1
|
Kongkham B, Yadav A, Ojha MD, Prabakaran D, P H. In vitro and computational studies of the β-lactamase inhibition and β-lactam potentiating properties of plant secondary metabolites. J Biomol Struct Dyn 2023; 41:10326-10346. [PMID: 36510677 DOI: 10.1080/07391102.2022.2154843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
β-lactam resistance in bacteria is primarily mediated through the production of β-lactamases. Among the several strategies explored to mitigate the issue of β-lactam resistance, the use of plant secondary metabolites in combination with existing β-lactams seem promising. The present study aims to identify possible β-lactam potentiating plant secondary metabolites following in vitro and in silico approaches. Among 180 extracts from selected 30 medicinal plants, acetone extract of Ficus religiosa (FRAE) bark recorded the least IC50 value of 3.9 mg/ml. Under in vitro conditions, FRAE potentiated the activity of ampicillin, which was evidenced by the significant reduction in IC50 values of ampicillin against multidrug resistant bacteria. Metabolic profiling following HR-LCMS analysis revealed the presence of diverse metabolites viz. flavonoids, alkaloids, terpenoids, etc. in FRAE. Further, ensemble docking of the FRAE metabolites against four Class A β-lactamase (SHV1, TEM1, KPC2 and CTX-M-27) showed quercetin, taxifolin, myricetin, luteolin, and miquelianin as potential inhibitors with the least average binding energy. In molecular dynamic simulation studies, myricetin formed the most stable complex with SHV1 and KPC-2 while miquelianin with TEM1 and CTX-M-27. Further, all five metabolites interacted with amino acid residue Glu166 in Ω loop of β-lactamase, interfering with the deacylation step, thereby disrupting the enzyme activity. The pharmacokinetics and ADMET profile indicate their drug-likeness and non-toxic nature, making them ideal β-lactam potentiators. This study highlights the ability of metabolites present in FRAE to act as β-lactamase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhani Kongkham
- Environmental Biotechnology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ajay Yadav
- Environmental Biotechnology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Monu Dinesh Ojha
- Environmental Biotechnology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Duraivadivel Prabakaran
- Environmental Biotechnology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Hariprasad P
- Environmental Biotechnology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Wang S, Zhao J, Li M, Qiao R, Li C. Pharmaceutical Tazobactam Sodium Single Crystal Structure Determination, Polymorphism and Crystallization Process. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model. PLoS One 2023; 18:e0278306. [PMID: 36696421 PMCID: PMC9876276 DOI: 10.1371/journal.pone.0278306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 01/26/2023] Open
Abstract
Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis in animals. In this study, we evaluated the associations between the specific pharmacokinetics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose of cefquinome (30, 60, 120, and 240 μg/mammary gland), the concentration of cefquinome in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/MS-MS). The PK parameters were calculated using a one-compartment first-order absorption model. Antibacterial activity was defined as the maximum change in the S. agalactiae population after each dose. An inhibitory sigmoid Emax model was used to evaluate the relationships between the PK/PD index values and antibacterial effects. The duration for which the concentration of the antibiotic (%T) remained above the minimum inhibitory concentration (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The values of %T > MIC to reach 0.5-log10CFU/MG, 1-log10 CFU/MG and 2-log10 CFU/MG reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefquinome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-log10. These findings provide a valuable understanding to optimise the dose regimens of cefquinome in the treatment of S. agalactiae infections.
Collapse
|
4
|
Hg(OAc)2/1,2,3-triazole-mediated efficient synthesis of Tazobactam. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Christensen SB. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021; 26:6057. [PMID: 34641601 PMCID: PMC8512414 DOI: 10.3390/molecules26196057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
The appearance of antibiotic drugs revolutionized the possibilities for treatment of diseases with high mortality such as pneumonia, sepsis, plaque, diphtheria, tetanus, typhoid fever, and tuberculosis. Today fewer than 1% of mortalities in high income countries are caused by diseases caused by bacteria. However, it should be recalled that the antibiotics were introduced in parallel with sanitation including sewerage, piped drinking water, high standard of living and improved understanding of the connection between food and health. Development of salvarsan, sulfonamides, and β-lactams into efficient drugs is described. The effects on life expectancy and life quality of these new drugs are indicated.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
7
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
8
|
Paquet-Côté PA, Alejaldre L, Lapointe Verreault C, Gobeil SMC, Lamoureux R, Bédard L, Normandeau CO, Lemay-St-Denis C, Pelletier JN, Voyer N. Development of sulfahydantoin derivatives as β-lactamase inhibitors. Bioorg Med Chem Lett 2021; 35:127781. [PMID: 33422604 DOI: 10.1016/j.bmcl.2021.127781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Sulfahydantoin-based molecules may provide a means to counteract antibiotic resistance, which is on the rise. These molecules may act as inhibitors of β-lactamase enzymes, which are key in some resistance mechanisms. In this paper, we report on the synthesis of 6 novel sulfahydantoin derivatives by the key reaction of chlorosulfonyl isocyanate to form α-amino acid derived sulfamides, and their cyclization into sulfahydantoins. The synthesis is rapid and provides the target compounds in 8 steps. We investigated their potential as β-lactamase inhibitors using two common Class A β-lactamases, TEM-1 and the prevalent extended-spectrum TEM-15. Two compounds, 3 and 6, show substantial inhibition of the β-lactamases with IC50 values between 130 and 510 μM and inferred Ki values between 32 and 55 μM.
