1
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
2
|
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Enzymatic and non-enzymatic mechanisms of dimesna metabolism. Amino Acids 2014; 47:511-23. [DOI: 10.1007/s00726-014-1882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
|
4
|
Cutler MJ, Urquhart BL, Velenosi TJ, Meyer Zu Schwabedissen HE, Dresser GK, Leake BF, Tirona RG, Kim RB, Freeman DJ. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol 2011; 52:530-42. [PMID: 21505084 DOI: 10.1177/0091270011400414] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mesna and its dimer, dimesna, are coadministered for mitigation of ifosfamide- and cisplatin-induced toxicities, respectively. Dimesna is selectively reduced to mesna in the kidney, producing its protective effects. In vitro screens of uptake and efflux transporters revealed saturable uptake by renal organic anion transporters OAT1, OAT3, and OAT4. Efflux transporters breast cancer resistance protein; multidrug and toxin extrusion 1 (MATE1); multidrug resistance proteins MRP1, MRP2, MRP4, and MRP5; and P-glycoprotein (Pgp) significantly reduced dimesna accumulation. Further investigation demonstrated that renal apical efflux transporters MATE1, MRP2, and Pgp were also capable of mesna efflux. Administration of OAT inhibitor probenecid to healthy subjects significantly increased combined mesna and dimesna plasma exposure (91% ± 34%) while decreasing the renal clearance due to net secretion (67.0% ± 12.7%) and steady-state volume of distribution (45.2% ± 13.4%). Thus, the kidney represents a significant sink of total mesna, whereas function of renal drug transporters facilitates clearance in excess of glomerular filtration rate and likely the presence of active mesna in the urine. Loss of renal transporter function due to genetic variability or drug-drug interactions may decrease the efficacy of chemoprotectants, increasing the risk of ifosfamide- and cisplatin-induced toxicities.
Collapse
Affiliation(s)
- M J Cutler
- Department of Medicine, Division of Clinical Pharmacology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hagihara K, Kazui M, Kurihara A, Kubota K, Ikeda T. Glutaredoxin and thioredoxin can be involved in producing the pharmacologically active metabolite of a thienopyridine antiplatelet agent, prasugrel. Drug Metab Dispos 2011; 39:208-14. [PMID: 21036950 DOI: 10.1124/dmd.110.035196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
A thienopyridine antiplatelet agent, prasugrel, is rapidly hydrolyzed to a thiolactone metabolite (R-95913, 2-[2-oxo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl]-1-cyclopropyl-2-(2-fluorophenyl)ethanone). R-95913 is oxidized by hepatic cytochromes P450 to the pharmacologically active metabolite R-138727 (2-[1-2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-mercapto-3-piperidinylidene]acetic acid). One possible intermediate in the in vitro bioactivation pathway is a glutathione conjugate, R-133490, which could be reduced to generate R-138727 in the presence of a reducing agent such as glutathione. In this study, enzymes in human liver cytosols were found to accelerate reduction of R-133490 leading to the formation of R-138727. To explore the possible reductive enzymes, we separated the various proteins in human liver cytosol based on size using gel filtration chromatography. Two active peaks were detected and found to contain thioredoxin and glutaredoxin, respectively. In addition, recombinant human glutaredoxin and thioredoxin promoted the formation of R-138727 from R-133490 with much higher activity for glutaredoxin than for thioredoxin. This study is the first in vitro observation indicating that glutaredoxin and thioredoxin in human liver are active in reducing the mixed disulfide formed between xenobiotics and glutathione.
Collapse
Affiliation(s)
- Katsunobu Hagihara
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-Ku, Tokyo, 140-8710, Japan.
| | | | | | | | | |
Collapse
|
6
|
Grek CL, Townsend DM, Tew KD. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. Pharmacol Ther 2010; 129:172-84. [PMID: 20951732 DOI: 10.1016/j.pharmthera.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
7
|
Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother Pharmacol 2010; 67:381-91. [PMID: 20440617 DOI: 10.1007/s00280-010-1333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Previous studies from our laboratory have identified a role for gamma-glutamyl transpeptidase (GGT) in BNP7787 (disodium 2,2'-dithio-bis ethane sulfonate, dimesna, Tavocept™)-mediated cisplatin nephroprotection. Dekant has proposed that gamma-glutamyl transpeptidase (GGT), aminopeptidase N (APN) and cysteine-conjugate-β-lyase (CCBL) comprise a multi-enzyme pathway that acts on xenobiotic-glutathione conjugates converting them to nephrotoxic metabolites. We report modulation of APN activity within this pathway by BNP7787-derived mesna-disulfide heteroconjugates. METHODS A fluorimetric assay was used to determine the effect of BNP7787, BNP7787-derived mesna-disulfide heteroconjugates, and the BNP7787 metabolite, mesna (sodium 2-mercaptoethane sulfonate), on the initial velocity and overall progress curve of the human APN reaction in vitro. RESULTS Neither BNP7787 nor mesna-cysteinyl-glutamate inhibited human APN. Select BNP7787-derived mesna-disulfide heteroconjugates (mesna-cysteine, mesna-glutathione, mesna-cysteinyl-glycine) and high concentrations of mesna inhibited APN activity. Allosteric effects on the enzyme progress curve outside of the linear initial velocity region were observed for mesna-cysteinyl-glycine, mesna-glutathione and mesna-cysteinyl-glutamate and appeared to be a function of having both mesna and di- or tri-peptide functionalities in one molecule. In situ-generated mesna-cisplatin conjugates were not a substrate for human APN. CONCLUSIONS BNP7787-mediated prevention or mitigation of cisplatin-induced nephrotoxicity may involve APN inhibition by certain BNP7787-derived mesna-disulfide heteroconjugates and appears correlated to the presence of a glycinate moiety and/or an anionic group. Two general mechanisms for BNP7787-mediated nephroprotection of cisplatin-induced nephrotoxicity involving the GGT, APN and CCBL nephrotoxigenic pathway are proposed which acting in a concerted and/or synergistic manner, and thereby prevent or mitigate cisplatin-induced renal toxicity.
