1
|
The preventive effects of aspirin on preeclampsia based on network pharmacology and bioinformatics. J Hum Hypertens 2022; 36:753-759. [PMID: 34168274 DOI: 10.1038/s41371-021-00568-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
This study aimed to reveal the key targets and molecular mechanisms of aspirin in preventing preeclampsia. We used bioinformatics databases to collect the candidate targets for aspirin and preeclampsia. The biological functions and signaling pathways of the intersecting targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We collected 90 targets for aspirin in preventing preeclampsia. The biological processes of the intersecting targets are mainly involved in xenobiotic metabolic process, inflammatory response, negative regulation of apoptotic process, and protein phosphorylation. The highly enriched pathways were FoxO signaling pathway, circadian rhythm, insulin resistance, arachidonic acid metabolism, and drug metabolism-cytochrome P450. The hub targets for aspirin in preventing preeclampsia were tumor protein p53 (TP53), C-X-C motif chemokine ligand 8 (CXCL8), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 14 (MAPK14), epidermal growth factor receptor (EGFR), estrogen receptor (ESR1), and prostaglandin-endoperoxide synthase 2 (PTGS2). Molecular docking results showed good bindings between the proteins and aspirin. In conclusion, these findings highlight the key targets and molecular mechanisms of aspirin in preventing preeclampsia.
Collapse
|
2
|
Huang P, Hong J, Mi J, Sun B, Zhang J, Li C, Yang W. Polyphenols extracted from Enteromorpha clathrata alleviates inflammation in lipopolysaccharide-induced RAW 264.7 cells by inhibiting the MAPKs/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114897. [PMID: 34890728 DOI: 10.1016/j.jep.2021.114897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Enteromorpha has long been recorded in traditional Chinese medicine, with cholesterol-lowering, anti-cancer, anti-inflammatory and antibacterial effects. Recently, we extracted the polyphenol-enriched fraction from Enteromorpha clathrata (E. clathrata) by ethyl acetate (ECPs), and isolated six individual polyphenols from ECPs via high-speed counter-current chromatography (HSCCC) with high-performance liquid chromatography (HPLC). AIM OF THE STUDY In this study, we explored the anti-inflammatory activity and underlying mechanism of ECPs in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. MATERIALS AND METHODS ECPs and the six polyphenols were used for nitric oxide (NO) assay to identify the components with potent inflammation inhibitory effect. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qPCR), flow cytometry, and Western blot analysis were applied to further investigate their anti-inflammatory effects and underlying mechanism in LPS-stimulated RAW264.7 cells. RESULTS ECPs and the three individual polyphenols, including (-)-epicatechin, epigallocatechin-3-O-gallate and (-)-epicatechin-3-O-gallate, showed in vitro immunosuppressive activity by altering the cell biology at the gene, protein and functional levels in a dose- and species-dependent manner. Their anti-inflammatory effects were achieved by inhibiting LPS-induced production of nitric oxide and its upstream enzyme inducible nitric oxide synthase (iNOS), the pro-inflammatory cytokines including interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), as well as the phagocytotic capacity, without cytotoxicity. The mechanism study further revealed that these anti-inflammatory properties were, at least partly, attributed to the suppressed activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS These findings indicated for the first time the correlation between the anti-inflammatory activity of ECPs and NF-κB and MAPK signaling pathways, suggesting that polyphenol-enriched organic fraction of E. clathrata could be potential candidate as therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Ping Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jingxia Hong
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jie Mi
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Bolun Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Monleón S, Gómez J, Duque A, Vinader-Caerols C. Effects of binge drinking and the anti-inflammatory drug indomethacin on spatial memory and cognitive flexibility in mice. Behav Brain Res 2022; 417:113619. [PMID: 34619248 DOI: 10.1016/j.bbr.2021.113619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
In previous research, we found that chronic-intermittent ethanol administration (CIEA), a model of binge drinking, impaired emotional memory in mice, and this impairment was counteracted by the anti-inflammatory drug indomethacin. In the present study, we evaluated the effects of CIEA on spatial memory and cognitive flexibility in adolescent mice of both sexes. Animals were randomly assigned to one of four groups for each sex: SS (saline + saline), SA (saline + alcohol), SI (saline + indomethacin), and AI (alcohol + indomethacin). They were injected with saline, ethanol (3 g/kg) or indomethacin (10 mg/kg) for the first three days of each week, throughout three weeks. 96 h after treatment, subjects learnt a standard water maze task on five consecutive days (4-day training and 1-day probe trial). One day later, mice underwent a reversal task for evaluating spatial cognitive flexibility. Animals receiving alcohol (SA and AI groups) did not differ from controls (SS groups) during the standard task, but animals treated with indomethacin performed better than controls, both in the acquisition trials and the probe trial. During the reversal task, no significant differences between alcohol groups and controls were observed, but the indomethacin group showed significant lower escape latencies than controls. No sex differences were found in either task. In conclusion, binge drinking does not impair spatial memory or spatial cognitive flexibility, while the anti-inflammatory indomethacin improves both, showing that the effects of alcohol and indomethacin on spatial memory (dependent on hippocampus) are different to those they exert on emotional memory (dependent on amygdala).