Collapse
Affiliation(s)
| | - Lorea Alejaldre
- Département de biochimie and PROTEO, Université de Montréal, Montréal H3C 3J7, Canada
| | | | - Sophie M C Gobeil
- Département de biochimie and PROTEO, Université de Montréal, Montréal H3C 3J7, Canada
| | - Rosalie Lamoureux
- Département de Chimie and PROTEO, Université Laval, 1045 avenue de la Médecine, Québec G1V 0A6, Canada
| | - Laurie Bédard
- Département de Chimie and PROTEO, Université Laval, 1045 avenue de la Médecine, Québec G1V 0A6, Canada
| | | | | | - Joelle N Pelletier
- Département de biochimie and PROTEO, Université de Montréal, Montréal H3C 3J7, Canada; Département de chimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Normand Voyer
- Département de Chimie and PROTEO, Université Laval, 1045 avenue de la Médecine, Québec G1V 0A6, Canada.
| |
Collapse
|
9
|
Zhou Y, Wu C, Ma H, Chen J, Sun T. Precise Preparation of a High-Purity Key Intermediate of Tazobactam. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanan Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Hongzhi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Jianchao Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| |
Collapse
|
10
|
Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208:112829. [DOI: 10.1016/j.ejmech.2020.112829] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
|
11
|
Yu P, Yang JN, Yan JW, Meng ZZ, Hong WD, Roberts AP, Ward SA, Zhang L, Li S. A novel fluorescent probe for the detection of AmpC beta-lactamase and the application in screening beta-lactamase inhibitors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118257. [PMID: 32208355 DOI: 10.1016/j.saa.2020.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The rapid detection of β-lactamases (Blas) and effective screening of Bla inhibitors are critically important and urgent for solving antibiotic resistance and improving precision medicine. Here a novel fluorescent probe CDC-559 was designed and synthesized, which can be used for the selective and direct detection of AmpC Blas. More importantly, it can realize screening the Bla inhibitors with sulbactam sodium and tazobactam as model compounds, and the half-maximal inhibitory concentration are 0.279 μM and 0.053 μM, respectively. CDC-559 can be applied not only to examine the resistance of bacterial strains, but also to categorize its mode of action specifically, which is consistent with the essential result of the Blas. The research suggests that CDC-559 probe has tremendous potential in the rapid detection of AmpC Blas as well as the strains with AmpC-encoded gene, which is instructive in promoting better antibiotic stewardship practices and developments.
Collapse
Affiliation(s)
- Pan Yu
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jia-Ning Yang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi-Zhong Meng
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - W David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Adam P Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Stephen A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lei Zhang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technological Centre for Biopharmaceuticals, South China University of Technology, Guangzhou 510006, PR China.
| | - Shan Li
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Yadav TC, Agarwal V, Srivastava AK, Raghuwanshi N, Varadwaj P, Prasad R, Pruthi V. Insight into Structure-Function Relationships of β-Lactamase and BLIPs Interface Plasticity using Protein-Protein Interactions. Curr Pharm Des 2020; 25:3378-3389. [PMID: 31544712 DOI: 10.2174/1381612825666190911154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mostly BLIPs are identified in soil bacteria Streptomyces and originally isolated from Streptomyces clavuligerus and can be utilized as a model system for biophysical, structural, mutagenic and computational studies. BLIP possess homology with two proteins viz., BLIP-I (Streptomyces exofoliatus) and BLP (beta-lactamase inhibitory protein like protein from S. clavuligerus). BLIP consists of 165 amino acid, possessing two homologues domains comprising helix-loop-helix motif packed against four stranded beta-sheet resulting into solvent exposed concave surface with extended four stranded beta-sheet. BLIP-I is a 157 amino acid long protein obtained from S. exofoliatus having 37% sequence identity to BLIP and inhibits beta-lactamase. METHODS This review is intended to briefly illustrate the beta-lactamase inhibitory activity of BLIP via proteinprotein interaction and aims to open up a new avenue to combat antimicrobial resistance using peptide based inhibition. RESULTS D49A mutation in BLIP-I results in a decrease in affinity for TEM-1 from 0.5 nM to 10 nM (Ki). It is capable of inhibiting TEM-1 and bactopenemase and differs from BLIP only in modulating cell wall synthesis enzyme. Whereas, BLP is a 154 amino acid long protein isolated from S. clavuligerus via DNA sequencing analysis of Cephamycin-Clavulanate gene bunch. It shares 32% sequence similarity with BLIP and 42% with BLIP-I. Its biological function is unclear and lacks beta-lactamase inhibitory activity. CONCLUSION Protein-protein interactions mediate a significant role in regulation and modulation of cellular developments and processes. Specific biological markers and geometric characteristics are manifested by active site binding clefts of protein surfaces which determines the specificity and affinity for their targets. TEM1.BLIP is a classical model to study protein-protein interaction. β-Lactamase inhibitory proteins (BLIPs) interacts and inhibits various β-lactamases with extensive range of affinities.
Collapse
Affiliation(s)
- Tara C Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vidhu Agarwal
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Amit K Srivastava
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune - 11057, Maharashtra, India
| | - Pritish Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
13
|
Parida P, Bhowmick S, Saha A, Islam MA. Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. J Biomol Struct Dyn 2020; 39:923-942. [PMID: 31984863 DOI: 10.1080/07391102.2020.1720819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug resistance is an unsolved and major concern in the bacterial infection. Continuous development of drug-resistance to the antibiotics exponentially rises the danger of bacterial infections. Chemical components from the plants are becoming a major resource of potentially effective therapeutic chemical agents for the wide range of diseases including bacterial infections. In the current study, pharmacoinformatics methodologies were implemented on more than two hundred known phytochemicals to find promising beta-lactamase inhibitors for therapeutically effective anti-bacterial agents. Initially, the molecular docking-based score was used to reduce the chemical space of the selected dataset. Fourteen molecules were found to have more affinity towards the beta-lactamase in compared to the well-known anti-bacterial agent, Avibactam. Binding interactions analysis revealed the strong binding interactions between phytochemicals and catalytic amino residues. For further analysis, molecular dynamics (MD) simulations, density functional theory (DFT) and in silico pharmacokinetics studies were performed. Parameters from MD simulations studies suggested that selected molecules are strong enough to retain in the active site in different orientations of the beta-lactamase. The orbital energies obtained from the DFT study was undoubtedly explained the potentiality of the selected compounds for being effective beta-lactamase inhibitors. The drug-likeness and acceptable pharmacokinetics parameters were observed using in silico ADME analysis. Therefore, observations from the multiple pharmacoinformatics approach explained without any doubt that selected molecules are potential enough being promising anti-bacterial compounds. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratap Parida
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
14
|
Yang SW, Pan J, Root Y, Scapin G, Xiao L, Su J. Serendipitous discovery of aryl boronic acids as β-lactamase inhibitors. Bioorg Med Chem Lett 2019; 30:126795. [PMID: 31759850 DOI: 10.1016/j.bmcl.2019.126795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022]
Abstract
High throughput screening for β-lactamase inhibitors afforded biphenyl hits such as 1. Hit confirmation and X-ray soaking experiments with Pseudomonas Aeruginosa AmpC enzyme led to the identification of an aryl boronic acid-serine complex 4, which was formed from phenyl boronic acid 8 (an impurity in compound 1) and ethylene glycol (the cryoprotectant in the soaking experiment).
