1
|
S-15176 Difumarate Salt Can Impair Mitochondrial Function through Inhibition of the Respiratory Complex III and Permeabilization of the Inner Mitochondrial Membrane. BIOLOGY 2022; 11:biology11030380. [PMID: 35336754 PMCID: PMC8945000 DOI: 10.3390/biology11030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
S-15176 difumarate salt, a derivative of the anti-ischemic metabolic drug trimetazidine, has been intensively studied for its impact on cellular metabolism in animal models of ischemia-reperfusion injury of the liver, heart, spinal cord, and other organs. Despite evidence of some reduction in oxidative damage to cells, the results of therapy with S-15176 have been mostly disappointing, possibly because of the lack of data on its underlying mechanisms. Here, we aimed to investigate in more detail the role of complexes I-IV of the electron transport chain and membrane permeability transition in mitochondrial toxicity associated with S-15176. Using rat thymocyte and liver mitochondria, we demonstrated that: (1) acute exposure to S-15176 (10 to 50 μM) dose-dependently decreased the mitochondrial membrane potential; (2) S-15176 suppressed the ADP-stimulated (State 3) and uncoupled (State 3UDNP) respiration of mitochondria energized with succinate or malate/glutamate, but not ascorbate/TMPD, and increased the resting respiration (State 4) when using all the substrate combinations; (3) S-15176 directly inhibited the activity of the respiratory complex III; (4) low doses of S-15176 diminished the rate of H2O2 production by mitochondria; (5) at concentrations of above 30 μM, S-15176 reduced calcium retention capacity and contributed to mitochondrial membrane permeabilization. Taken together, these findings suggest that S-15176 at tissue concentrations reached in animals can impair mitochondrial function through suppression of the cytochrome bc1 complex and an increase in the nonspecific membrane permeability.
Collapse
|
2
|
Belosludtseva NV, Starinets VS, Pavlik LL, Mikheeva IB, Dubinin MV, Belosludtsev KN. The Effect of S-15176 Difumarate Salt on Ultrastructure and Functions of Liver Mitochondria of C57BL/6 Mice with Streptozotocin/High-Fat Diet-Induced Type 2 Diabetes. BIOLOGY 2020; 9:biology9100309. [PMID: 32987717 PMCID: PMC7598715 DOI: 10.3390/biology9100309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Type II diabetes mellitus (T2DM) is one of the most common diseases, which currently represents a major medical and social problem due to the chronic course, high rates of disability and mortality among patients. Mitochondria of the liver and other vital organs are one of the main targets of T2DM at the intracellular level. The pathological changes in the structure of mitochondria, hyperproduction of reactive oxygen species by the organelles, disorders in mitochondrial transport systems and ATP synthesis are now widely recognized as important factors in the development of diabetes. Therefore, treatment strategies to attenuate mitochondrial injury may result in cellular reprogramming and alleviation of the diabetes-related pathological complications. The aim of present work was to investigate the possible protective effect of S-15176, a potent derivative of the anti-ischemic agent trimetazidine, against mitochondrial damage in the liver of mice with experimental T2DM. The data indicate that S-15176 attenuates mitochondrial dysfunction and ultrastructural abnormalities in the liver of T2DM mice. The mechanisms underlying the protective effect of S-15176 are related to the stimulation of mitochondrial biogenesis and the inhibition of lipid peroxidation in the organelles. One may assume that the compound acts as a mitochondria-targeted metabolic reprogramming agent in T2DM. Abstract S-15176, a potent derivative of the anti-ischemic agent trimetazidine, was reported to have multiple effects on the metabolism of mitochondria. In the present work, the effect of S-15176 (1.5 mg/kg/day i.p.) on the ultrastructure and functions of liver mitochondria of C57BL/6 mice with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with a low-dose streptozotocin injection was examined. An electron microscopy study showed that T2DM induced mitochondrial swelling and a reduction in the number of liver mitochondria. The number of mtDNA copies in the liver in T2DM decreased. The expression of Drp1 slightly increased, and that of Mfn2 and Opa1 somewhat decreased. The treatment of diabetic animals with S-15176 prevented the mitochondrial swelling, normalized the average mitochondrial size, and significantly decreased the content of the key marker of lipid peroxidation malondialdehyde in liver mitochondria. In S-15176-treated T2DM mice, a two-fold increase in the expression of the PGC-1α and a slight decrease in Drp 1 expression in the liver were observed. The respiratory control ratio, the level of mtDNA, and the number of liver mitochondria of S-15176-treated diabetic mice tended to restore. S-15176 did not affect the decrease in expression of Parkin and Opa1 in the liver of diabetic animals, but slightly suppressed the expression of these proteins in the control. The modulatory effect of S-15176 on dysfunction of liver mitochondria in T2DM can be related to the stimulation of mitochondrial biogenesis and the inhibition of lipid peroxidation in the organelles.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Correspondence:
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| | - Lyubov L. Pavlik
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| | - Konstantin N. Belosludtsev
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia; (V.S.S.); (L.L.P.); (I.B.M.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia;
| |
Collapse
|
3
|
Erdoğan H, Tunçdemir M, Kelten B, Akdemir O, Karaoğlan A, Taşdemiroğlu E. The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2015; 57:445-54. [PMID: 26180614 PMCID: PMC4502243 DOI: 10.3340/jkns.2015.57.6.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023] Open
Abstract
Objective In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.
