1
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
2
|
Chen J, Xiao Y, Cai X, Liu J, Chen K, Zhang X. Overexpression of p53R2 is associated with poor prognosis in lung sarcomatoid carcinoma. BMC Cancer 2017; 17:855. [PMID: 29246119 PMCID: PMC5731091 DOI: 10.1186/s12885-017-3811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023] Open
Abstract
Background This study aimmed to evaluate the expression of p53-inducible RR small subunit 2 homologue (p53R2) in Lung sarcomatoid carcinoma (LSC) and its association with clinicopathological parameters and prognosis. Methods In this study, clinicopathological factors and prognostic significance of the expression of p53R2 was investigated by immunohistochemistry (IHC) in 100 cases of LSC. Results The results showed that the expression of p53R2 was significantly correlated with clinical stage (P<0.05). But there was no statistically correlation with gender, age, smoking, tumor size, pT stage, pN stage, pM stage, therapy and relapse. Kaplan-Meier analysis revealed that the expression of p53R2, clinical stage, pT stage, pN stage, pM stage and tumor size were closely related to patients’ survival, and the analysis also revealed that patients with low expression of p53R2 had a longer overall survival than that with high expression (Mean overall survival: 84.8 months vs. 34.7 months, P<0.05). Further multivariate analysis indicated that the expression of p53R2 was identified as an independent prognostic factor in the prediction of the overall survival for patients with LSC (HR = 3.217, P<0.05). Conclusions The expression of p53R2 was inversely associated with the proliferation and progression of LSC, and the results indicated that the high expression of p53R2 was an independent factor for unfavorable prognosis of patients with LSC.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbo Xiao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaoyan Cai
- Department of Pathology, Taishan People's Hospital, Taishan, Guangdong, 529200, China
| | - Jun Liu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Keming Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinke Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Chen J, Li S, Xiao Y, Zou X, Zhang X, Zhu M, Cai M, Xie D. p53R2 as a novel prognostic biomarker in nasopharyngeal carcinoma. BMC Cancer 2017; 17:846. [PMID: 29237424 PMCID: PMC5729457 DOI: 10.1186/s12885-017-3858-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND p53R2 is a target of p53 gene, which is essential for DNA repair, mitochondrial DNA synthesis, protection against oxidative stress, chromosomal instability, chronic inflammation and tumorigenesis. This study is aimed to investigate the expression of ribonucleotide reductase (RR) subunit p53R2 in nasopharyngeal carcinoma and its significance in the prognosis. METHODS The expression levels of p53R2 in 201 patients with NPC were examined by immunohistochemical assay. The correlations of p53R2 expression and clinicopathological features of nasopharyngeal carcinoma patient were analysed by chi-square test. The Kaplan-Meier survival analysis and Cox multivariate regression model were used to analyze the prognostic significance of the patients with NPC. RESULTS Immunohistochemical results showed that p53R2 was positively expressed in 92.5% (186/201) of nasopharyngeal carcinoma and the high expression rate was 38.3% (77/201). Further analysis observed that the negative correlation between expression of p53R2 and pT status had statistical significance (P < 0.05). Kaplan-Meier survival analysis found that the mean survival time of patients with high expression of p53R2 was 143.32 months, while the patients with low expression level of p53R2 was 121.63 months (P < 0.05). Cox regression analysis suggested that p53R2 protein expression could be used as an independent prognostic factor for nasopharyngeal carcinoma (P < 0.05). CONCLUSIONS This study drew a conclusion that p53R2 could be used as a prognostic biomarker indicative of the favorable outcome for patients with nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jiewei Chen
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Shuman Li
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbo Xiao
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Xuan Zou
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 China
| | - Xinke Zhang
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Mingshu Zhu
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Muyan Cai
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Dan Xie
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| |
Collapse
|
4
|
Ding J, Kuo ML, Su L, Xue L, Luh F, Zhang H, Wang J, Lin TG, Zhang K, Chu P, Zheng S, Liu X, Yen Y. Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers. Carcinogenesis 2017; 38:519-531. [PMID: 28379297 DOI: 10.1093/carcin/bgx022] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/21/2017] [Indexed: 12/16/2023] Open
Abstract