Collapse
Affiliation(s)
- Shu-Wei Yang
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Jianping Pan
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yuriko Root
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Giovanna Scapin
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Xiao
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Jing Su
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| |
Collapse
|
15
|
Prandina A, Radix S, Le Borgne M, Jordheim LP, Bousfiha Z, Fröhlich C, Leiros HKS, Samuelsen Ø, Frøvold E, Rongved P, Åstrand OAH. Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Na JH, Lee TH, Park SB, Kim MK, Jeong BG, Chung KM, Cha SS. In vitro and in vivo Inhibitory Activity of NADPH Against the AmpC BER Class C β-Lactamase. Front Cell Infect Microbiol 2018; 8:441. [PMID: 30622934 PMCID: PMC6308799 DOI: 10.3389/fcimb.2018.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
β-Lactamase-mediated resistance to β-lactam antibiotics has been significantly threatening the efficacy of these clinically important antibacterial drugs. Although some β-lactamase inhibitors are prescribed in combination with β-lactam antibiotics to overcome this resistance, the emergence of enzymes resistant to current inhibitors necessitates the development of novel β-lactamase inhibitors. In this study, we evaluated the inhibitory effect of dinucleotides on an extended-spectrum class C β-lactamase, AmpC BER. Of the dinucleotides tested, NADPH, a cellular metabolite, decreased the nitrocefin-hydrolyzing activity of the enzyme with a K i value of 103 μM in a non-covalent competitive manner. In addition, the dissociation constant (K D) between AmpC BER and NADPH was measured to be 40 μM. According to our in vitro susceptibility study based on growth curves, NADPH restored the antibacterial activity of ceftazidime against a ceftazidime-resistant Escherichia coli BER strain producing AmpC BER. Remarkably, a single dose of combinatory treatment with NADPH and ceftazidime conferred marked therapeutic efficacy (100% survival rate) in a mouse model infected by the E. coli BER strain although NADPH or ceftazidime alone failed to prevent the lethal bacterial infection. These results may offer the potential of the dinucleotide scaffold for the development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Jung-Hyun Na
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, South Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Soo-Bong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Min-Kyu Kim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Bo-Gyeong Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, South Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
17
|
Mutation-Driven Evolution of Pseudomonas aeruginosa in the Presence of either Ceftazidime or Ceftazidime-Avibactam. Antimicrob Agents Chemother 2018; 62:AAC.01379-18. [PMID: 30082283 DOI: 10.1128/aac.01379-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/27/2018] [Indexed: 02/04/2023] Open
Abstract
Ceftazidime-avibactam is a combination of β-lactam/β-lactamase inhibitor, the use of which is restricted to some clinical cases, including cystic fibrosis patients infected with multidrug-resistant Pseudomonas aeruginosa, in which mutation is the main driver of resistance. This study aims to predict the mechanisms of mutation-driven resistance that are selected for when P. aeruginosa is challenged with either ceftazidime or ceftazidime-avibactam. For this purpose, P. aeruginosa PA14 was submitted to experimental evolution in the absence of antibiotics and in the presence of increasing concentrations of ceftazidime or ceftazidime-avibactam for 30 consecutive days. Final populations were analyzed by whole-genome sequencing. All evolved populations reached similar levels of ceftazidime resistance. In addition, they were more susceptible to amikacin and produced pyomelanin. A first event in this evolution was the selection of large chromosomal deletions containing hmgA (involved in pyomelanin production), galU (involved in β-lactams resistance), and mexXY-oprM (involved in aminoglycoside resistance). Besides mutations in mpl and dacB that regulate β-lactamase expression, mutations related to MexAB-OprM overexpression were prevalent. Ceftazidime-avibactam challenge selected mutants in the putative efflux pump PA14_45890 and PA14_45910 and in a two-component system (PA14_45870 and PA14_45880), likely regulating its expression. All populations produced pyomelanin and were more susceptible to aminoglycosides, likely due to the selection of large chromosomal deletions. Since pyomelanin-producing mutants presenting similar deletions are regularly isolated from infections, the potential aminoglycoside hypersusceptiblity and reduced β-lactam susceptibility of pyomelanin-producing P. aeruginosa should be taken into consideration for treating infections caused by these isolates.
Collapse
|
18
|
Gao J, Duan X, Li X, Cao H, Wang Y, Zheng SJ. Emerging of a highly pathogenic and multi-drug resistant strain of Escherichia coli causing an outbreak of colibacillosis in chickens. INFECTION GENETICS AND EVOLUTION 2018; 65:392-398. [PMID: 30157463 DOI: 10.1016/j.meegid.2018.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important human pathogens responsible for urinary tract infection and meningitis. Therefore, infection of chickens by highly pathogenic E. coli with multi-drug resistance has become a major concern to food safety. In this study, we isolated a strain of E. coli (HB2016) from the oviduct of a diseased chicken with colibacillosis. Inoculation of chickens with 2 × 106 CFU of the isolate E. coli HB2016 by intraperitoneal injection successfully reproduced colibacillosis in chickens. We also found that E. coli HB2016 harbored four more virulence genes (tsh, trat, cvaC and cvaA/B) than E. coli reference strain CVCC1428. Importantly, E. coli HB2016 was resistant to cefuroxime, tobramycin, medemycin, cefazolin, cefoperazone, streptomycin and ampicillin, and carried multiple antibiotic resistance genes such as strA, strB, blaCMY-2, blaCTX-M-19, blaTEM-1B, fosA, mph(A), floR, sul2, tet(A) and tet(B). These findings suggest that the causative E. coli act as a potential zoonotic agent affecting human health.