Collapse
Affiliation(s)
- Hakan Erdoğan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Matem Tunçdemir
- Medical Biology Department, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilal Kelten
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Osman Akdemir
- Department of Neurosurgery Taksim Education and Research Hospital, Istanbul, Turkey
| | - Alper Karaoğlan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | | |
Collapse
|
4
|
Martel C, Allouche M, Esposti DD, Fanelli E, Boursier C, Henry C, Chopineau J, Calamita G, Kroemer G, Lemoine A, Brenner C. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation. Hepatology 2013; 57:93-102. [PMID: 22814966 DOI: 10.1002/hep.25967] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/21/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. CONCLUSION VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis.
Collapse
Affiliation(s)
- Cecile Martel
- INSERM U769, LabEx LERMIT, Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
S-15176 and its methylated derivative suppress the CsA-insensitive mitochondrial permeability transition and subsequent cytochrome c release induced by silver ion, and show weak protonophoric activity. Mol Cell Biochem 2011; 358:45-51. [DOI: 10.1007/s11010-011-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
6
|
Lim HW, Lim HY, Wong KP. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun 2009; 389:187-92. [PMID: 19715674 DOI: 10.1016/j.bbrc.2009.08.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F(0)F(1)-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 microM, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F(0)F(1)-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.
Collapse
Affiliation(s)
- Han Wern Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | | | | |
Collapse
|
7
|
Dong S, Zhao Y, Liu H, Yang X, Wang K. Duality of effect of La3+ on mitochondrial permeability transition pore depending on the concentration. Biometals 2009; 22:917-26. [DOI: 10.1007/s10534-009-9244-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 04/17/2009] [Indexed: 11/24/2022]
|
8
|
Meeran SM, Katiyar S, Katiyar SK. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol 2008; 229:33-43. [PMID: 18275980 DOI: 10.1016/j.taap.2007.12.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/15/2022]
Abstract
Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.
Collapse
Affiliation(s)
- Syed M Meeran
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
9
|
Lahouel M, Zini R, Zellagui A, Rhouati S, Carrupt PA, Morin D. Ferulenol specifically inhibits succinate ubiquinone reductase at the level of the ubiquinone cycle. Biochem Biophys Res Commun 2007; 355:252-7. [PMID: 17292330 DOI: 10.1016/j.bbrc.2007.01.145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/29/2007] [Indexed: 11/18/2022]
Abstract
The natural compound ferulenol, a sesquiterpene prenylated coumarin derivative, was purified from Ferula vesceritensis and its mitochondrial effects were studied. Ferulenol caused inhibition of oxidative phoshorylation. At low concentrations, ferulenol inhibited ATP synthesis by inhibition of the adenine nucleotide translocase without limitation of mitochondrial respiration. At higher concentrations, ferulenol inhibited oxygen consumption. Ferulenol caused specific inhibition of succinate ubiquinone reductase without altering succinate dehydrogenase activity of the complex II. This inhibition results from a limitation of electron transfers initiated by the reduction of ubiquinone to ubiquinol in the ubiquinone cycle. This original mechanism of action makes ferulenol a useful tool to study the physiological role and the mechanism of electron transfer in the complex II. In addition, these data provide an additional mechanism by which ferulenol may alter cell function and demonstrate that mitochondrial dysfunction is an important determinant in Ferula plant toxicity.
Collapse
Affiliation(s)
- Mesbah Lahouel
- Département de pharmacologie et phytochimie, Université de Jijel, Algeria
| | | | | | | | | | | |
Collapse
|