Human mitochondrial pyrroline-5-carboxylate reductase (PYCR) is a house-keeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate to proline. This enzymatic cycle plays pivotal roles in amino acid metabolism, intracellular redox potential and mitochondrial integrity. Here, we hypothesize that PYCR1 might be a novel prognostic biomarker and therapeutic target for breast cancer. In this study, breast cancer tissue samples were obtained from Zhejiang University (ZJU set). Immunohistochemistry analysis was performed to detect the protein level of PYCR1, and Kaplan-Meier and Cox proportional analyses were employed in this outcome study. The prognostic significance and performance of PYCR1 mRNA were validated on 13 worldwide independent microarray data sets, composed of 2500 assessable breast cancer cases. Our findings revealed that both PYCR1 mRNA and protein expression were significantly associated with tumor size, grade and invasive molecular subtypes of breast cancers. Independent and pooled analyses verified that higher PYCR1 mRNA levels were significantly associated with poor survival of breast cancer patients, regardless of estrogen receptor (ER) status. For in vitro studies, inhibition of PYCR1 by small-hairpin RNA significantly reduced the growth and invasion capabilities of the cells, while enhancing the cytotoxicity of doxorubicin in breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative). Further population study also validated that chemotherapy significantly improved survival in early-stage breast cancer patients with low PYCR1 expression levels. Therefore, PYCR1 might serve as a prognostic biomaker for either ER-positive or ER-negative breast cancer subtypes and can also be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Jiefeng Ding
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, China
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mei-Ling Kuo
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Leila Su
- Ph.D. Program of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
| | - Lijun Xue
- Pathology Department, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Frank Luh
- General Medicine Division, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
- Sino-American Cancer Foundation, 4978 Santa Anita Ave, Suite #104, Temple City, CA 91780, USA
| | - Hang Zhang
- Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310009, China and
| | - Jianghai Wang
- Sino-American Cancer Foundation, 4978 Santa Anita Ave, Suite #104, Temple City, CA 91780, USA
| | - Tiffany G Lin
- Sino-American Cancer Foundation, 4978 Santa Anita Ave, Suite #104, Temple City, CA 91780, USA
| | - Keqiang Zhang
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Peiguo Chu
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shu Zheng
- Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310009, China and
| | - Xiyong Liu
- Ph.D. Program of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
- Sino-American Cancer Foundation, 4978 Santa Anita Ave, Suite #104, Temple City, CA 91780, USA
- California Cancer Institute, Temple City, CA 91007, USA
| | - Yun Yen
- Ph.D. Program of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
| |
Collapse
|
5
|
Qi JJ, Liu L, Cao JX, An GS, Li SY, Li G, Jia HT, Ni JH. E2F1 regulates p53R2 gene expression in p53-deficient cells. Mol Cell Biochem 2014; 399:179-88. [DOI: 10.1007/s11010-014-2244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
|
6
|
Chen X, Xu Z, Zhang L, Liu H, Liu X, Lou M, Zhu L, Huang B, Yang CG, Zhu W, Shao J. The conserved Lys-95 charged residue cluster is critical for the homodimerization and enzyme activity of human ribonucleotide reductase small subunit M2. J Biol Chem 2013; 289:909-20. [PMID: 24253041 DOI: 10.1074/jbc.m113.524546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA synthesis. Human RR small subunit M2 exists in a homodimer form. However, the importance of the dimer form to the enzyme and the related mechanism remain unclear. In this study, we tried to identify the interfacial residues that may mediate the assembly of M2 homodimer by computational alanine scanning based on the x-ray crystal structure. Co-immunoprecipitation, size exclusion chromatography, and RR activity assays showed that the K95E mutation in M2 resulted in dimer disassembly and enzyme activity inhibition. In comparison, the charge-exchanging double mutation of K95E and E98K recovered the dimerization and activity. Structural comparisons suggested that a conserved cluster of charged residues, including Lys-95, Glu-98, Glu-105, and Glu-174, at the interface may function as an ionic lock for M2 homodimer. Although the measurements of the radical and iron contents showed that the monomer (the K95E mutant) was capable of generating the diiron and tyrosyl radical cofactor, co-immunoprecipitation and competitive enzyme inhibition assays indicated that the disassembly of M2 dimer reduced its interaction with the large subunit M1. In addition, the immunofluorescent and fusion protein-fluorescent imaging analyses showed that the dissociation of M2 dimer altered its subcellular localization. Finally, the transfection of the wild-type M2 but not the K95E mutant rescued the G1/S phase cell cycle arrest and cell growth inhibition caused by the siRNA knockdown of M2. Thus, the conserved Lys-95 charged residue cluster is critical for human RR M2 homodimerization, which is indispensable to constitute an active holoenzyme and function in cells.