Collapse
Affiliation(s)
- Junfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. Int J Mol Sci 2018; 19:ijms19082222. [PMID: 30061509 PMCID: PMC6121496 DOI: 10.3390/ijms19082222] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022] Open
Abstract
β-Lactams are the most widely used and effective antibiotics for the treatment of infectious diseases. Unfortunately, bacteria have developed several mechanisms to combat these therapeutic agents. One of the major resistance mechanisms involves the production of β-lactamase that hydrolyzes the β-lactam ring thereby inactivating the drug. To overcome this threat, the small molecule β-lactamase inhibitors (e.g., clavulanic acid, sulbactam and tazobactam) have been used in combination with β-lactams for treatment. However, the bacterial resistance to this kind of combination therapy has evolved recently. Therefore, multiple attempts have been made to discover and develop novel broad-spectrum β-lactamase inhibitors that sufficiently work against β-lactamase producing bacteria. β-lactamase inhibitory proteins (BLIPs) (e.g., BLIP, BLIP-I and BLIP-II) are potential inhibitors that have been found from soil bacterium Streptomyces spp. BLIPs bind and inhibit a wide range of class A β-lactamases from a diverse set of Gram-positive and Gram-negative bacteria, including TEM-1, PC1, SME-1, SHV-1 and KPC-2. To the best of our knowledge, this article represents the first systematic review on β-lactamase inhibitors with a particular focus on BLIPs and their inherent properties that favorably position them as a source of biologically-inspired drugs to combat antimicrobial resistance. Furthermore, an extensive compilation of binding data from β-lactamase–BLIP interaction studies is presented herein. Such information help to provide key insights into the origin of interaction that may be useful for rationally guiding future drug design efforts.
Collapse
|
20
|
Awasthi S, Gupta S, Tripathi R, Nair NN. Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study. J Phys Chem B 2018; 122:4299-4308. [DOI: 10.1021/acs.jpcb.8b01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
21
|
Akhter S, Lund BA, Ismael A, Langer M, Isaksson J, Christopeit T, Leiros HKS, Bayer A. A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. Eur J Med Chem 2017; 145:634-648. [PMID: 29348071 DOI: 10.1016/j.ejmech.2017.12.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023]
Abstract
β-Lactam antibiotics are of utmost importance when treating bacterial infections in the medical community. However, currently their utility is threatened by the emergence and spread of β-lactam resistance. The most prevalent resistance mechanism to β-lactam antibiotics is expression of β-lactamase enzymes. One way to overcome resistance caused by β-lactamases, is the development of β-lactamase inhibitors and today several β-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic data from 33 fragment-enzyme complexes, the fragments could be classified into R1 or R2 binders by their overall binding conformation in relation to the binding of the R1 and R2 side groups of imipenem. Moreover, binding interactions attractive for future inhibitor design were found and their usefulness explored by the rational design and evaluation of merged inhibitors from orthogonally binding fragments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory potential in the low micromolar range (IC50 = 2.9 μM). For these inhibitors, the complex X-ray structures revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions observed with the mono-substituted fragments were also identified in the merged structures.
Collapse
Affiliation(s)
- Sundus Akhter
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Bjarte Aarmo Lund
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Manuel Langer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Tony Christopeit
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
22
|
Aziz ZS, Albukhaty S, Abbood H. Prevalence and antibiotic resistance pattern of certain types of bacterial flora in uterine ewe's samples. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2017. [DOI: 10.1016/j.kijoms.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Kim MK, An YJ, Na JH, Seol JH, Ryu JY, Lee JW, Kang LW, Chung KM, Lee JH, Moon JH, Lee JS, Cha SS. Structural and mechanistic insights into the inhibition of class C β-lactamases through the adenylylation of the nucleophilic serine. J Antimicrob Chemother 2017; 72:735-743. [PMID: 27999057 DOI: 10.1093/jac/dkw491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Objectives : Investigation into the adenylylation of the nucleophilic serine in AmpC BER and CMY-10 extended-spectrum class C β-lactamases. Methods : The formation and the stability of the adenylate adduct were examined by X-ray crystallography and MS. Inhibition assays for kinetic parameters were performed by monitoring the hydrolytic activity of AmpC BER and CMY-10 using nitrocefin as a reporter substrate. The effect of adenosine 5'-(P-acetyl)monophosphate (acAMP) on the MIC of ceftazidime was tested with four Gram-negative clinical isolates. Results : The crystal structures and MS analyses confirmed the acAMP-mediated adenylylation of the nucleophilic serine in AmpC BER and CMY-10. acAMP inhibited AmpC BER and CMY-10 through the adenylylation of the nucleophilic serine, which could be modelled as a two-step mechanism. The initial non-covalent binding of acAMP to the active site is followed by the covalent attachment of its AMP moiety to the nucleophilic serine. The inhibition efficiencies ( k inact / K I ) of acAMP against AmpC BER and CMY-10 were determined to be 320 and 140 M -1 s -1 , respectively. The combination of ceftazidime and acAMP reduced the MIC of ceftazidime against the tested bacteria. Conclusions : Our structural and kinetic studies revealed the detailed mechanism of adenylylation of the nucleophilic serine and may serve as a starting point for the design of novel class C β-lactamase inhibitors on the basis of the nucleotide scaffold.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan, 15627, Republic of Korea.,Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea
| | - Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan, 15627, Republic of Korea
| | - Jung-Hyun Na
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Hee Seol
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan, 15627, Republic of Korea
| | - Ju Yeon Ryu
- Functional Genomics Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan, 15627, Republic of Korea.,Marine Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeong Hee Moon
- Functional Genomics Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jong Seok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan, 15627, Republic of Korea.,Marine Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
24
|
Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur J Med Chem 2017; 135:159-173. [DOI: 10.1016/j.ejmech.2017.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
|
25
|
Yang SW, Linghu X, Smith E, Pan J, Sprague V, Su J. Synthesis of bicyclic β-lactamase inhibitor relabactam derivatives from a relabactam intermediate. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
GMP and IMP Are Competitive Inhibitors of CMY-10, an Extended-Spectrum Class C β-Lactamase. Antimicrob Agents Chemother 2017; 61:AAC.00098-17. [PMID: 28242658 DOI: 10.1128/aac.00098-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleotides were effective in inhibiting the class C β-lactamase CMY-10. IMP was the most potent competitive inhibitor, with a Ki value of 16.2 μM. The crystal structure of CMY-10 complexed with GMP or IMP revealed that nucleotides fit into the R2 subsite of the active site with a unique vertical binding mode where the phosphate group at one terminus is deeply bound in the subsite and the base at the other terminus faces the solvent.