Collapse
|
8
|
Kodama A, To H, Kinoshita T, Ieiri I, Higuchi S. Influence of dosing schedules on toxicity and antitumour effects of combined cisplatin and docetaxel treatment in mice. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The combination of cisplatin and docetaxel shows a better cure rate against non-small-cell lung cancer than other drug combinations in clinical studies; however, severe myelosuppression and nephrotoxicity are dose-limiting factors. The purpose of this study was to establish a suitable dosing schedule to reduce adverse effects and improve the antitumour effects.
Methods
Cisplatin and docetaxel were administered i.p. to male ICR mice simultaneously, or sequentially with either cisplatin or docetaxel first followed by the second drug 12 h later (docetaxel–cisplatin and cisplatin–docetaxel groups). Antitumour effects of these schedules were also tested in C57BL/6N mice bearing Lewis lung carcinomas.
Key findings
The simultaneous docetaxel/cisplatin group showed the lowest survival rate and the highest blood urea nitrogen (BUN) concentration. Cisplatin concentrations in the plasma and kidney were higher in the simultaneous dosing group than the sequential dosing groups. Antitumour effect was the greatest in the docetaxel–cisplatin group.
Conclusions
The docetaxel–cisplatin regimen inhibited tumour growth the best and reduced mortality and nephrotoxicity.
Collapse
Affiliation(s)
- Ayumi Kodama
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideto To
- Department of Hospital Pharmacy, Nagasaki University Hospital of Medicine and Dentistry, Nagasaki, Japan
| | - Tomohiro Kinoshita
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Higuchi
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Hausheer FH, Shanmugarajah D, Leverett BD, Chen X, Huang Q, Kochat H, Petluru PN, Parker AR. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase. Cancer Chemother Pharmacol 2009; 65:941-51. [PMID: 19714332 DOI: 10.1007/s00280-009-1101-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/29/2009] [Indexed: 11/28/2022]
Abstract
PURPOSE The mechanisms for cisplatin-induced renal cell injury have been the focus of intense investigation for many years with a view to provide a more effective and convenient form of nephroprotection. BNP7787 (disodium 2,2'-dithio-bis ethane sulfonate; dimesna, Tavocept), is a water-soluble disulfide investigational new drug that is undergoing clinical development for the prevention and mitigation of clinically important chemotherapy-induced toxicities associated with platinum-type chemotherapeutic agents. We hypothesized that part of BNP7787's mechanism of action (MOA) pertaining to the potential prevention of cisplatin-induced nephrotoxicity involves the inhibition of gamma-glutamyl transpeptidase (GGT) activity, mediated by BNP7787-derived mesna-disulfide heteroconjugates that contain a terminal gamma-glutamate moiety [e.g., mesna-glutathione (MSSGlutathione) and mesna-cysteinyl-glutamate (MSSCE)]. METHODS Inhibition studies were conducted on human and porcine GGT to determine the effect of mesna-disulfide heteroconjugates on the enzyme's activity in vitro. These studies utilized a fluorimetric assay that monitored the hydrolysis of L-gamma-glutamyl-7-amino-4-trifluoromethylcoumarin (GG-AFC) to AFC. RESULTS Mesna-disulfide heteroconjugates that contained gamma-glutamyl moieties were potent inhibitors of human and porcine GGT. An in situ-generated mesna-cisplatin conjugate was not a substrate for GGT. CONCLUSIONS The GGT xenobiotic metabolism pathway is postulated to be a major toxification pathway for cisplatin nephrotoxicity, and BNP7787 may play a novel and critical therapeutic role in the modulation of GGT activity. We further postulate that there are two general mechanisms for BNP7787-mediated nephroprotection against cisplatin-induced nephrotoxicity involving this pathway. First, the active BNP7787 pharmacophore, mesna, produces an inactive mesna-cisplatin conjugate that is not a substrate for the GGT toxification pathway (GGT xenobiotic metabolism pathway) and, second, BNP7787-derived mesna-disulfide heteroconjugates may serve as selective, potent inhibitors of GGT, possibly resulting in nephroprotection by a novel means.