Collapse
Affiliation(s)
- Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Javier Gómez
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Aránzazu Duque
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | | |
Collapse
|
4
|
Bixin loaded on polymeric nanoparticles: synthesis, characterization, and antioxidant applications in a biological system. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01555-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Targeting cyclooxygenase by indomethacin decelerates progression of acute lymphoblastic leukemia in a xenograft model. Blood Adv 2020; 3:3181-3190. [PMID: 31698450 DOI: 10.1182/bloodadvances.2019000473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) develops in the bone marrow in the vicinity of stromal cells known to promote tumor development and treatment resistance. We previously showed that the cyclooxygenase (COX) inhibitor indomethacin prevents the ability of stromal cells to diminish p53-mediated killing of cocultured ALL cells in vitro, possibly by blocking the production of prostaglandin E2 (PGE2). Here, we propose that PGE2 released by bone marrow stromal cells might be a target for improved treatment of pediatric ALL. We used a xenograft model of human primary ALL cells in nonobese diabetic-scid IL2rγnull mice to show that indomethacin delivered in the drinking water delayed the progression of ALL in vivo. The progression was monitored by noninvasive in vivo imaging of the engrafted leukemic cells, as well as by analyses of CD19+CD10+ leukemic blasts present in spleen or bone marrow at the termination of the experiments. The indomethacin treatment increased the level of p53 in the leukemic cells, implying that COX inhibition might reduce progression of ALL by attenuating protective paracrine PGE2 signaling from bone marrow stroma to leukemic cells.
Collapse
|
6
|
Monleón S, Duque A, Vinader-Caerols C. Emotional memory impairment produced by binge drinking in mice is counteracted by the anti-inflammatory indomethacin. Behav Brain Res 2020; 381:112457. [PMID: 31891744 DOI: 10.1016/j.bbr.2019.112457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023]
Abstract
The Binge Drinking (BD) pattern of alcohol consumption, prevalent in adolescents and young adults, has been associated with memory impairment. In addition, evidence shows that alcohol abuse causes neuroinflammation, which may contribute to the brain damage produced by alcohol and explain its cognitive consequences. In this study, we evaluated the effectiveness of the anti-inflammatory indomethacin in counteracting the memory impairment produced by alcohol (ethanol) in adolescent mice of both sexes. Animals were randomly assigned to one of four groups for each sex: SS (saline + saline), SA (saline + alcohol), SI (saline + indomethacin) and AI (alcohol + indomethacin). They were injected acutely (Experiment 1) or chronically intermittent (Experiment 2) with saline, ethanol (3 g/kg) and indomethacin (10 mg/kg). All subjects were evaluated in an inhibitory avoidance task 96 h after treatment. With acute administration, SA groups showed significantly lower Test latencies than SS groups, while AI groups had similar latencies to controls. The chronic-intermittent administration of alcohol, an animal model of BD, produced significant emotional memory impairment -blocking learning in males- which was counteracted by indomethacin, as the AI groups had similar latencies to the SS groups. No significant differences were observed in locomotor activity or analgesia. In conclusion, alcohol BD (one or several episodes) impairs emotional memory in mice. This impairment is not secondary to the effects of alcohol BD on locomotor activity or pain sensitivity, and it is counteracted by indomethacin. Therefore, the memory impairment produced by alcohol BD seems to be mediated, in part, by neuroinflammatory processes. These findings open a window for new treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Aranzazu Duque
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | | |
Collapse
|
7
|
Kowalski K. Insight into the Biological Activity of Organometallic Acetylsalicylic Acid (Aspirin) Derivatives. Chempluschem 2019; 84:403-415. [DOI: 10.1002/cplu.201900086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Konrad Kowalski
- Faculty of Chemistry Department of Organic ChemistryUniversity of Łódź Tamka 12 91-403 Łódź Poland
| |
Collapse
|
8
|