Collapse
|
27
|
Abrar S, Vajeeha A, Ul-Ain N, Riaz S. Distribution of CTX-M group I and group III β-lactamases produced by Escherichia coli and klebsiella pneumoniae in Lahore, Pakistan. Microb Pathog 2016; 103:8-12. [PMID: 27956216 DOI: 10.1016/j.micpath.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022]
Abstract
Extended-spectrum-lactamases (ESBLs) of the CTX-M type is worrisome issue in many countries of the world from past decade. But little is known about CTX-M beta-lactamase producing bacteria in Pakistan. Therefore, this study was carried out to investigate the distribution of CTX-M beta-lactamase producing E. coli and Klebsiella pneumoniae using phenotypic and molecular techniques. A total of 638 E. coli and 338 Klebsiella pneumoniae were isolated from patients attending two hospitals and one diagnostic Centre in Pakistan during 2013-2015. ESBL production was screened by double disc synergism, combination disc (cefotaxime and ceftazidime with clavulanic acid) and E-test. These strains were further characterized by PCR (CTX-M I, CTX-M III) and sequencing. After ribotyping of strains accession numbers were obtained. These isolates were highly resistant to cephalosporins, ceftazidime, cefotaxime, aztreonam, and cefuroxime but susceptible to carbapenems, sulfzone, amikacin and tazocin. Multiple antibiotic resistances index (MAR) revealed that 51% of E. coli strains fell in the range of 0.61-0.7 and 39% of Klebsiella pneumoniae strains fell in the range of 0.71-0.8. 64% Double disc synergism (DDS), 76.4% combination disc (CD), 74% E-test showed ESBL positivity in strains. In E. coli ESBL genes blaCTX-M-I and blaCTX-M-III were detected in 212 (72.1%) and 25 (8.5%) respectively. In Klebsiella pneumoniae ESBL genes blaCTX-M-I and blaCTX-M-III were detected in 89 (82.4%) and 10 (9.2%). Combination of both genes blaCTX-M-I and blaCTX-M-III were found in 16 (5.4%) of E. coli strains and 5 (4.6%) of Klebsiella pneumoniae strains. Sequencing revealed that CTXM-15 was predominately present in the CTX-M-I group. The prevalence of ESBL producing E. coli and Klebsiella pneumoniae isolates was high and the majority of them positive for blaCTX-M-I as compared to blaCTX-M-III. These findings highlight the need to further investigate the epidemiology of other CTX-M beta-lactamases in Pakistan.
Collapse
Affiliation(s)
- Samyyia Abrar
- Department of Microbiology and Molecular Genetics, University of the Punjab Lahore, Pakistan
| | - Ayesha Vajeeha
- Department of Microbiology and Molecular Genetics, University of the Punjab Lahore, Pakistan
| | - Noor Ul-Ain
- Department of Microbiology and Molecular Genetics, University of the Punjab Lahore, Pakistan
| | - Saba Riaz
- Department of Microbiology and Molecular Genetics, University of the Punjab Lahore, Pakistan.
| |
Collapse
|
28
|
Ojo OE, Schwarz S, Michael GB. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol 2016; 194:62-68. [DOI: 10.1016/j.vetmic.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
29
|
Na JH, Cha SS. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:976-85. [PMID: 27487828 DOI: 10.1107/s2059798316011311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022]
Abstract
AmpC BER is an extended substrate spectrum class C β-lactamase with a two-amino-acid insertion in the R2 loop compared with AmpC EC2. The crystal structures of AmpC BER (S64A mutant) and AmpC EC2 were determined. Structural comparison of the two proteins revealed that the insertion increases the conformational flexibility of the R2 loop. Two citrate molecules originating from the crystallization solution were observed in the active site of the S64A mutant. One citrate molecule makes extensive interactions with active-site residues that are highly conserved among class C β-lactamases, whereas the other one is weakly bound. Based on this structural observation, it is demonstrated that citrate, a primary metabolite that is widely used as a food additive, is a competitive inhibitor of two class C β-lactamases (AmpC BER and CMY-10). Consequently, the data indicate enhancement of the flexibility of the R2 loop as an operative strategy for molecular evolution of extended-spectrum class C β-lactamases, and also suggest that the citrate scaffold is recognized by the active sites of class C β-lactamases.
