMP-9 activity demonstrated limited increases in the infarct region with epicatechin. By 3 wk, a significant 32% reduction in infarct size was observed with Tx, accompanied with sustained hemodynamics and preserved chamber morphometry. In conclusion, epicatechin Tx confers cardioprotection in the setting of I/R injury. The effects are independent of changes in hemodynamics, are sustained over time, and are accompanied by reduced levels of indicators of tissue injury. Results warrant the evaluation of cocoa flavanols as possible therapeutic agents to limit ischemic injury.
Collapse
Affiliation(s)
- Katrina Go Yamazaki
- Department of Medicine, UCSD Cardiology, 9500 Gilman Dr. 0613J, BSB 4028, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Schewe T, Steffen Y, Sies H. How do dietary flavanols improve vascular function? A position paper. Arch Biochem Biophys 2008; 476:102-6. [PMID: 18358827 DOI: 10.1016/j.abb.2008.03.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/01/2008] [Indexed: 11/18/2022]
Abstract
Epidemiological and clinical studies revealed that high-flavanol diet or isolated (-)-epicatechin improves the function of the vascular endothelium, as assessed by flow-mediated dilation, through elevation of bioavailability and bioactivity of NO*. We have demonstrated that exposure of human endothelial cells to (-)-epicatechin elevates the cellular levels of NO* and cyclic GMP and protects against oxidative stress elicited by proinflammatory agonists. (-)-Epicatechin acts like a prodrug, since these effects involve O-methylation of the flavanol and are attributed to apocynin-like inhibition of endothelial NADPH oxidase. Thus, generation of superoxide and peroxynitrite is diminished and, consequently, the cellular NO* level is preserved or augmented. We propose therefore that endothelial NO* metabolism rather than general antioxidant activity is a major target of dietary flavanols and that NADPH oxidase activity is a crucial site of action. Moreover, flavonoid glucuronides appear to serve as plasma transport metabolites to target cells rather than solely as excretion products. Implications for the interpretation of the role of dietary polyphenols for cardiovascular health are discussed.
Collapse
Affiliation(s)
- Tankred Schewe
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Duesseldorf, D-40001 Duesseldorf, Germany
| | | | | |
Collapse
|
16
|
Halls C, Yu O. Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 2008; 26:77-81. [DOI: 10.1016/j.tibtech.2007.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 12/19/2022]
|
17
|
McCarty MF. Scavenging of peroxynitrite-derived radicals by flavonoids may support endothelial NO synthase activity, contributing to the vascular protection associated with high fruit and vegetable intakes. Med Hypotheses 2008; 70:170-81. [PMID: 17825500 DOI: 10.1016/j.mehy.2005.09.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/07/2005] [Indexed: 01/24/2023]
Abstract
Ample intakes of fruit and vegetables have been linked epidemiologically with reduced risk for coronary disease, stroke, hypertension, obesity, many types of cancer, chronic pulmonary disease, osteoporosis, and various ocular disorders. The favorable impact of diets rich in fruit and vegetables on coronary risk has been confirmed in meta-analyses, and is thought to be largely attributable to the folk acid and potassium supplied by these foods. Although high intakes of vitamin C appear to confer some cardiovascular protection, the amounts supplied by typical diets may be too low to be of much benefit in this regard. High flavonoid intakes emerge as protective in some epidemiological studies, albeit the dose-response pattern observed is often L-shaped - seemingly more consistent with low intakes being harmful, than with high intakes being protective. Nonetheless, flavonoids have shown anti-atherogenic activity in rodent models, and both clinical and rodent supplementation studies with foods and food extracts rich in flavonoids demonstrate improvements in endothelium-dependent vasodilation traceable to increased endothelial nitric oxide synthesis. However, flavonoids do not appear to increase the expression of endothelial NO synthase, nor do they modify endothelial superoxide production. A likely explanation is that, even in nanomolar concentrations achievable in vivo, flavonoids can act as efficient scavengers of peroxynitrite-derived radicals, thereby protecting the cofactor tetrahydrobiopterin, crucial for NO synthase activity. Studies with cultured endothelial cells should be useful for evaluating this possibility. It would also be appropriate to assess the effects of flavonoids on prostacylin synthetase activity, on endothelial catabolism of asymmetric dimethylarginine, and on signaling mechanisms that activate NO synthase. Since peroxynitrite can induce mutagenic damage to DNA, it is conceivable that scavenging of peroxynitrite-derived radicals contributes to the reduction in mutagenesis associated with high intakes of fruits and vegetables. Carotenoids also have the potential to prevent peroxynitrite-mediated damage, although, as contrasted with flavonoids, there is comparatively little evidence that these compounds are anti-atherogenic or beneficial for endothelial function; a recent meta-analysis of epidemiological studies suggests that high lutein intakes may modestly reduce coronary risk.