Collapse
Affiliation(s)
- Xinhuan Chen
- From the Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shao J, Liu X, Zhu L, Yen Y. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets 2013; 17:1423-37. [PMID: 24083455 DOI: 10.1517/14728222.2013.840293] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ribonucleotide reductase (RR) is a unique enzyme, because it is responsible for reducing ribonucleotides to their corresponding deoxyribonucleotides, which are the building blocks required for DNA replication and repair. Dysregulated RR activity is associated with genomic instability, malignant transformation and cancer development. The use of RR inhibitors, either as a single agent or combined with other therapies, has proven to be a promising approach for treating solid tumors and hematological malignancies. AREAS COVERED This review covers recent publications in the area of RR, which include: i) the structure, function and regulation of RR; ii) the roles of RR in cancer development; iii) the classification, mechanisms and clinical application of RR inhibitors for cancer therapy and iv) strategies for developing novel RR inhibitors in the future. EXPERT OPINION Exploring the possible nonenzymatic roles of RR subunit proteins in carcinogenesis may lead to new rationales for developing novel anticancer drugs. Updated information about the structure and holoenzyme models of RR will help in identifying potential sites in the protein that could be targets for novel RR inhibitors. Determining RR activity and subunit levels in clinical samples will provide a rational platform for developing personalized cancer therapies that use RR inhibitors.
Collapse
Affiliation(s)
- Jimin Shao
- Zhejiang University, School of Medicine, Department of Pathology and Pathophysiology , Hangzhou 310058 , China
| | | | | | | |
Collapse
|
8
|
Wang Q, Liu X, Zhou J, Huang Y, Zhang S, Shen J, Loera S, Yuan X, Chen W, Jin M, Shibata S, Liu Y, Chu P, Wang L, Yen Y. Ribonucleotide reductase large subunit M1 predicts poor survival due to modulation of proliferative and invasive ability of gastric cancer. PLoS One 2013; 8:e70191. [PMID: 23922955 PMCID: PMC3726373 DOI: 10.1371/journal.pone.0070191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/15/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES We aimed to investigate the prognostic value of RRM1 in GC patients. METHODS A total of assessable 389 GC patients with clinicopathological and survival information were enrolled from City of Hope (COH, n = 67) and Zhejiang University (ZJU, n = 322). RRM1 protein expression was determined by immunohistochemistry on FFPE tissue samples. Kaplan-Meier and Cox analyses were used to measure survival. Ras/Raf activity and invasion assays were used to evaluate the role of RRM1 in GC cell lines. RESULTS In vitro experiments demonstrated RRM1 activated Ras/Raf/MAPK signal transduction and promoted GC cell proliferation. Meanwhile, RRM1 expression was significantly associated with lymph node involvement, tumor size, Ki67 expression, histological subtype and histological grade in the GC tissue samples (p<0.05). Kaplan-Meier analysis illustrated that high RRM1 expression predicted poor survival in GC patients in the COH and ZJU cohorts (log-rank p<0.01). In multivariate Cox analysis, the hazard ratios of RRM1 for overall survival were 2.55 (95% CI 1.27-5.15) and 1.51 (95% CI 1.07-2.13) in the COH and ZJU sets, respectively. In particular, RRM1 specifically predicted the outcome of advanced GCs with poor differentiation and high proliferative ability. Furthermore, inhibition of RRM1 by siRNA significantly reduced the dNTP pool, Ras/Raf and MMP-9 activities and the levels of p-MEK, p-ERK and NF-κB, resulting in growth retardation and reduced invasion in AGS and NCI-N87 cells. CONCLUSIONS RRM1 overexpression predicts poor survival in GC patients with advanced TNM stage. RRM1 could potentially serve as prognostic biomarker and therapeutic target for GCs.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Luo LF, Hou CC, Yang WX. Nuclear factors: roles related to mitochondrial deafness. Gene 2013; 520:79-89. [PMID: 23510774 DOI: 10.1016/j.gene.2013.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
Hearing loss (HL) is a common disorder with mitochondrial dysfunction as one of the major causes leading to deafness. Mitochondrial dysfunction may be caused by either mutations in nuclear genes leading to defective nuclear-encoded proteins or mutations in mitochondrial genes leading to defective mitochondrial-encoded products. The specific nuclear genes involved in HL can be classified into two categories depending on whether mitochondrial gene mutations co-exist (modifier genes) or not (deafness-causing genes). TFB1M, MTO1, GTPBP3, and TRMU are modifier genes. A mutation in any of these modifier genes may lead to a deafness phenotype when accompanied by the mitochondrial gene mutation. OPA1, TIMM8A, SMAC/DIABLO, MPV17, PDSS1, BCS1L, SUCLA2, C10ORF2, COX10, PLOG1and RRM2B are deafness-causing genes. A mutation in any of these deafness-causing genes will directly induce variable phenotypic HL.