Collapse
Affiliation(s)
- Jung Hyun Na
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
30
|
Naas T, Dortet L, Iorga BI. Structural and Functional Aspects of Class A Carbapenemases. Curr Drug Targets 2016; 17:1006-28. [PMID: 26960341 PMCID: PMC5405625 DOI: 10.2174/1389450117666160310144501] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/02/2015] [Accepted: 03/05/2016] [Indexed: 01/28/2023]
Abstract
The fight against infectious diseases is probably one of the greatest public health challenges faced by our society, especially with the emergence of carbapenem-resistant gram-negatives that are in some cases pan-drug resistant. Currently,β-lactamase-mediated resistance does not spare even the newest and most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The worldwide dissemination of carbapenemases in gram-negative organisms threatens to take medicine back into the pre-antibiotic era since the mortality associated with infections caused by these "superbugs" is very high, due to limited treatment options. Clinically-relevant carbapenemases belong either to metallo-β- lactamases (MBLs) of Ambler class B or to serine-β-lactamases (SBLs) of Ambler class A and D enzymes. Class A carbapenemases may be chromosomally-encoded (SME, NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38), plasmid-encoded (KPC, GES, FRI-1) or both (IMI). The plasmid-encoded enzymes are often associated with mobile elements responsible for their mobilization. These enzymes, even though weakly related in terms of sequence identities, share structural features and a common mechanism of action. They variably hydrolyse penicillins, cephalosporins, monobactams, carbapenems, and are inhibited by clavulanate and tazobactam. Three-dimensional structures of class A carbapenemases, in the apo form or in complex with substrates/inhibitors, together with site-directed mutagenesis studies, provide essential input for identifying the structural factors and subtle conformational changes that influence the hydrolytic profile and inhibition of these enzymes. Overall, these data represent the building blocks for understanding the structure-function relationships that define the phenotypes of class A carbapenemases and can guide the design of new molecules of therapeutic interest.
Collapse
Affiliation(s)
- Thierry Naas
- Service de Bactériologie- Hygiène, Hôpital de Bicêtre, APHP, EA7361, Faculté de Médecine Paris- Sud, LabEx LERMIT, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
31
|
Carosso S, Miller MJ. Syntheses and studies of new forms of N-sulfonyloxy β-lactams as potential antibacterial agents and β-lactamase inhibitors. Bioorg Med Chem 2015; 23:6138-47. [PMID: 26321604 PMCID: PMC4562877 DOI: 10.1016/j.bmc.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 11/23/2022]
Abstract
The synthesis of a small library of N-sulfonyloxy-2-azetidinones is reported and the preliminary results of the investigation of the biological activity of these molecules are discussed. These new multi-electrophilic β-lactams ('electrophilic bombs') display unexpected selectivity in their antibacterial activity and β-lactamase inhibitory activity.
Collapse
Affiliation(s)
- Serena Carosso
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
32
|
Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: a molecular dynamics study. PLoS One 2014; 9:e112456. [PMID: 25479359 PMCID: PMC4257546 DOI: 10.1371/journal.pone.0112456] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022] Open
Abstract
Bacterial resistance is a serious threat to human health. The production of β-lactamase, which inactivates β-lactams is most common cause of resistance to the β-lactam antibiotics. The Class A enzymes are most frequently encountered among the four β-lactamases in the clinic isolates. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. SHV and TEM type are known to be most common class A β-lactamases. In the present study, we have analyzed the effect of inhibitor resistant S130G point mutation of SHV type Class-A β-lactamase using molecular dynamics and other in silico approaches. Our study involved the use of different in silico methods to investigate the affect of S130G point mutation on the major physico-chemical properties of SHV type class A β-lactamase. We have used molecular dynamics approach to compare the dynamic behaviour of native and S130G mutant form of SHV β-lactamase by analyzing different properties like root mean square deviation (RMSD), H-bond, Radius of gyration (Rg) and RMS fluctuation of mutation. The results clearly suggest notable loss in the stability of S130G mutant that may further lead to decrease in substrate specificity of SHV. Molecular docking further indicates that S130G mutation decreases the binding affinity of all the three inhibitors in clinical practice.
Collapse
|
33
|
Synergistic interactions of vancomycin with different antibiotics against Escherichia coli: trimethoprim and nitrofurantoin display strong synergies with vancomycin against wild-type E. coli. Antimicrob Agents Chemother 2014; 59:276-81. [PMID: 25348521 DOI: 10.1128/aac.03502-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are normally resistant to the antibiotic vancomycin (VAN), which cannot significantly penetrate the outer membrane. We used Escherichia coli mutants that are partially sensitive to VAN to study synergies between VAN and 10 other antibiotics representing six different functional categories. We detected strong synergies with VAN and nitrofurantoin (NTR) and with VAN and trimethoprim (TMP) and moderate synergies with other drugs, such as aminoglycosides. These synergies are powerful enough to show the activity of VAN against wild-type E. coli at concentrations of VAN as low as 6.25 μg/ml. This suggests that a very small percentage of exogenous VAN does enter E. coli but normally has insignificant effects on growth inhibition or cell killing. We used the results of pairwise interactions with VAN and the other 10 antibiotics tested to place VAN into a functional category of its own, as previously defined by Yeh et al. (P. Yeh, A. I. Tschumi, and R. Kishony, Nat Genet 28:489-494, 2006, http://dx.doi.org/10.1038/ng1755).
Collapse
|
34
|
Miller MD, Kale M, Reddy K, Tentarelli S, Zambrowski M, Zhang M, Palmer T, Breen J, Lahiri S, Shirude PS, Verheijen JC. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges. ACS Med Chem Lett 2014; 5:915-20. [PMID: 25147614 DOI: 10.1021/ml5001855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
We present a comprehensive study of C6-alkylidene containing oxapenems. We show that this class of β-lactamase inhibitors possesses an unprecedented spectrum with activity against class A, C, and D enzymes. Surprisingly, this class of compounds displayed significant photolytic instability in addition to the known hydrolytic instability. Quantum mechanical calculations were used to develop models to predict the stability of new analogues.