Collapse
Affiliation(s)
- Mark F McCarty
- Natural Alternatives International, 1185 Linda Vista Dr., San Marcos, CA 92078, United States.
| |
Collapse
|
18
|
Cooper KA, Chopra M, Thurnham DI. Wine polyphenols and promotion of cardiac health. Nutr Res Rev 2007; 17:111-30. [DOI: 10.1079/nrr200482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wine polyphenols are considered to have beneficial effects on CHD and atherosclerosis. The consumption of red wine is high in Italy and France, approximately four times greater than that in the UK. This disparity in red wine consumption is thought to be the reason for the ‘French paradox’, where France was shown to have a coronary mortality rate close to that of China or Japan despite saturated fat intakes and cholesterol levels similar to the UK and USA. In the present review, we discuss the effects of wine and some of its polyphenol constituents on early pathological indicators of CHD such as plasma lipids, the endothelium and vasculature, platelets and serum antioxidant activity. The review also examines whether the polyphenols or the alcohol in wine is responsible for the effects on markers of heart disease. The present review concludes that red wine polyphenols have little effect on plasma lipid concentrations but wine consumption appears to reduce the susceptibility of LDL to oxidation and increase serum antioxidant capacity. However, these effects do depend on the amount of wine and period of supplementation. Authors who have examined specific polyphenols suggest that some phenolics appear to have endothelium-dependent vaso-relaxing abilities and some a positive effect on NO concentrations. Red wine phenolics also have an inhibitory effect on platelet aggregation, and individual phenolics also have a similar effectin vitro, although it should be noted that there are often discrepancies as large as ten-fold between the concentrations of polyphenolics testedin vitroand their measured levelsin vivo. Evidence suggests that alcohol has a positive synergistic effect with wine polyphenols on some atherosclerotic risk factors. Thus evidence that wine drinking is beneficial for cardiac health continues to accumulate but more research is required to understand fully and exactly the functions of red wine polyphenols.
Collapse
|
19
|
Comparative studies of the antioxidant effects of a naturally occurring resveratrol analogue -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol -- against oxidation and nitration of biomolecules in blood platelets. Cell Biol Toxicol 2007; 24:331-40. [PMID: 17992572 DOI: 10.1007/s10565-007-9045-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/14/2007] [Indexed: 01/13/2023]
Abstract
The action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and its analogue -- resveratrol (trans-3,4',5-trihydroxystilbene, present also in grapes and wine) on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), which is strong physiological oxidant and inflammatory mediator) in human blood platelets was compared. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation and nitration (measured by enzyme-linked immunosorbent assay method) in the blood platelets treated with peroxynitrite (0.1 mM) and markedly reduced an oxidation of thiol groups of proteins (estimated with 5,5'-dithio-bis(2-nitro-benzoic acid)] or glutathione (measured by high performance liquid chromatography method) in these cells. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. The obtained results indicate that in vitro trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. Moreover, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene proved to be even more potent than resveratrol in antioxidative tests. We conclude that the novel tested phenolic compound -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene isolated from Y. schidigera bark possessing Generally Recognized As Safe label given by the Food and Drug Administration and allows their human dietary use -- seems to be a promising candidate for future evaluations of its antioxidative activity and may be a good candidate for scavenging peroxynitrite.
Collapse
|
20
|
Olmos A, Giner RM, Máñez S. Drugs modulating the biological effects of peroxynitrite and related nitrogen species. Med Res Rev 2006; 27:1-64. [PMID: 16752428 DOI: 10.1002/med.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term "reactive nitrogen species" includes nitrogen monoxide, commonly called nitric oxide, and some other remarkable chemical entities (peroxynitrite, nitrosoperoxycarbonate, etc.) formed mostly from nitrogen monoxide itself in biological environments. Regardless of the specific mechanisms implicated in their effects, however, it is clear that an integrated pharmacological approach to peroxynitrite and related species is only just beginning to take shape. The array of affected chemical and pathological processes is extremely broad. One of the most conspicuous mechanisms observed thus far has been the scavenging of the peroxynitrite anion by molecules endowed with antioxidant activity. This discovery has in turn lent great significance to several naturally occurring and synthetic antioxidants, which usually protect not only against oxidative reactions, but also from nitrating ones, both in vitro and in vivo. This has proven to be beneficial in different tissues, especially within the central nervous system. Taking these results and those of other biochemical investigations into account, many research lines are currently in progress to establish the true potential of reactive nitrogen species deactivators in the therapy of neurological diseases, ischemia-reperfusion damage, renal failure, and lung injury, among others.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Universitat de València, València, Spain
| | | | | |
Collapse
|
21
|
Engler MB, Engler MM. The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev 2006; 64:109-18. [PMID: 16572598 DOI: 10.1111/j.1753-4887.2006.tb00194.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocoa and chocolate have recently been found to be rich plant-derived sources of antioxidant flavonoids with beneficial cardiovascular properties. These favorable physiological effects include: antioxidant activity, vasodilation and blood pressure reduction, inhibition of platelet activity, and decreased inflammation. Increasing evidence from experimental and clinical studies using cocoa-derived products and chocolate suggest an important role for these high-flavanol-containing foods in heart and vascular protection.