Collapse
Affiliation(s)
- Ling-Feng Luo
- Institute of Cell and Developmental Biology, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
10
|
Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clin Sci (Lond) 2013; 124:567-78. [PMID: 23113760 PMCID: PMC3562074 DOI: 10.1042/cs20120240] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The overexpression of RRM2 [RR (ribonucleotide reductase) small subunit M2] dramatically enhances the ability of the cancer cell to proliferate and to invade. To investigate further the relevance of RRM2 and CRCs (colorectal cancers), we correlated the expression of RRM2 with the clinical outcome of CRCs. A retrospective outcome study was conducted on CRCs collected from the COH [(City of Hope) National Medical Center, 217 cases] and ZJU (Zhejiang University, 220 cases). IHC (immunohistochemistry) was employed to determine the protein expression level of RRM2, and quantitative real-time PCR was employed to validate. Multivariate logistic analysis indicated that the adjusted ORs (odds ratios) of RRM2-high for distant metastases were 2.06 [95% CI (confidence interval), 1.01-4.30] and 5.89 (95% CI, 1.51-39.13) in the COH and ZJU sets respectively. The Kaplan-Meier analysis displayed that high expression of RRM2 had a negative impact on the OS (overall survival) and PFS (progress-free survival) of CRC in both sets significantly. The multivariate Cox analysis further demonstrated that HRs (hazard ratios) of RRM2-high for OS were 1.88 (95% CI, 1.03-3.36) and 2.06 (95% CI, 1.10-4.00) in the COH and ZJU sets respectively. Stratification analysis demonstrated that the HR of RRM2 dramatically increased to 12.22 (95% CI, 1.62-258.31) in the MMR (mismatch repair) gene-deficient subgroup in the COH set. Meanwhile, a real-time study demonstrated that down-regulation of RRM2 by siRNA (small interfering RNA) could significantly and specifically reduce the cell growth and adhesion ability in HT-29 and HCT-8 cells. Therefore RRM2 is an independent prognostic factor and predicts poor survival of CRCs. It is also a potential predictor for identifying good responders to chemotherapy for CRCs.
Collapse
|
11
|
Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest. Cell Biol Toxicol 2012; 28:409-19. [DOI: 10.1007/s10565-012-9232-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023]
|
12
|
Liu X, Lai L, Wang X, Xue L, Leora S, Wu J, Hu S, Zhang K, Kuo ML, Zhou L, Zhang H, Wang Y, Wang Y, Zhou B, Nelson RA, Zheng S, Zhang S, Chu P, Yen Y. Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer. Cancer Res 2011; 71:3202-13. [PMID: 21415168 DOI: 10.1158/0008-5472.can-11-0054] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribonucleotide reductase subunit RRM2B (p53R2) has been reported to suppress invasion and metastasis in colorectal cancer (CRC). Here, we report that high levels of RRM2B expression are correlated with markedly better survival in CRC patients. In a fluorescence-labeled orthotopic mouse xenograft model, we confirmed that overexpression of RRM2B in nonmetastatic CRC cells prevented lung and/or liver metastasis, relative to control cells that did metastasize. Clinical outcome studies were conducted on a training set with 103 CRCs and a validation set with 220 CRCs. All participants underwent surgery with periodic follow-up to determine survivability. A newly developed specific RRM2B antibody was employed to carry out immunohistochemistry for determining RRM2B expression levels on tissue arrays. In the training set, the Kaplan-Meier and multivariate Cox analysis revealed that RRM2B is associated with better survival of CRCs, especially in stage IV patients (HR = 0.40; 95% CI = 0.18-0.86, P = 0.016). In the validation set, RRM2B was negatively related to tumor invasion (OR = 0.45, 95% CI = 0.19-0.99, P = 0.040) and lymph node involvement (OR = 0.48, 95% CI = 0.25-0.92, P = 0.026). Furthermore, elevated expression of RRM2B was associated with better prognosis in this set as determined by multivariate analyses (HR = 0.48, 95% CI = 0.26-0.91, P = 0.030). Further investigations revealed that RRM2B was correlated with better survival of CRCs with advanced stage III and IV tumors rather than earlier stage I and II tumors. Taken together, our findings establish that RRM2B suppresses invasiveness of cancer cells and that its expression is associated with a better survival prognosis for CRC patients.