Collapse
Affiliation(s)
- Matthew D. Miller
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Manoj Kale
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Kishore Reddy
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Sharon Tentarelli
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mark Zambrowski
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Minli Zhang
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tiffany Palmer
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - John Breen
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sushmita Lahiri
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Pravin S. Shirude
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Jeroen C. Verheijen
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
35
|
Deoxycytidine deaminase-deficient Escherichia coli strains display acute sensitivity to cytidine, adenosine, and guanosine and increased sensitivity to a range of antibiotics, including vancomycin. J Bacteriol 2014; 196:1950-7. [PMID: 24633874 DOI: 10.1128/jb.01383-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that deoxycytidine deaminase (DCD)-deficient mutants of Escherichia coli are hypersensitive to killing by exogenous cytidine, adenosine, or guanosine, whereas wild-type cells are not. This hypersensitivity is reversed by exogenous thymidine. The mechanism likely involves the allosteric regulation of ribonucleotide reductase and severe limitations of the dTTP pools, resulting in thymineless death, the phenomenon of cell death due to thymidine starvation. We also report here that DCD-deficient mutants of E. coli are more sensitive to a series of different antibiotics, including vancomycin, and we show synergistic killing with the combination of vancomycin and cytidine. One possibility is that a very low, subinhibitory concentration of vancomycin enters Gram-negative cells and that this concentration is potentiated by chromosomal lesions resulting from the thymineless state. A second possibility is that the metabolic imbalance resulting from DCD deficiency affects the assembly of the outer membrane, which normally presents a barrier to drugs such as vancomycin. We consider these findings with regard to ideas of rendering Gram-negative bacteria sensitive to drugs such as vancomycin.
Collapse
|
36
|
Blizzard TA, Chen H, Kim S, Wu J, Bodner R, Gude C, Imbriglio J, Young K, Park YW, Ogawa A, Raghoobar S, Hairston N, Painter RE, Wisniewski D, Scapin G, Fitzgerald P, Sharma N, Lu J, Ha S, Hermes J, Hammond ML. Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin®. Bioorg Med Chem Lett 2014; 24:780-5. [DOI: 10.1016/j.bmcl.2013.12.101] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
37
|
Olivares J, Bernardini A, Garcia-Leon G, Corona F, B Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol 2013; 4:103. [PMID: 23641241 PMCID: PMC3639378 DOI: 10.3389/fmicb.2013.00103] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 11/13/2022] Open
Abstract
Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.
Collapse
Affiliation(s)
- Jorge Olivares
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Pelto RB, Pratt RF. Kinetics and stereochemistry of hydrolysis of an N-(phenylacetyl)-α-hydroxyglycine ester catalyzed by serine β-lactamases and DD-peptidases. Org Biomol Chem 2012; 10:7356-62. [PMID: 22851054 DOI: 10.1039/c2ob25585e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α-hydroxydepsipeptide 3-carboxyphenyl N-(phenylacetyl)-α-hydroxyglycinate (5) is a quite effective substrate of serine β-lactamases and low molecular mass DD-peptidases. The class C P99 and ampC β-lactamases catalyze the hydrolysis of both enantiomers of 5, although they show a strong preference for one of them. The class A TEM-2 and class D OXA-1 β-lactamases and the Streptomyces R61 and Actinomadura R39 DD-peptidases catalyze hydrolysis of only one enantiomer of at any significant rate. Experiments show that all of the above enzymes strongly prefer the same enantiomer, a surprising result since β-lactamases usually prefer L(S) enantiomers and DD-peptidases D(R). Product analysis, employing peptidylglycine α-amidating lyase, showed that the preferred enantiomer is D(R). Thus, it is the β-lactamases that have switched preference rather than the DD-peptidases. Molecular modeling of the P99 β-lactamase active site suggests that the α-hydroxyl 5 of may interact with conserved Asn and Lys residues. Both α-hydroxy and α-amido substituents on a glycine ester substrate can therefore enhance its productive interaction with the β-lactamase active site, although their effects are not additive; this may also be true for inhibitors.
Collapse
Affiliation(s)
- Ryan B Pelto
- Department of Chemistry, Wesleyan University, Lawn Ave., Middletown, CT 06459, USA
| | | |
Collapse
|
39
|
Chakraborty S, Asgeirsson B, Minda R, Salaye L, Frère JM, Rao BJ. Inhibition of a cold-active alkaline phosphatase by imipenem revealed by in silico
modeling of metallo-β-lactamase active sites. FEBS Lett 2012; 586:3710-5. [PMID: 22982109 DOI: 10.1016/j.febslet.2012.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | | | | | | | | | | |
Collapse
|
40
|
Forte MBS, Mazutti MA, Filho FM, Rodrigues MI. Evaluation of kinetic and mass transfer parameters for adsorption of clavulanic acid into natural and synthetic zeolites. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Wecke T, Mascher T. Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 2011; 66:2689-704. [DOI: 10.1093/jac/dkr373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
42
|
Chen H, Blizzard TA, Kim S, Wu J, Young K, Park YW, Ogawa AM, Raghoobar S, Painter RE, Wisniewski D, Hairston N, Fitzgerald P, Sharma N, Scapin G, Lu J, Hermes J, Hammond ML. Side chain SAR of bicyclic β-lactamase inhibitors (BLIs). 2. N-Alkylated and open chain analogs of MK-8712. Bioorg Med Chem Lett 2011; 21:4267-70. [DOI: 10.1016/j.bmcl.2011.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 12/27/2022]
|
43
|
da Silva CS, Cuel MF, Barreto VO, Kwong WH, Hokka CO, Barboza M. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption. N Biotechnol 2011; 29:428-31. [PMID: 21683811 DOI: 10.1016/j.nbt.2011.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/11/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022]
Abstract
The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.