Urayama S, Tanaka A, Kusano K, Sato H, Nagashima T, Fukuda I, Fujisawa C, Matsuda H. Oral Administration of Meloxicam Suppresses Low-Dose Endotoxin Challenge-Induced Pain in Thoroughbred Horses. J Equine Vet Sci 2019; 77:139-143. [PMID: 31133308 DOI: 10.1016/j.jevs.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs such as flunixin meglumine have been used to treat signs of systemic inflammatory conditions, but it is also known to have the side effect to small intestine mucosa. It may be considered to be due to inhibition of both cyclooxygenase (COX)-1 and COX-2. On the other hand, meloxicam is widely used in equine clinical practice and an effective nonsteroidal anti-inflammatory drug with the preferential inhibitory effect on COX-2. However, it has not yet been evaluated in equine systemic inflammation. The aim of this study was to evaluate the effect of meloxicam administered 60 minutes prior lipopolysaccharide (LPS)-induced inflammatory response in five Thoroughbred horses using a crossover test. Clinical parameters including body temperature, heart rate, respiratory rate, behavioral pain score, and hoof wall surface temperature were recorded, and plasma tumor necrosis factor-alpha, cortisol, and leukocyte counts were measured at various times before and after LPS infusion for 420 minutes. At time points 60, 90 (P < .01), 120, and 180 (P < .05) minutes, pain scores were significantly lower in meloxicam-treated horses. There was no significant difference in other parameters. In the present study, we revealed the analgesic effect of meloxicam using an equine low-dose endotoxin model.
Collapse
Affiliation(s)
- Shuntaro Urayama
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan.
| | - Akane Tanaka
- Division of Animal Life Science, Laboratory of Comparative Animal Medicine, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kanichi Kusano
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Hiroaki Sato
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Tsuyoshi Nagashima
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Ippei Fukuda
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Chihiro Fujisawa
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Hiroshi Matsuda
- Division of Animal Life Science, Laboratory of Veterinary Molecular Pathology and Therapeutics, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
9
|
Suzuki T, Kamio Y, Makino H, Hokamura K, Kimura T, Yamasaki T, Hiramatsu H, Umemura K, Namba H. Prevention Effect of Antiplatelets on Aneurysm Rupture in a Mouse Intracranial Aneurysm Model. Cerebrovasc Dis 2018; 45:180-186. [DOI: 10.1159/000487812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose: Subarachnoid hemorrhage (SAH) from intracranial aneurysm rupture results in significant morbidity and mortality. In the present study, we examined the effect of most widely used antiplatelet drugs, aspirin and cilostazol, on aneurysm rupture prevention using a mouse intracranial aneurysm model. Materials and Methods: Intracranial aneurysms were induced by a combination of deoxycorticosterone acetate-salt and a single injection of elastase into the cerebrospinal fluid in mice. Treatment with aspirin or cilostazol was started 1 day after aneurysm induction. Aneurysm rupture was detected by neurological symptoms and the presence of intracranial aneurysm with SAH was confirmed by post-mortem examination. Results: Aspirin (10 mg/kg) significantly reduced aneurysm rupture (control:aspirin = 80%:31%, p < 0.05) without affecting the overall incidence of aneurysm formation (60%:62%). Cilostazol (3 mg/kg, 30 mg/kg) did not reduce both rupture rate (control:3 mg/kg:30 mg/kg = 81%:67%:77%) and the overall incidence of aneurysm formation (control:3 mg/kg:30 mg/kg = 72%:71%:76%). Tail vein bleeding time prolonged significantly in both aspirin and cilostazol groups (p < 0.01). Conclusion: Aspirin prevented aneurysm rupture in a mouse intracranial aneurysm model, while cilostazol did not. Aspirin, the most frequently used drug for patients with ischemic myocardial and cerebral diseases, is also effective in preventing cerebral aneurysmal rupture.
Collapse
|
10
|
Duque A, Vinader-Caerols C, Monleón S. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice. PLoS One 2017; 12:e0173182. [PMID: 28278165 PMCID: PMC5344348 DOI: 10.1371/journal.pone.0173182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Collapse
Affiliation(s)
- Aránzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | | | - Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
11
|
Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm Pharmacol Ther 2016; 41:11-18. [DOI: 10.1016/j.pupt.2016.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
|
12
|
Riça IG, Netto CD, Rennó MN, Abreu PA, Costa PRR, da Silva AJM, Cavalcante MCM. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice. Bioorg Med Chem 2016; 24:4415-4423. [PMID: 27492193 DOI: 10.1016/j.bmc.2016.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding.