Collapse
Affiliation(s)
- Mary B Engler
- Department of Physiological Nursing, Laboratory of Cardiovascular Physiology, University of California, San Francisco, California 94143-0610, USA.
| | | |
Collapse
|
22
|
Schewe T, Sies H. Myeloperoxidase-induced lipid peroxidation of LDL in the presence of nitrite. Protection by cocoa flavanols. Biofactors 2005; 24:49-58. [PMID: 16403963 DOI: 10.1002/biof.5520240106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lipid peroxidation (LPO) of low-density lipoprotein (LDL) is believed to be a pivotal process rendering this plasma lipoprotein atherogenic. Several endogenous factors have been proposed to mediate LPO of LDL, among them myeloperoxidase (MPO), which is active in atherosclerotic lesions, and the plasma level of which has been proposed to be a prognostic parameter for cardiac events. Nitrite, a major oxidation product of nitric oxide, is substrate of MPO and a cofactor of MPO-mediated LPO under physiological conditions. Dietary flavonoids including (-)-epicatechin, a major flavan-3-ol in cocoa products, grapes and wine, are substrates of MPO as well as potent inhibitors of LPO in LDL at micromolar concentrations. Moreover, they strongly suppress protein tyrosine nitration of LDL by MPO/nitrite or peroxynitrite. By blunting undesirable MPO-mediated actions of nitrite, presumably via scavenging of the strong prooxidant and nitrating *NO2 radical, dietary flavonoids modulate NO metabolism in a favorable direction and thus counteract endothelial dysfunction. This article gives a survey on recent progress in this field with special reference to own recently published work.
Collapse
Affiliation(s)
- Tankred Schewe
- Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
23
|
Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem 2004; 279:43345-51. [PMID: 15258160 DOI: 10.1074/jbc.m401889200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein-1 (IRP-1) is a bifunctional [4Fe-4S] protein that functions as a cytosolic aconitase or as a trans-regulatory factor controlling iron homeostasis at a post-transcriptional level. Because IRP-1 is a sensitive target protein for nitric oxide (NO), we investigated whether this protein is nitrated in inflammatory macrophages and whether this post-transcriptional modification changes its activities. RAW 264.7 macrophages were first stimulated with interferon-gamma and lipopolysaccharide (IFN-gamma/LPS) and then triggered by phorbol 12-myristate 13-acetate (PMA) in order to promote co-generation of NO* and O*2-.. IRP-1 was isolated by immunoprecipitation and analyzed for protein-bound nitrotyrosine by Western blotting. We show that nitration of endogenous IRP-1 in NO-producing macrophages boosted to produce O*2- was accompanied by aconitase inhibition and impairment of its capacity to bind the iron-responsive element (IRE) of ferritin mRNA. Lost IRE-binding activity was not recovered by exposure of IRP-1 to 2% 2-mercaptoethanol and was not due to protein degradation. Inclusion of cis-aconitate with cell extract to stabilize the [4Fe-4S] cluster of holo-IRP-1 rendered protein insensitive to nitration by peroxynitrite, suggesting that loss of [Fe-S] cluster and subsequent change of conformation are prerequisites for tyrosine nitration. IRP-1 nitration was strongly reduced when IFN-gamma/LPS/PMA-stimulated cells were incubated with myeloperoxidase inhibitors, which points to the contribution of the nitrite/H2O2/peroxidase pathway to IRP-1 nitration in vivo. Interestingly, under these conditions, IRP-1 recovered full IRE binding as assessed by treatment with 2% 2-mercaptoethanol. Peroxidase-mediated nitration of critical tyrosine residues, by holding IRP-1 in an inactive state, may constitute, in activated macrophages, a self-protecting mechanism against iron-induced toxicity.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|