1
|
Bender JG, Ribeiro RT, Zemniaçak ÂB, Palavro R, Marschner RA, Wajner SM, Castro ET, Leipnitz G, Wajner M, Amaral AU. Oxidative Stress Associated With Increased Reactive Nitrogen Species Generation in the Liver and Kidney Caused by a Major Metabolite Accumulating in Tyrosinemia Type 1. Cell Biochem Funct 2024; 42:e70010. [PMID: 39462834 DOI: 10.1002/cbf.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
Tyrosinemia type 1 (TT1) is caused by fumarylacetoacetate hydrolase activity deficiency, resulting in tissue accumulation of upstream metabolites, including succinylacetone (SA), the pathognomonic compound of this disease. Since the pathogenesis of liver and kidney damage observed in the TT1-affected patients is practically unknown, this study assessed the effects of SA on important biomarkers of redox homeostasis in the liver and kidney of adolescent rats, as well as in hepatic (HepG2) and renal (HEK-293) cultured cells. SA significantly increased nitrate and nitrite levels and decreased the concentrations of reduced glutathione (GSH) in the liver and kidney, indicating induction of reactive nitrogen species (RNS) generation and disruption of antioxidant defenses. Additionally, SA decreased the GSH levels and the activities of glutathione peroxidase, glutathione S-transferase, glutathione reductase, and superoxide dismutase in hepatic and renal cells. Noteworthy, melatonin prevented the SA-induced increase of nitrate and nitrite levels in the liver. Therefore, SA-induced increase of RNS generation and impairment of enzymatic and nonenzymatic antioxidant defenses may contribute to hepatopathy and renal disease in TT1.
Collapse
Affiliation(s)
- Julia Gabrieli Bender
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Palavro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Aguiar Marschner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Atenção Integral à Saúde (UNICRUZ/URI-Erechim/UNIJUÍ), Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Gu P, Xie L, Chen T, Yang Q, Zhang X, Liu R, Guo J, Wei R, Li D, Jiang Y, Chen Y, Gong W, Chen P. An engineered Escherichia coli Nissle strain prevents lethal liver injury in a mouse model of tyrosinemia type 1. J Hepatol 2024; 80:454-466. [PMID: 37952766 DOI: 10.1016/j.jhep.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND & AIMS Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.
Collapse
Affiliation(s)
- Peng Gu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528000, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dongping Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China.
| | - Peng Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Dong J, Xiao H, Chen JN, Zheng BF, Xu YL, Chen MX, Yang WC, Lin HY, Yang GF. Structure-based discovery of pyrazole-benzothiadiazole hybrid as human HPPD inhibitors. Structure 2023; 31:1604-1615.e8. [PMID: 37794595 DOI: 10.1016/j.str.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as a target for treating type I tyrosinemia and other diseases with defects in tyrosine catabolism. Only one commercial drug, 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), clinically treat type I tyrosinemia, but show some severe side effects in clinical application. Here, we determined the structure of human HPPD-NTBC complex, and developed new pyrazole-benzothiadiazole 2,2-dioxide hybrids from the binding of NTBC. These compounds showed improved inhibition against human HPPD, among which compound a10 was the most active candidate. The Absorption Distribution Metabolism Excretion Toxicity (ADMET) predicted properties suggested that a10 had good druggability, and was with lower toxicity than NTBC. The structure comparison between inhibitor-bound and ligand-free form human HPPD showed a large conformational change of the C-terminal helix. Furthermore, the loop 1 and α7 helix were found adopting different conformations to assist the gating of the cavity, which explains the gating mechanism of human HPPD.
Collapse
Affiliation(s)
- Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Han Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Jia-Nan Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Bai-Feng Zheng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Yu-Ling Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Meng-Xi Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China.
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R.China
| |
Collapse
|
4
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
5
|
Gu P, Yang Q, Chen B, Bie YN, Liu W, Tian Y, Luo H, Xu T, Liang C, Ye X, Liu Y, Tang X, Gu W. Genetically blocking HPD via CRISPR-Cas9 protects against lethal liver injury in a pig model of tyrosinemia type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:530-547. [PMID: 33997102 PMCID: PMC8099604 DOI: 10.1016/j.omtm.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury (LLI). Therapeutic options for HT1 remain limited. The FAH−/− pig, a well-characterized animal model of HT1, represents a promising candidate for testing novel therapeutic approaches to treat this condition. Here, we report an improved single-step method to establish a biallelic (FAH−/−) mutant porcine model using CRISPR-Cas9 and cytoplasmic microinjection. We also tested the feasibility of rescuing HT1 pigs through inactivating the 4-hydroxyphenylpyruvic acid dioxygenase (HPD) gene, which functions upstream of the pathogenic pathway, rather than by directly correcting the disease-causing gene as occurs with traditional gene therapy. Direct intracytoplasmic delivery of CRISPR-Cas9 targeting HPD before intrauterine death reprogrammed the tyrosine metabolism pathway and protected pigs against FAH deficiency-induced LLI. Characterization of the F1 generation revealed consistent liver-protective features that were germline transmissible. Furthermore, HPD ablation ameliorated oxidative stress and inflammatory responses and restored the gene profile relating to liver metabolism homeostasis. Collectively, this study not only provided a novel large animal model for exploring the pathogenesis of HT1, but also demonstrated that CRISPR-Cas9-mediated HPD ablation alleviated LLI in HT1 pigs and represents a potential therapeutic option for the treatment of HT1.