Collapse
Affiliation(s)
- Xiyong Liu
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shang H, Li Q, Feng G, Cui Z. Molecular analysis and functions of p53R2 in zebrafish. Gene 2010; 475:30-8. [PMID: 21194559 DOI: 10.1016/j.gene.2010.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 02/07/2023]
Abstract
p53R2 is a newly identified small subunit of ribonucleotide reductase and plays a pivotal role in the supply of dNTPs for genomic DNA repair and mitochondrial DNA synthesis, but little is known about its functions in zebrafish. Herein, we obtained the cDNA of zebrafish p53R2 that shares 72.8% and 72.5% amino acid identities with human p53R2 and zebrafish R2, respectively. Residues crucial for enzymatic activity are highly conserved among p53R2 proteins from different species. p53R2 in zebrafish was maternally expressed, its transcripts were detected in developing embryos and all adult tissues examined. A 250-bp minimal promoter upstream of the translational initiation site was identified to drive basal expression of p53R2 in a p53-independent manner. Expression of p53R2 was induced by DNA-damaging reagents CPT or MMS, but suppressed by p53-knockdown in zebrafish embryos. Moreover, p53R2 was mainly distributed in the cytoplasm of cells under normal condition and upon DNA damage. Furthermore, overexpression of p53R2 attenuated apoptosis of embryonic cells caused by CPT or MMS treatment and protected developing embryos from death. Therefore, functions of p53R2 in zebrafish are closely associated with its activity in DNA repair and synthesis.
Collapse
Affiliation(s)
- Hanqiao Shang
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism; Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd., Wuhan, Hubei, PR China
| | | | | | | |
Collapse
|
14
|
Regulation of p53R2 and its role as potential target for cancer therapy. Cancer Lett 2009; 276:1-7. [DOI: 10.1016/j.canlet.2008.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 12/16/2022]
|
15
|
Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 2008; 105:17801-6. [PMID: 18997010 DOI: 10.1073/pnas.0808198105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ribonucleotide reductase provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and repair. The mammalian enzyme consists of a catalytic (R1) and a radical-generating (R2 or p53R2) subunit. During S-phase, a R1/R2 complex is the major provider of deoxynucleotides. p53R2 is induced by p53 after DNA damage and was proposed to supply deoxynucleotides for DNA repair after translocating from the cytosol to the cell nucleus. Similarly R1 and R2 were claimed to move to the nucleus during S-phase to provide deoxynucleotides for DNA replication. These models suggest translocation of ribonucleotide reductase subunits as a regulatory mechanism. In quiescent cells that are devoid of R2, R1/p53R2 synthesizes deoxynucleotides also in the absence of DNA damage. Mutations in human p53R2 cause severe mitochondrial DNA depletion demonstrating a vital function for p53R2 different from DNA repair and cast doubt on a nuclear localization of the protein. Here we use three independent methods to localize R1, R2, and p53R2 in fibroblasts during cell proliferation and after DNA damage: Western blotting after separation of cytosol and nuclei; immunofluorescence in intact cells; and transfection with proteins carrying fluorescent tags. We thoroughly validate each method, especially the specificity of antibodies. We find in all cases that ribonucleotide reductase resides in the cytosol suggesting that the deoxynucleotides produced by the enzyme diffuse into the nucleus or are transported into mitochondria and supporting a primary function of p53R2 for mitochondrial DNA replication.
Collapse
|
16
|
Spielberger JC, Moody AD, Watson WH. Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures. J Cell Biochem 2008; 104:1879-89. [PMID: 18384140 DOI: 10.1002/jcb.21762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin-1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos-1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions.
Collapse
Affiliation(s)
- Jeanine C Spielberger
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
17
|
Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol 2008; 28:7156-67. [PMID: 18838542 DOI: 10.1128/mcb.01388-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fidelity in DNA replication and repair requires adequate and balanced deoxyribonucleotide pools that are maintained primarily by regulation of ribonucleotide reductase (RNR). RNR is controlled via transcription, protein inhibitor association, and subcellular localization of its two subunits, R1 and R2. Saccharomyces cerevisiae Sml1 binds R1 and inhibits its activity, while Schizosaccharomyces pombe Spd1 impedes RNR holoenzyme formation by sequestering R2 in the nucleus away from the cytoplasmic R1. Here we report the identification and characterization of S. cerevisiae Dif1, a regulator of R2 nuclear localization and member of a new family of proteins sharing separate homologous domains with Spd1 and Sml1. Dif1 is localized in the cytoplasm and acts in a pathway different from the nuclear R2-anchoring protein Wtm1. Like Sml1 and Spd1, Dif1 is phosphorylated and degraded in cells encountering DNA damage, thereby relieving inhibition of RNR. A shared domain between Sml1 and Dif1 controls checkpoint kinase-mediated phosphorylation and degradation of the two proteins. Abolishing Dif1 phosphorylation stabilizes the protein and delays damage-induced nucleus-to-cytoplasm redistribution of R2. This study suggests that Dif1 is required for nuclear import of the R2 subunit and plays an essential role in regulating the dynamic RNR subcellular localization.