Collapse
Affiliation(s)
- Ingred G Riça
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Laboratório de Produtos Bioativos, Programa de Pós Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27947-200, Brazil.
| | - Chaquip D Netto
- Laboratório de Química, Pólo Universitário, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27930-560, Brazil
| | - Magdalena N Rennó
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27965-045, Brazil
| | - Paula A Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27965-045, Brazil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Alcides J M da Silva
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Moisés C M Cavalcante
- Laboratório de Produtos Bioativos, Programa de Pós Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27947-200, Brazil.
| |
Collapse
|
13
|
Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol 2014; 740:578-83. [PMID: 24975097 DOI: 10.1016/j.ejphar.2014.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
Unilateral ureteral obstruction (UUO) is a well-established model for the study of interstitial fibrosis in the kidney. In this study, we investigated the effects of a COX-2 inhibitor, meloxicam, on UUO-induced renal interstitial fibrosis in mice. Serum creatinine, blood urea nitrogen and urinary glucose were significantly increased by UUO. However, all of these changes were attenuated by meloxicam (1 mg/kg/day). Masson׳s trichrome staining showed that interstitial fibrosis was significantly increased by UUO, but that meloxicam also significantly diminished the area of UUO-induced fibrosis. Heat shock protein (HSP) 47 protein, a collagen-specific molecular chaperone essential for the biosynthesis of collagen molecules, and type IV collagen mRNA were increased in kidneys of UUO mice. Meloxicam reduced the expression of both HSP47 protein and type IV collagen mRNA. The phosphorylation of extracellular regulated kinase (ERK) and c-jun-N-terminal kinase (JNK) was increased by UUO, but these changes were inhibited by meloxicam. Collectively, these results suggest that COX-2 may be involved in the expression of HSP47 and type IV collagen through the phosphorylation of ERK and JNK, accelerating renal interstitial fibrosis.
Collapse
|
14
|
Jin S, Wang Y, Zhu H, Wang Y, Zhao S, Zhao M, Liu J, Wu J, Gao W, Peng S. Nanosized aspirin-Arg-Gly-Asp-Val: delivery of aspirin to thrombus by the target carrier Arg-Gly-Asp-Val tetrapeptide. ACS NANO 2013; 7:7664-73. [PMID: 23931063 DOI: 10.1021/nn402171v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Resistance and nonresponse to aspirin dramatically decreases its therapeutic efficacy. To overcome this issue, a small-molecule thrombus-targeting drug delivery system, aspirin-Arg-Gly-Asp-Val (A-RGDV), is developed by covalently linking Arg-Gly-Asp-Val tetrapeptide with aspirin. The 2D ROESY NMR and ESI-MS spectra support a molecular model of an A-RGDV tetramer. Transmission electron microscopy images suggest that the tetramer spontaneously assembles to nanoparticles (ranging from 5 to 50 nm in diameter) in water. Scanning electron microscopy images and atomic force microscopy images indicate that the smaller nanoparticles of A-RGDV further assemble to bigger particles that are stable in rat blood. The delivery investigation implies that in rat blood A-RGDV is able to keep its molecular integrity, while in a thrombus it releases aspirin. The in vitro antiplatelet aggregation assay suggests that A-RGDV selectively inhibits arachidonic acid induced platelet aggregation. The mechanisms of action probably include releasing aspirin, modifying cyclic oxidase, and decreasing the expression of GPIIb/IIIa. The in vivo assay demonstrates that the effective antithrombotic dose of A-RGDV is 16700-fold lower than the nonresponsive dose of aspirin.
Collapse
Affiliation(s)
- Shaoming Jin
- College of Pharmaceutical Sciences, Capital Medical University , Beijing 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Esquivias P, Morandeira A, Escartín A, Cebrián C, Santander S, Esteva F, García-González MA, Ortego J, Lanas A, Piazuelo E. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats. World J Gastroenterol 2012; 18:4866-74. [PMID: 23002358 PMCID: PMC3447268 DOI: 10.3748/wjg.v18.i35.4866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/17/2012] [Accepted: 06/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma.
METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control.
RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX-2 inhibitor, MF-tricyclic, did not prevent development of intestinal metaplasia or adenocarcinoma. In parallel, we observed a significant decrease in PGE2 levels in indomethacin-treated rats, but not in those treated with MF-tricyclic, at both 2 mo and 4 mo. Compared to control rats that did not undergo surgery (68 ± 8 ng/g, P = 0.0022 Kruskal-Wallis test) there was a significant increase in PGE2 levels in the esophageal tissue of the rats that underwent surgery either 2 mo (1332 ± 656 ng/g) or 4 mo (1121 ± 1015 ng/g) after esophagojejunostomy. However, no differences were found when esophageal PGE2 levels were compared 2 mo vs 4 mo post-esophagojejunostomy. At both the 2- and 4-mo timepoints, we observed a significant decrease in PGE2 levels in indomethacin-treated rat esophagi compared to those in either the control or MF-tricyclic groups (P = 0.049 and P = 0.017, respectively). No differences in PGE2 levels were found when we compared levels in rats treated with MF-tricyclic to not-treated rats.
CONCLUSION: In this rat model of gastrointestinal reflux, indomethacin was associated with a decrease in the severity of esophagitis and reduced development of esophageal intestinal metaplasia and adenocarcinoma.
Collapse
|
16
|
Nie YC, Wu H, Li PB, Luo YL, Long K, Xie LM, Shen JG, Su WW. Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats. J Med Food 2012; 15:894-900. [PMID: 22985397 DOI: 10.1089/jmf.2012.2251] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Naringin, a well-known flavanone glycoside of grapefruit and citrus fruits, was found to be as an effective anti-inflammatory compound in our previous lipopolysaccharide-induced acute lung injury mouse model via blockading activity of nuclear factor κB. The current study sought to explore the anti-inflammatory effects of naringin on chronic pulmonary neutrophilic inflammation in cigarette smoke (CS)-induced rats. Seventy Sprague-Dawley rats were randomly divided into seven groups to study the effects of CS with or without various concentrations of naringin or saline for 8 weeks. The results revealed that naringin supplementation at 20, 40, and 80 mg/kg significantly increased body weight of CS-induced rats as compared to that in the CS group. Moreover, naringin of 20, 40, and 80 mg/kg prevented CS-induced infiltration of neutrophils and activation of myeloperoxidase and matrix metalloproteinase-9, in parallel with suppression of the release of cytokines, such as tumor necrosis factor-α and interleukin-8 (IL-8). IL-10 in bronchoalveolar lavage fluid was significantly suppressed after CS exposure, but dose dependently elevated by naringin. The results from hematoxylin and eosin staining revealed that naringin dose dependently reduced CS-induced infiltration of inflammatory cells, thickening of the bronchial wall, and expansion of average alveolar airspace. In conclusion, our data suggest that naringin is an effective anti-inflammatory compound for attenuating chronic pulmonary neutrophilic inflammation in CS-induced rats.
Collapse
Affiliation(s)
- Yi-Chu Nie
- Key Laboratory of Gene Engineering of the Ministry of Education and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Danciu C, Soica C, Csanyi E, Ambrus R, Feflea S, Peev C, Dehelean C. Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives. Chem Cent J 2012; 6:58. [PMID: 22716299 PMCID: PMC3468379 DOI: 10.1186/1752-153x-6-58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The isoflavonoid genistein represents the major active compound from soybean, the vegetal product from Glycine max (Fabaceae). The aim of this study is to prove that genistein was incorporated in two semisynthetic cyclodextrins, beta-cyclodextrin derivatives: hydroxypropyl-beta-cyclodextrin and randomly-methylated-beta-cyclodextrin as well as to compare the anti-inflammatory activity of genistein with that of genistein incorporated in these two types of semisynthetic cyclodextrins. RESULTS The animal studies were conducted on 8-week old C57BL/6 J female mice. Inflammation was induced in both ears of each mouse by topical application of 10 micrograms 12-O-tetradecanoylphorbol-3-acetate dissolved in 0.1 ml solvent (acetone : dimethylsulfoxide in a molar ratio 9:1). Thirty minutes later treatment was applied. The inflammatory reaction was correlated with increased values in ear thickness. Treatment with genistein and genistein incorporated in the two cyclodextrins led to decreased values for ear thickness. Better anti-inflammatory action was found for the complexes of genistein. Both haematoxylin-eosin analysis and CD45 marker expression are in agreement with these findings. CONCLUSIONS Results allow concluding that genistein is an active anti-inflammatory phytocompound and its complexation with hydrophilic beta-cyclodextrin derivatives leads to a stronger anti-inflammatory activity.
