1
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Almeida-Ferreira C, Marto CM, Carmo C, Almeida-Ferreira J, Frutuoso C, Carvalho MJ, Botelho MF, Laranjo M. Efficacy of Cold Atmospheric Plasma vs. Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3254. [PMID: 38542225 PMCID: PMC10970295 DOI: 10.3390/ijms25063254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer is a growing disease, with a high worldwide incidence and mortality rate among women. Among the various types, the treatment of triple-negative breast cancer (TNBC) remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231 cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness of the data. There was found to be a decrease in cell proliferation after both chemotherapy and CAP; however, different protocol settings, including an extensive range of drug doses and CAP exposure times, were reported. For both therapies, a considerable reduction in tumor volume was observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This systematic review presents a comprehensive overview of the treatment landscape in chemotherapy and CAP regarding their efficacy in TNBC cell lines.
Collapse
Affiliation(s)
- Catarina Almeida-Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Chrislaura Carmo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Center (CQC), Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Cristina Frutuoso
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
5
|
Lee SK, Han MS, Tung CH. In vivo senescence imaging nanoprobe targets the associated reactive oxygen species. NANOSCALE 2024; 16:1371-1383. [PMID: 38131616 DOI: 10.1039/d3nr04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cellular senescence, a cell-cycle arrest state upon stress or damage, can adversely impact aging and cancers. We have designed a novel near infrared fluorogenic nanoprobe, named D3, which can only be turned on by highly elevated levels of reactive oxygen species (ROS), critical players for the induction and maintenance of senescence, for real-time senescence sensing and imaging. In contrast to glowing senescent cells, non-senescent cells whose ROS levels are too low to activate the D3 signal remain optically silent. Upon systemic injection into senescent tumor-bearing mice, the D3 nanoprobe quickly accumulates in tumors, and its fluorescence signal is turned on specifically by senescence-associated ROS in the senescent tumors. The fluorescence signal at senescent tumors was 3-fold higher than that of non-senescent tumors. This groundbreaking design introduces a novel activation mechanism and a powerful imaging nanoprobe to identify and assess cellular senescence in living organisms.
Collapse
Affiliation(s)
- Seung Koo Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY 10021, USA.
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY 10021, USA.
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY 10021, USA.
| |
Collapse
|
6
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
7
|
Adamczyk-Grochala J, Bloniarz D, Zielinska K, Lewinska A, Wnuk M. DNMT2/TRDMT1 gene knockout compromises doxorubicin-induced unfolded protein response and sensitizes cancer cells to ER stress-induced apoptosis. Apoptosis 2023; 28:166-185. [PMID: 36273376 PMCID: PMC9950192 DOI: 10.1007/s10495-022-01779-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
Abstract
The acidic, hypoxic and nutrient-deprived tumor microenvironment may induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) may exert an important cytoprotective role by promoting folding of newly synthesized proteins and cancer cell survival. The lack of DNMT2/TRDMT1 methyltransferase-mediated C38 tRNA methylation compromises translational fidelity that may result in the accumulation of misfolded and aggregated proteins leading to proteotoxic stress-related cell death. In the present study, DNMT2/TRDMT1 gene knockout-mediated effects were investigated during doxorubicin (DOX)-induced ER stress and PERK-, IRE1- and ATF6-orchestrated UPR in four genetically different cellular models of cancer (breast and cervical cancer, osteosarcoma and glioblastoma cells). Upon DOX stimulation, DNMT2/TRDMT1 gene knockout impaired PERK activation and modulated NSUN and 5-methylcytosine RNA-based responses and microRNA profiles. The lack of DNMT2/TRDMT1 gene in DOX-treated four cancer cell lines resulted in decreased levels of four microRNAs, namely, miR-23a-3p, miR-93-5p, miR-125a-5p and miR-191-5p involved in the regulation of several pathways such as ubiquitin-mediated proteolysis, amino acid degradation and translational misregulation in cancer. We conclude that DNMT2/TRDMT1 gene knockout, at least in selected cellular cancer models, affects adaptive responses associated with protein homeostasis networks that during prolonged ER stress may result in increased sensitivity to apoptotic cell death.
Collapse
Affiliation(s)
- Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Dominika Bloniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Klaudia Zielinska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
8
|
Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, Mattioli EJ, Di Giosia M, Danielli A, Fimognari C, Calvaresi M. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells 2023; 12:cells12030392. [PMID: 36766734 PMCID: PMC9913797 DOI: 10.3390/cells12030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.