Collapse
Affiliation(s)
- Frederick H Hausheer
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Suite 1250, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shanmugarajah D, Ding D, Huang Q, Chen X, Kochat H, Petluru PN, Ayala PY, Parker AR, Hausheer FH. Analysis of BNP7787 thiol-disulfide exchange reactions in phosphate buffer and human plasma using microscale electrochemical high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:857-66. [DOI: 10.1016/j.jchromb.2009.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/09/2009] [Accepted: 02/01/2009] [Indexed: 11/27/2022]
|
11
|
Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 2006; 44:1173-83. [PMID: 16530908 DOI: 10.1016/j.fct.2006.01.013] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/22/2006] [Accepted: 01/29/2006] [Indexed: 11/15/2022]
Abstract
Cisplatin (cis-diamminedichloroplatinum (II)) is an effective agent against various solid tumours. Despite its effectiveness, the dose of cisplatin that can be administered is limited by its nephrotoxicity. Hundreds of platinum compounds (e.g. carboplatin, oxaliplatin, nedaplatin and the liposomal form lipoplatin) have been tested over the last two decades in order to improve the effectiveness and to lessen the toxicity of cisplatin. Several agents have been tested to see whether they could ameliorate or augment the nephrotoxicity of platinum drugs. This review summarizes these studies and the possible mechanisms of actions of these agents. The agents that have been shown to ameliorate experimental cisplatin nephrotoxicity include antioxidants (e.g. melatonin, vitamin E, selenium, and many others), modulators of nitric oxide (e.g. zinc histidine complex), agents interfering with metabolic pathways of cisplatin (e.g. procaine HCL), diuretics (e.g. furosemide and mannitol), and cytoprotective and antiapoptotic agents (e.g. amifostine and erythropoietin). Only few of these agents have been tested in humans. Those agents that have been shown to augment cisplatin nephrotoxicity include nitric oxide synthase inhibitors, spironolactone, gemcitabine and others. Combining these agents with cisplatin should be avoided.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine, Sultan Qaboos University, P.O. Box 35, Al-Khod, Muscat 123, Oman.
| | | |
Collapse
|
12
|
Boven E, Westerman M, van Groeningen CJ, Verschraagen M, Ruijter R, Zegers I, van der Vijgh WJF, Giaccone G. Phase I and pharmacokinetic study of the novel chemoprotector BNP7787 in combination with cisplatin and attempt to eliminate the hydration schedule. Br J Cancer 2005; 92:1636-43. [PMID: 15841080 PMCID: PMC2362054 DOI: 10.1038/sj.bjc.6602553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BNP7787 (disodium 2,2′-dithio-bis-ethane sulphonate; Tavocept™) is a novel agent developed to protect against cisplatin (cis-diammine-dichloroplatinum(II))-associated chronic toxicities. In this study, we determined the recommended dose of BNP7787 when preceding a fixed dose of cisplatin, the pharmacokinetics (PKs) and the possible reduction of saline hydration. Patients with advanced solid tumours received BNP7787 in escalating doses of 4.1–41 g m−2 as a 15-min intravenous (i.v.) infusion followed by cisplatin 75 mg m−2 as a 60-min i.v. infusion together with pre- and postcisplatin saline hydration in a volume of 2200 ml; cycles were repeated every 3 weeks. PK was carried out using BNP7787, cisplatin and the combination. Twenty-five patients were enrolled in stage I of the study to determine the recommended dose of BNP7787. No dose-limiting toxicity was reached. The highest dose level of 41 g m−2 resulted in a low incidence of grade 2 toxicities, being nausea and vomiting, dry mouth or bad taste and i.v. injection site discomfort. Doses of BNP7787 ⩾18.4 g m−2 did not show a drug interaction between BNP7787 and cisplatin. In stage II of the study, patients received a fixed dose of BNP7787 of 18.4 g m−2 preceding cisplatin and were entered in prespecified reduced saline hydration steps. A total of 21 patients in cohorts of six to nine patients received reduced saline hydration of 1600 ml (step A), 1000 ml (step B) and 500 ml (step C). In step C, two out of six evaluable patients experienced grade 1 nephrotoxicity. Cisplatin acute toxicities in all 46 patients were as expected. Only five patients complained of paresthesias grade 1 and six developed slight audiometric changes. Partial tumour response was observed in four patients and stable disease in 15 patients. In conclusion, BNP7787 was tolerated well up to doses of 41 g m−2. The recommended dose of 18.4 g m−2 enabled safe reduction of the saline hydration schedule for cisplatin to 1000 ml. Further studies will assess whether BNP7787 offers protection against platinum-related late side effects.
Collapse
Affiliation(s)
- E Boven
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Martin J van den Bent
- Neuro-oncology Unit, Daniel den Hoed Oncology Center/Erasmus University Medical Center, PO Box 5201, 3008 AE Rottterdam, Netherlands.
| |
Collapse
|