Collapse
Affiliation(s)
- Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bangzhu Chen
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yuguang Tian
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Hongquan Luo
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Chunjin Liang
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xing Ye
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangwu Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Songshan Lake Pearl Laboratory Animal Science & Technology Co., Ltd., Dongguan 523808, China
| |
Collapse
|
6
|
Shroads AL, Coats BS, Langaee T, Shuster JJ, Stacpoole PW. Chloral hydrate, through biotransformation to dichloroacetate, inhibits maleylacetoacetate isomerase and tyrosine catabolism in humans. Drug Metab Pers Ther 2015; 30:49-55. [PMID: 25283137 DOI: 10.1515/dmdi-2014-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chloral hydrate (CH), a sedative and metabolite of the environmental contaminant trichloroethylene, is metabolized to trichloroacetic acid, trichloroethanol, and possibly dichloroacetate (DCA). DCA is further metabolized by glutathione transferase zeta 1 (GSTZ1), which is identical to maleylacetoacetate isomerase (MAAI), the penultimate enzyme in tyrosine catabolism. DCA inhibits its own metabolism through depletion/inactivation of GSTZ1/MAAI with repeated exposure, resulting in lower plasma clearance of the drug and the accumulation of the urinary biomarker maleylacetone (MA), a metabolite of tyrosine. It is unknown if GSTZ1/MAAI may participate in the metabolism of CH or any of its metabolites and, therefore, affect tyrosine catabolism. Stable isotopes were utilized to determine the biotransformation of CH, the kinetics of its major metabolites, and the influence, if any, of GSTZ1/MAAI. METHODS Eight healthy volunteers (ages 21-40 years) received a dose of 1 g of CH (clinical dose) or 1.5 μg/kg (environmental) for five consecutive days. Plasma and urinary samples were analyzed by gas chromatography-mass spectrometry. RESULTS Plasma DCA (1.2-2.4 μg/mL), metabolized from CH, was measured on the fifth day of the 1 g/day CH dosage but was undetectable in plasma at environmentally relevant doses. Pharmacokinetic measurements from CH metabolites did not differ between slow and fast GSTZ1 haplotypes. Urinary MA levels increased from undetectable to 0.2-0.7 μg/g creatinine with repeated CH clinical dose exposure. Kinetic modeling of a clinical dose of 25 mg/kg DCA administered after 5 days of 1 g/day CH closely resembled DCA kinetics obtained in previously naïve individuals. CONCLUSIONS These data indicate that the amount of DCA produced from clinically relevant doses of CH, although insufficient to alter DCA kinetics, is sufficient to inhibit MAAI and tyrosine catabolism, as evidenced by the accumulation of urinary MA.
Collapse
|
7
|
Marhenke S, Lamlé J, Buitrago-Molina LE, Cañón JMF, Geffers R, Finegold M, Sporn M, Yamamoto M, Manns MP, Grompe M, Vogel A. Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology 2008; 48:487-96. [PMID: 18666252 DOI: 10.1002/hep.22391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In tyrosinemia type 1 (HT1), accumulation of toxic metabolites results in oxidative stress and DNA damage, leading to a high incidence of hepatocellular carcinomas. Nuclear factor erythroid-2 related factor 2 (Nrf2) is a key transcription factor important for cellular protection against oxidative stress and chemical induced liver damage. To specifically address the role of Nrf2 in HT1, fumarylacetoacetate hydrolase (Fah)/Nrf2(-/-) mice were generated. In acute HT1, loss of Nrf2 elicited a strong inflammatory response and dramatically increased the mortality of mice. Following low grade injury, Fah/Nrf2(-/-) mice develop a more severe hepatitis and liver fibrosis. The glutathione and cellular detoxification system was significantly impaired in Fah/Nrf2(-/-) mice, resulting in increased oxidative stress and DNA damage. Consequently, tumor development was significantly accelerated by loss of Nrf2. Potent pharmacological inducers of Nrf2 such as the triterpenoid analogs 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole have been developed as cancer chemoprevention agents. Pretreatment with 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole dramatically protected Fah(-/-) mice against fumarylacetoacetate (Faa)-induced toxicity. Our data establish a central role for Nrf2 in the protection against Faa-induced liver injury; the Nrf2 regulated cellular defense not only prevents acute Faa-induced liver failure but also delays hepatocarcinogenesis in HT1.