Collapse
Affiliation(s)
- Giulia Greco
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
- Correspondence: (C.F.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
- Correspondence: (C.F.); (M.C.)
| |
Collapse
|
9
|
Fourie C, du Plessis M, Mills J, Engelbrecht AM. The effect of HIF-1α inhibition in breast cancer cells prior to doxorubicin treatment under conditions of normoxia and hypoxia. Exp Cell Res 2022; 419:113334. [PMID: 36044939 DOI: 10.1016/j.yexcr.2022.113334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oxygen deprivation is a key hallmark within solid tumours that contributes to breast-tumour pathophysiology. Under these conditions, neoplastic cells activate several genes, regulated by the HIF-1 transcription factor, which alters the tumour microenvironment to promote survival - including resistance to cell death in therapeutic attempts such as doxorubicin (Dox) treatment. METHODS We investigated HIF-1ɑ as a therapeutic target to sensitize breast cancer cells to Dox treatment. Under both normoxic (21% O2) and hypoxic (∼0.1% O2) conditions, the HIF-1 inhibitor, 2-methoxyestradiol (2-ME), was investigated as an adjuvant for its ability to alter MCF-7 cell viability, apoptosis, autophagy and molecular pathways which are often associated with increased cell survival. RESULTS Here we observed that an inverse relationship between HIF-1ɑ and apoptosis exists and that Dox promotes autophagy under hypoxic conditions. Although adjuvant therapy with 2-ME induced an antagonistic effect in breast cancer cells, upregulated HIF-1ɑ expression in a hypoxic environment promotes treatment resistance and this was attenuated once HIF-1ɑ gene expression was silenced. CONCLUSION Therefore, highlighting the identification of possible hypoxia-targeting therapies for breast cancer patients can be beneficial by promoting more favourable treatment responses.
Collapse
Affiliation(s)
- Carla Fourie
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa.
| | - Manisha du Plessis
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | - Justin Mills
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Çetiner BG, Terzi MY. Effect of Glucose Starvation on Cell Viability Parameters in A549 and BEAS-2B Cell Lines. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Waz S, Matouk AI. Cardioprotective effect of allyl isothiocyanate in a rat model of doxorubicin acute toxicity. Toxicol Mech Methods 2021; 32:194-203. [PMID: 34635025 DOI: 10.1080/15376516.2021.1992064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is an effective anthracycline chemotherapeutic drug. Nevertheless, the cardiotoxicity adverse effect restricts its clinical benefit. Allyl isothiocyanate (AITC) is a natural antioxidant and anti-inflammatory agent. In the present study, we investigated the effect of AITC on cardiotoxicity of DOX. Thirty-two adult male albino rats were divided into four groups; control, AITC, DOX, and AITC + DOX. AITC was administrated orally (25 mg/kg/day) for 7 days, and DOX was given as a single i.p. injection (15 mg/kg) on the third day. Mortality rate was observed during the experiment. Cardiac toxicity markers (lactate dehydrogenase (LDH), creatine kinase (CK-MB), and cardiac Troponin I (cTn-I)) were evaluated in serum samples obtained from all groups after 48 hours of DOX injection. DOX-treated group showed 40% mortality and a significant increase in cardiac enzymes. This increase was accompanied by degenerated cardiomyocytes, and inflammatory cells infiltrates. Interestingly, AITC administration alleviated myocardial oxidative stress induced by DOX as attenuated the increase in malondialdehyde (MDA), and nitric oxide (NO) while resulted in elevations of the antioxidant reduced glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Furthermore, the inflammatory cytokine, TNF-α, was reduced upon administration of AITC with DOX. The cardio-protection of AITC is attributed to increase the expression of cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, heme oxygenase 1 (HO-1) level was elevated by AITC to correct the oxidative stress induced by DOX in the heart. Accordingly, AITC ameliorated acute cardiotoxicity associated with DOX treatment via attenuation of oxidative stress and the induced-tissue inflammatory injury. Abbreviations: DOX: doxrubicin; Nrf2: nuclear factor erythroid 2-related factor 2; HO-1: heme oxygenase 1; AITC: ally isothiocyanate; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: reduced glutathione; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
12
|
Hadi NA, Mahmood RI, Al-Saffar AZ. Evaluation of antioxidant enzyme activity in doxorubicin treated breast cancer patients in Iraq: A molecular and cytotoxic study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Bloniarz D, Adamczyk-Grochala J, Lewinska A, Wnuk M. The lack of functional DNMT2/TRDMT1 gene modulates cancer cell responses during drug-induced senescence. Aging (Albany NY) 2021; 13:15833-15874. [PMID: 34139673 PMCID: PMC8266355 DOI: 10.18632/aging.203203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023]
Abstract
Cellular senescence may be a side effect of chemotherapy and other anti-cancer treatments that may promote inflammation and paracrine secondary senescence in healthy tissues. DNMT2/TRDMT1 methyltransferase is implicated in the regulation of cellular lifespan and DNA damage response (DDR). In the present study, the responses to senescence inducing concentrations of doxorubicin and etoposide in different cancer cells with DNMT2/TRDMT1 gene knockout were evaluated, namely changes in the cell cycle, apoptosis, autophagy, interleukin levels, genetic stability and DDR, and 5-mC and NSUN1-6 levels. Moreover, the effect of azacytidine post-treatment was considered. Diverse responses were revealed that was based on type of cancer cells (breast and cervical cancer, osteosarcoma and glioblastoma cells) and anti-cancer drugs. DNMT2/TRDMT1 gene knockout in drug-treated glioblastoma cells resulted in decreased number of apoptotic and senescent cells, IL-8 levels and autophagy, and increased number of necrotic cells, DNA damage and affected DDR compared to drug-treated glioblastoma cells with unmodified levels of DNMT2/TRDMT1. We suggest that DNMT2/TRDMT1 gene knockout in selected experimental settings may potentiate some adverse effects associated with chemotherapy-induced senescence.