Collapse
Affiliation(s)
- Clovis Sacardo da Silva
- Department of Chemical Engineering, Universidade Federal de São Carlos, Cx. Postal 676, CEP 13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Forte MBS, Rodrigues MI, Filho FM. Clavulanic Acid Adsorption Studies in Zeolites. ADSORPT SCI TECHNOL 2011. [DOI: 10.1260/0263-6174.29.4.391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Marcus Bruno Soares Forte
- Laboratory of Bioprocess Engineering, Food Engineering Department, Faculty of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato, 80, Campinas-SP, Brazil, 13083-862
| | - Maria Isabel Rodrigues
- Laboratory of Bioprocess Engineering, Food Engineering Department, Faculty of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato, 80, Campinas-SP, Brazil, 13083-862
| | - Francisco Maugeri Filho
- Laboratory of Bioprocess Engineering, Food Engineering Department, Faculty of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato, 80, Campinas-SP, Brazil, 13083-862
| |
Collapse
|
45
|
Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A. In vitro and in vivo properties of BAL30376, a β-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 2011; 55:1510-9. [PMID: 21245441 PMCID: PMC3067176 DOI: 10.1128/aac.01370-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/03/2010] [Accepted: 01/07/2011] [Indexed: 11/20/2022] Open
Abstract
BAL30376 is a triple combination comprising a siderophore monobactam, BAL19764; a novel bridged monobactam, BAL29880, which specifically inhibits class C β-lactamases; and clavulanic acid, which inhibits many class A and some class D β-lactamases. The MIC(90) was ≤ 4 μg/ml (expressed as the concentration of BAL19764) for most species of the Enterobacteriaceae family, including strains that produced metallo-β-lactamases and were resistant to all of the other β-lactams tested. The MIC(90) for Stenotrophomonas maltophilia was 2 μg/ml, for multidrug-resistant (MDR) Pseudomonas aeruginosa it was 8 μg/ml, and for MDR Acinetobacter and Burkholderia spp. it was 16 μg/ml. The presence of the class C β-lactamase inhibitor BAL29880 contributed significantly to the activity of BAL30376 against strains of Citrobacter freundii, Enterobacter species, Serratia marcescens, and P. aeruginosa. The presence of clavulanic acid contributed significantly to the activity against many strains of Escherichia coli and Klebsiella pneumoniae that produced class A extended-spectrum β-lactamases. The activity of BAL30376 against strains with metallo-β-lactamases was largely attributable to the intrinsic stability of the monobactam BAL19764 toward these enzymes. Considering its three components, BAL30376 was unexpectedly refractory toward the development of stable resistance.
Collapse
Affiliation(s)
- Malcolm G P Page
- Basilea Pharmaceutica International Ltd., PO Box 3255, CH-4005 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14:125-39. [DOI: 10.1016/j.drup.2011.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
|
47
|
Teodoro JC, Baptista-Neto A, Araujo MLGC, Hokka CO, Badino AC. Influence of glycerol and ornithine feeding on clavulanic acid production by Streptomyces clavuligerus. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2010. [DOI: 10.1590/s0104-66322010000400001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
De Pascale G, Wright GD. Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. Chembiochem 2010; 11:1325-34. [PMID: 20564281 DOI: 10.1002/cbic.201000067] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gianfranco De Pascale
- DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W, Hamilton, ON L8N 3Z5 Canada
| | | |
Collapse
|
49
|
Bou G, Santillana E, Sheri A, Beceiro A, Sampson J, Kalp M, Bethel CR, Distler AM, Drawz SM, Pagadala SRR, van den Akker F, Bonomo RA, Romero A, Buynak JD. Design, synthesis, and crystal structures of 6-alkylidene-2'-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase. J Am Chem Soc 2010; 132:13320-31. [PMID: 20822105 PMCID: PMC3393087 DOI: 10.1021/ja104092z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Class D β-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2'-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 β-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC(50) values against OXA-24 and two OXA-24 β-lactamase variants ranged from 10 ± 1 (4 vs WT) to 338 ± 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K(i) (500 ± 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k(inact)/K(i) = 0.21 ± 0.02 μM(-1) s(-1)). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 Å) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2'-substituted penicillin sulfones are effective mechanism-based inactivators of class D β-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D β-lactamases is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Jared Sampson
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Matthew Kalp
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | | - Anne M. Distler
- Department of Pharmacology, Case Western Reserve University School of Medicine
| | - Sarah M. Drawz
- Department of Pathology, Case Western Reserve University School of Medicine
| | | | - Focco van den Akker
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University School of Medicine
- Department of Molecular Biology and Microbiology, Case Western Reserve University
| | | | | |
Collapse
|
50
|
Han X, Dorsey-Oresto A, Malik M, Wang JY, Drlica K, Zhao X, Lu T. Escherichia coli genes that reduce the lethal effects of stress. BMC Microbiol 2010; 10:35. [PMID: 20128927 PMCID: PMC2824699 DOI: 10.1186/1471-2180-10-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continuing emergence of antimicrobial resistance requires the development of new compounds and/or enhancers of existing compounds. Genes that protect against the lethal effects of antibiotic stress are potential targets of enhancers. To distinguish such genes from those involved in drug uptake and efflux, a new susceptibility screen is required. RESULTS Transposon (Tn5)-mediated mutagenesis was used to create a library of Escherichia coli mutants that was screened for hypersensitivity to the lethal action of quinolones and counter-screened to have wild-type bacteriostatic susceptibility. Mutants with this novel "hyperlethal" phenotype were found. The phenotype was transferable to other E. coli strains by P1-mediated transduction, and for a subset of the mutants the phenotype was complemented by the corresponding wild-type gene cloned into a plasmid. Thus, the inactivation of these genes was responsible for hyperlethality. Nucleotide sequence analysis identified 14 genes, mostly of unknown function, as potential factors protecting from lethal effects of stress. The 14 mutants were killed more readily than wild-type cells by mitomycin C and hydrogen peroxide; nine were also more readily killed by UV irradiation, and several exhibited increased susceptibility to killing by sodium dodecyl sulfate. No mutant was more readily killed by high temperature. CONCLUSIONS A new screening strategy identified a diverse set of E. coli genes involved in the response to lethal antimicrobial and environmental stress, with some genes being involved in the response to multiple stressors. The gene set, which differed from sets previously identified with bacteriostatic assays, provides an entry point for obtaining small-molecule enhancers that will affect multiple antimicrobial agents.
Collapse
Affiliation(s)
- Xiulin Han
- Yunnan Institute of Microbiology, Yunnan University, 52 Cui Hu Bei Lu, Kunming, Yunnan 650091, PR China
| | | | | | | | | | | | | |
Collapse
|