Collapse
|
18
|
Guittet O, Tebbi A, Cottet MH, Vésin F, Lepoivre M. Upregulation of the p53R2 ribonucleotide reductase subunit by nitric oxide. Nitric Oxide 2008; 19:84-94. [DOI: 10.1016/j.niox.2008.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/12/2022]
|
19
|
Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J Clin Invest 2007; 117:2723-34. [PMID: 17786248 PMCID: PMC1952633 DOI: 10.1172/jci31604] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 06/01/2007] [Indexed: 01/30/2023] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase orchestrates nuclear DNA damage responses but is proposed to be involved in other important and clinically relevant functions. Here, we provide evidence for what we believe are 2 novel and intertwined roles for ATM: the regulation of ribonucleotide reductase (RR), the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates, and control of mitochondrial homeostasis. Ataxia-telangiectasia (A-T) patient fibroblasts, wild-type fibroblasts treated with the ATM inhibitor KU-55933, and cells in which RR is inhibited pharmacologically or by RNA interference (RNAi) each lead to mitochondrial DNA (mtDNA) depletion under normal growth conditions. Disruption of ATM signaling in primary A-T fibroblasts also leads to global dysregulation of the R1, R2, and p53R2 subunits of RR, abrogation of RR-dependent upregulation of mtDNA in response to ionizing radiation, high mitochondrial transcription factor A (mtTFA)/mtDNA ratios, and increased resistance to inhibitors of mitochondrial respiration and translation. Finally, there are reduced expression of the R1 subunit of RR and tissue-specific alterations of mtDNA copy number in ATM null mouse tissues, the latter being recapitulated in tissues from human A-T patients. Based on these results, we propose that disruption of RR and mitochondrial homeostasis contributes to the complex pathology of A-T and that RR genes are candidate disease loci in mtDNA-depletion syndromes.
Collapse
Affiliation(s)
- Jana S. Eaton
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Z. Ping Lin
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alan C. Sartorelli
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicholas D. Bonawitz
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Liu X, Zhou B, Xue L, Yen F, Chu P, Un F, Yen Y. Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer 2007; 6:374-81. [PMID: 17311703 DOI: 10.3816/ccc.2007.n.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ribonucleoside diphosphate reductase plays a key role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate, which is necessary for DNA repair and replication. To determine if human ribonucleotide reductase small subunit M2 (hRRM2) and p53-dependent human ribonucleotide reductase small subunit R2 (p53R2) play roles on invasion ability of cancer cells, the gene transferring technique was used to construct stable hRRM2 and p53R2 overexpression transfectants. Increase of hRRM2 dramatically enhanced the cell migration in KB and PC-3 cells, but p53R2 overexpression reduced cellular invasion potential to 50% and 40% in KB and PC-3 cells, respectively. Furthermore, hRRM2 enhanced cancer cells to induce the cell migration of Human Umbilical Vein Endothelial Cells, but p53R2 reduced this ability in transfectants. PATIENTS AND METHODS To further determine the role of human ribonucleotide reductase subunits on cancer metastasis, a tissue array, including 59 primary and 49 metastatic colon adenocarcinoma samples, was used. Immunohistochemistry was used to evaluate the relationship between human ribonucleotide reductase subunits and metastasis. RESULTS Univariate and multivariate analysis revealed that p53R2 is negatively related to the metastasis of colon adenocarcinoma samples (odds ratio, 0.23; P < 0.05); hRRM2 increases the risk of metastasis in colon cancer, but did not show significantly. Thus, opposing regulation of hRRM2 and p53R2 in invasion potential might play a critical role in determining the invasion and metastasis phenotype in cancer cells. CONCLUSION The expression level of ribonucleotide reductase small subunits could serve as biomarkers to predict the malignancy potential of human cancers in the future.