Collapse
Affiliation(s)
- Corinatiulea Danciu
- Department of Pharmaceutical Chemistry, "Victor Babes" University of Medicine and Pharmacy, 2 EftimieMurgu, Timisoara 300041, Romania.
| | | | | | | | | | | | | |
Collapse
|
18
|
Brando Lima AC, Machado AL, Simon P, Cavalcante MM, Rezende DC, Sperandio da Silva GM, Nascimento PGBD, Quintas LEM, Cunha FQ, Barreiro EJ, Lima LM, Koatz VLG. Anti-inflammatory effects of LASSBio-998, a new drug candidate designed to be a p38 MAPK inhibitor, in an experimental model of acute lung inflammation. Pharmacol Rep 2012; 63:1029-39. [PMID: 22001991 DOI: 10.1016/s1734-1140(11)70619-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 04/14/2011] [Indexed: 10/25/2022]
Abstract
We investigated the effects of LASSBio-998 (L-998), a compound designed to be a p38 MAPK (mitogen-activated protein kinase) inhibitor, on lipopolysaccharide (LPS)-induced acute lung inflammation in vivo. BALB/c mice were challenged with aerosolized LPS inhalation (0.5 mg/ml) 4 h after oral administration of L-998. Three hours after LPS inhalation, bronchoalveolar lavage fluid was obtained to measure the levels of the proinflammatory cytokines TNF-α (tumor necrosis factor-α) and IL-1 (interleukin-1) and the chemokines MCP-1 (monocyte chemoattractant protein-1) and KC (keratinocyte chemoattractant). In addition, neutrophil infiltration and p38 MAPK phosphorylation was measured. L-998 inhibited LPS-induced production of TNF-α and IL-1β and did not alter KC and MCP-1 levels. Furthermore, L-998 also significantly decreased neutrophil accumulation in lung tissues. As expected, L-998 diminished p38 MAPK phosphorylation and reduced acute lung inflammation. Inhibition of p38 MAPK phosphorylation by L-998 was also demonstrated in LPS-challenged murine C57BL/6 peritoneal macrophages in vitro, with concentration-dependent effects. L-998 suppressed LPS-induced lung inflammation, most likely by inhibition of the cytokine-p38 MAPK pathway, and we postulate that L-998 could be a clinically relevant anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Aline C Brando Lima
- Laboratory of Cellular Immunopharmacology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, CCS, 21941-902, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fujino H, Murayama T. [Novel anti-cancer effects of indomethacin: exploring the cyclooxygenase-inhibition-independent effects]. Nihon Yakurigaku Zasshi 2011; 137:177-81. [PMID: 21478637 DOI: 10.1254/fpj.137.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
de Moura RS, Pires KMP, Santos Ferreira T, Lopes AA, Nesi RT, Resende AC, Sousa PJC, da Silva AJR, Porto LC, Valenca SS. Addition of açaí (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice. Food Chem Toxicol 2010; 49:855-63. [PMID: 21147193 DOI: 10.1016/j.fct.2010.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/20/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Chronic inhalation of cigarette smoke (CS) induces emphysema by the damage contributed by oxidative stress during inhalation of CS. Ingestion of açai fruits (Euterpe oleracea) in animals has both antioxidant and anti-inflammatory effects. This study compared lung damage in mice induced by chronic (60-day) inhalation of regular CS and smoke from cigarettes containing 100mg of hydroalcoholic extract of açai berry stone (CS + A). Sham smoke-exposed mice served as the control group. Mice were sacrificed on day 60, bronchoalveolar lavage was performed, and the lungs were removed for histological and biochemical analyses. Histopathological investigation showed enlargement of alveolar space in CS mice compared to CS + A and control mice. The increase in leukocytes in the CS group was higher than the increase observed in the CS + A group. Oxidative stress, as evaluated by antioxidant enzyme activities, mieloperoxidase, glutathione, and 4-hydroxynonenal, was reduced in mice exposed to CS+A versus CS. Macrophage and neutrophil elastase levels were reduced in mice exposed to CS + A versus CS. Thus, the presence of açai extract in cigarettes had a protective effect against emphysema in mice, probably by reducing oxidative and inflammatory reactions. These results raise the possibility that addition of açaí extract to normal cigarettes could reduce their harmful effects.
Collapse
Affiliation(s)
- Roberto Soares de Moura
- Laboratório de Farmacologia Cardiovascular e Plantas Medicinais, Departamento de Farmacologia e Psicobiologia, IBRAG - UERJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:111-20. [DOI: 10.1097/spc.0b013e32833a1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|