Collapse
Affiliation(s)
- Silke Marhenke
- Department of Hepatology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW, Shuster JJ. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 2008; 121:e1223-8. [PMID: 18411236 PMCID: PMC3777225 DOI: 10.1542/peds.2007-2062] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The purpose of this research was to report results on long-term administration of dichloroacetate in 36 children with congenital lactic acidosis who participated previously in a controlled trial of this drug. PATIENTS AND METHODS We conducted a randomized control trial, followed by an open-label study. Data were analyzed for each patient from the time they began treatment through May 2005. RESULTS Subject exposure to dichloroacetate totaled 110.42 years. Median height and weight increased over time, but the standardized values declined slightly and remained below the first percentile. There were no significant changes in biochemical metabolic indices, except for a 2% rise in total protein and a 22% increase in 24-hour urinary oxalate. Both the basal and carbohydrate meal-induced rises in lactate were blunted by dichloroacetate. The median cerebrospinal fluid lactate also decreased over time. Conduction velocity decreased and distal latency increased in peroneal nerves. Mean 3-year survival for all of the subjects was 79%. CONCLUSIONS Oral dichloroacetate is generally well tolerated in young children with congenital lactic acidosis. Although continued dichloroacetate exposure is associated with evidence of peripheral neuropathy, it cannot be determined whether this is attributable mainly to the drug or to progression of underlying disease.
Collapse
Affiliation(s)
- Peter W. Stacpoole
- Department of Medicine, University of Florida, Gainesville, Florida,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida,General Clinical Research Center, University of Florida, Gainesville, Florida
| | - Lesa R. Gilbert
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Paul R. Carney
- Department of Pediatrics, University of Florida, Gainesville, Florida,Department of Neurology, University of Florida, Gainesville, Florida,Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Edward Valenstein
- Department of Neurology, University of Florida, Gainesville, Florida
| | | | - Jonathan J. Shuster
- General Clinical Research Center, University of Florida, Gainesville, Florida,Department of Epidemiology and Health Policy Research, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Langlois C, Jorquera R, Orejuela D, Bergeron A, Finegold MJ, Rhead WJ, Tanguay RM. Rescue from neonatal death in the murine model of hereditary tyrosinemia by glutathione monoethylester and vitamin C treatment. Mol Genet Metab 2008; 93:306-13. [PMID: 18023223 DOI: 10.1016/j.ymgme.2007.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Hereditary tyrosinemia type 1 (HT1) is a recessive disease caused by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH) that catalyzes the conversion of fumarylacetoacetate (FAA) into fumarate and acetoacetate. In mice models of HT1, FAH deficiency causes death within the first 24h after birth. Administration of 2-(2-nitro-4-trifluoro-methylbenzoyl)-1,3 cyclohexanedione (NTBC) prevents neonatal death in HT1 mice, ameliorates the HT1 phenotype but does not prevent development of hepatocellular carcinoma later on. FAA has been shown to deplete cells of glutathione by forming adducts. We tested whether a combination of a cell membrane permeable derivative of glutathione, glutathione monoethylester (GSH-MEE) and vitamin C could provide an alternative effective treatment for HT1. GSH-MEE (10 mmol/kg/j)/vitamin C (0.5 mmol/kg/j) treatment was given orally to pregnant/nursing female mice. While FAH-/- pups died in absence of treatment, all FAH-/- pups survived the critical first 24h of life when the mothers were on the GSH-MEE/vitamin C treatment and showed normal growth until postnatal day 10 (P10). However, after P10, pups showed failure to thrive, lethargy and died around P17. Thus, GSH-MEE/vitamin C supplementation could rescue the mice model of HT1 from neonatal death but it did not prevent the appearance of a HT1 phenotype in the second week after birth.
Collapse
Affiliation(s)
- Chantale Langlois
- Laboratory of Cellular and Developmental Genetics, CREFSIP, Department of Medicine, Pav. C-E Marchand, 1030 Av. De la Médecine, Université Laval, Que., Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|