Collapse
Affiliation(s)
- Xiyong Liu
- Clinical & Molecular Pharmacology Department, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Replication of nuclear DNA in eukaryotes presents a tremendous challenge, not only due to the size and complexity of the genome, but also because of the time constraint imposed by a limited duration of S phase during which the entire genome has to be duplicated accurately and only once per cell division cycle. A challenge of this magnitude can only be met by the close coupling of DNA precursor synthesis to replication. Prokaryotic systems provide evidence for multienzyme and multiprotein complexes involved in DNA precursor synthesis and DNA replication. In addition, fractionation of nuclear proteins from proliferating mammalian cells shows co-sedimentation of enzymes involved in DNA replication with those required for synthesis of deoxynucleoside triphosphates (dNTPs). Such complexes can be isolated only from cells that are in S phase, but not from cells in G(0)/G(1) phases of cell cycle. The kinetics of deoxynucleotide metabolism supporting DNA replication in intact and permeabilized cells reveals close coupling and allosteric interaction between the enzymes of dNTP synthesis and DNA replication. These interactions contribute to channeling and compartmentation of deoxynucleotides in the microvicinity of DNA replication. A multienzyme and multiprotein megacomplex with these unique properties is called "replitase." In this article, we summarize some of the relevant evidence to date that supports the concept of replitase in mammalian cells, which originated from the observations in Dr. Pardee's laboratory. In addition, we show that androgen receptor (AR), which plays a critical role in proliferation and viability of prostate cancer cells, is associated with replitase, and that identification of constituents of replitase in androgen-dependent versus androgen-independent prostate cancer cells may provide insights into androgen-regulated events that control proliferation of prostate cancer cells and potentially offer an effective strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shalini Murthy
- Vattikuti Urology Institute, Henry Ford Health System, One Ford Place 2D, Detroit, MI 48202, USA
| | | |
Collapse
|
22
|
Zhang Z, Yang K, Chen CC, Feser J, Huang M. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci U S A 2007; 104:2217-22. [PMID: 17277086 PMCID: PMC1892911 DOI: 10.1073/pnas.0611095104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase maintains cellular deoxyribonucleotide pools and is thus tightly regulated during the cell cycle to ensure high fidelity in DNA replication. The Sml1 protein inhibits ribonucleotide reductase activity by binding to the R1 subunit. At the completion of each turnover cycle, the active site of R1 becomes oxidized and subsequently regenerated by a cysteine pair (CX2C) at its C-terminal domain (R1-CTD). Here we show that R1-CTD acts in trans to reduce the active site of its neighboring monomer. Both Sml1 and R1-CTD interact with the N-terminal domain of R1 (R1-NTD), which involves a conserved two-residue sequence motif in the R1-NTD. Mutations at these two positions enhancing the Sml1-R1 interaction cause SML1-dependent lethality. These results point to a model whereby Sml1 competes with R1-CTD for association with R1-NTD to hinder the accessibility of the CX2C motif to the active site for R1 regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Kui Yang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Chin-Chuan Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Mingxia Huang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Ortigosa AD, Hristova D, Perlstein DL, Zhang Z, Huang M, Stubbe J. Determination of the in vivo stoichiometry of tyrosyl radical per betabeta' in Saccharomyces cerevisiae ribonucleotide reductase. Biochemistry 2006; 45:12282-94. [PMID: 17014081 PMCID: PMC4674157 DOI: 10.1021/bi0610404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The class I ribonucleotide reductases catalyze the conversion of nucleotides to deoxynucleotides and are composed of two subunits: R1 and R2. R1 contains the site for nucleotide reduction and the sites that control substrate specificity and the rate of reduction. R2 houses the essential diferric-tyrosyl radical (Y(*)) cofactor. In Saccharomyces cerevisiae, two R1s, alpha(n) and , have been identified, while R2 is a heterodimer (betabeta'). beta' cannot bind iron and generate the Y(*); consequently, the maximum amount of Y(*) per betabeta' is 1. To determine the cofactor stoichiometry in vivo, a FLAG-tagged beta ((FLAG)beta) was constructed and integrated into the genome of Y300 (MHY343). This strain facilitated the rapid isolation of endogenous levels of (FLAG)betabeta' by immunoaffinity chromatography, which was found to have 0.45 +/- 0.08 Y(*)/(FLAG)betabeta' and a specific activity of 2.3 +/- 0.5 micromol min(-1) mg(-1). (FLAG)betabeta' isolated from MMS-treated MHY343 cells or cells containing a deletion of the transcriptional repressor gene CRT1 also gave a Y(*)/(FLAG)betabeta' ratio of 0.5. To determine the Y(*)/betabeta' ratio without R2 isolation, whole cell EPR and quantitative Western blots of beta were performed using different strains and growth conditions. The wild-type (wt) strains gave a Y(*)/betabeta' ratio of 0.83-0.89. The same strains either treated with MMS or containing a crt1Delta gave ratios between 0.49 and 0.72. Nucleotide reduction assays and quantitative Western blots from the same strains provided an independent measure and confirmation of the Y(*)/betabeta' ratios. Thus, under normal growth conditions, the cell assembles stoichiometric amounts of Y(*) and modulation of Y(*) concentration is not involved in the regulation of RNR activity.
Collapse
Affiliation(s)
| | | | | | | | | | - JoAnne Stubbe
- To whom correspondence should be addressed. Telephone: (617) 253-1814. Fax: (617) 258-7247.
| |
Collapse
|
24
|
Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W, Qi C, Chu P, Un F, Wen W, Yen Y. Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clin Cancer Res 2006; 12:6337-44. [PMID: 17085643 DOI: 10.1158/1078-0432.ccr-06-0799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Previous gene transfection studies have shown that the accumulation of human ribonucleotide reductase small subunit M2 (hRRM2) enhances cellular transformation, tumorigenesis, and malignancy potential. The latest identified small subunit p53R2 has 80% homology to hRRM2. Here, we investigate the role of p53R2 in cancer invasion and metastasis. EXPERIMENTAL DESIGN The immunohistochemistry was conducted on a tissue array including 49 primary and 59 metastatic colon adenocarcinoma samples to determine the relationship between p53R2 expression and metastasis. A Matrigel invasive chamber was used to sort the highly invasive cells and to evaluate the invasion potential of p53R2. RESULTS Univariate and multivariate analyses revealed that p53R2 is negatively related to the metastasis of colon adenocarcinoma samples (odds ratio, 0.23; P<0.05). The decrease of p53R2 is associated with cell invasion potential, which was observed in both p53 wild-type (KB) and mutant (PC-3 and Mia PaCa-2) cell lines. An increase in p53R2 expression by gene transfection significantly reduced the cellular invasion potential to 54% and 30% in KB and PC-3 cells, respectively, whereas inhibition of p53R2 by short interfering RNA resulted in a 3-fold increase in cell migration. CONCLUSIONS Opposite regulation of hRRM2 and p53R2 in invasion potential might play a critical role in determining the invasion and metastasis phenotype in cancer cells. The expression level of ribonucleotide reductase small subunits may serve as a biomarker to predict the malignancy potential of human cancers in the future.
Collapse
Affiliation(s)
- Xiyong Liu
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Intracellular concentrations of the four deoxyribonucleoside triphosphates (dNTPs) are closely regulated, and imbalances in the four dNTP pools have genotoxic consequences. Replication errors leading to mutations can occur, for example, if one dNTP in excess drives formation of a non-Watson-Crick base pair or if it forces replicative DNA chain elongation past a mismatch before DNA polymerase can correct the error by 3' exonuclease proofreading. This review focuses on developments since 1994, when the field was last reviewed comprehensively. Emphasis is placed on the following topics: 1) novel aspects of dNTP pool regulation, 2) dNTP pool asymmetries as mutagenic determinants, 3) dNTP metabolism and hypermutagenesis of retroviral genomes, 4) dNTP metabolism and mutagenesis in the mitochondrial genome, 5) chemical modification of nucleotides as a premutagenic event, 6) relationships between dNTP metabolism, genome stability, aging, and cancer.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural & Life Sciences Bldg., Corvallis, Oregon 97331-7305, USA.
| |
Collapse
|
26
|
Zhang Z, An X, Yang K, Perlstein DL, Hicks L, Kelleher N, Stubbe J, Huang M. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein. Proc Natl Acad Sci U S A 2006; 103:1422-7. [PMID: 16432237 PMCID: PMC1360584 DOI: 10.1073/pnas.0510516103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides and is an essential enzyme for DNA replication and repair. Cells have evolved intricate mechanisms to regulate RNR activity to ensure high fidelity of DNA replication during normal cell-cycle progression and of DNA repair upon genotoxic stress. The RNR holoenzyme is composed of a large subunit R1 (alpha, oligomeric state unknown) and a small subunit R2 (beta(2)). R1 binds substrates and allosteric effectors; R2 contains a diferric-tyrosyl radical [(Fe)(2)-Y.] cofactor that is required for catalysis. In Saccharomyces cerevisiae, R1 is predominantly localized in the cytoplasm, whereas R2, which is a heterodimer (betabeta'), is predominantly in the nucleus. When cells encounter DNA damage or stress during replication, betabeta' is redistributed from the nucleus to the cytoplasm in a checkpoint-dependent manner, resulting in the colocalization of R1 and R2. We have identified two proteins that have an important role in betabeta' nuclear localization: the importin beta homolog Kap122 and the WD40 repeat protein Wtm1. Deletion of either WTM1 or KAP122 leads to loss of betabeta' nuclear localization. Wtm1 and its paralog Wtm2 are both nuclear proteins that are in the same protein complex with betabeta'. Wtm1 also interacts with Kap122 in vivo and requires Kap122 for its nuclear localization. Our results suggest that Wtm1 acts either as an adaptor to facilitate nuclear import of betabeta' by Kap122 or as an anchor to retain betabeta' in the nucleus.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|