Collapse
Affiliation(s)
- Dominika Bloniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| |
Collapse
|
14
|
El-Far AH, Godugu K, Noreldin AE, Saddiq AA, Almaghrabi OA, Al Jaouni SK, Mousa SA. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr Cancer Ther 2021; 20:15347354211035450. [PMID: 34490824 PMCID: PMC8427913 DOI: 10.1177/15347354211035450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Doxorubicin (Dox) induces senescence in numerous cancer cell types, but these senescent cancer cells relapse again if they are not eliminated. On this principle, we investigated the apoptotic effect of thymoquinone (TQ), the active ingredient of Nigella sativa seeds and costunolide (COS), the active ingredient of Costus speciosus, on the senescent colon (Sen-HCT116) and senescent breast (Sen-MCF7) cancer cell lines in reference to their corresponding proliferative cells to rapidly eliminate the senescent cancer cells. The senescence markers of Sen-HCT116 and Sen-MCF7 were determined by a significant decrease in bromodeoxyuridine (BrdU) incorporation and significant increases in SA-β-gal, p53, and p21 levels. Then proliferative, Sen-HCT116, and Sen-MCF7 cells were subjected to either TQ (50 µM) or COS (30 µM), the Bcl2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2), caspase 3 mRNA expression and its activity were established. Results revealed that TQ significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ, MCF7 + TQ, and MCF7 + Dox5 + TQ compared with their corresponding controls. COS significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ and MCF7 + Dox5 + TQ compared with their related controls. Also, TQ and COS were significantly increased caspase 3 activity and cell proliferation of Sen-HCT116 and Sen-MCF7. The data revealed a higher sensitivity of senescent cells to TQ or COS than their corresponding proliferative cells.
Collapse
Affiliation(s)
- Ali H El-Far
- Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Kavitha Godugu
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | | | | | | | | | - Shaker A. Mousa
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
15
|
Davis SL, Ionkina AA, Bagby SM, Orth JD, Gittleman B, Marcus JM, Lam ET, Corr BR, O'Bryant CL, Glode AE, Tan AC, Kim J, Tentler JJ, Capasso A, Lopez KL, Gustafson DL, Messersmith WA, Leong S, Eckhardt SG, Pitts TM, Diamond JR. Preclinical and Dose-Finding Phase I Trial Results of Combined Treatment with a TORC1/2 Inhibitor (TAK-228) and Aurora A Kinase Inhibitor (Alisertib) in Solid Tumors. Clin Cancer Res 2020; 26:4633-4642. [PMID: 32414750 DOI: 10.1158/1078-0432.ccr-19-3498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the rational combination of TORC1/2 inhibitor TAK-228 and Aurora A kinase inhibitor alisertib in preclinical models of triple-negative breast cancer (TNBC) and to conduct a phase I dose escalation trial in patients with advanced solid tumors. EXPERIMENTAL DESIGN TNBC cell lines and patient-derived xenograft (PDX) models were treated with alisertib, TAK-228, or the combination and evaluated for changes in proliferation, cell cycle, mTOR pathway modulation, and terminal cellular fate, including apoptosis and senescence. A phase I clinical trial was conducted in patients with advanced solid tumors treated with escalating doses of alisertib and TAK-228 using a 3+3 design to determine the maximum tolerated dose (MTD). RESULTS The combination of TAK-228 and alisertib resulted in decreased proliferation and cell-cycle arrest in TNBC cell lines. Treatment of TNBC PDX models resulted in significant tumor growth inhibition and increased apoptosis with the combination. In the phase I dose escalation study, 18 patients with refractory solid tumors were enrolled. The MTD was alisertib 30 mg b.i.d. days 1 to 7 of a 21-day cycle and TAK-228 2 mg daily, continuous dosing. The most common treatment-related adverse events were neutropenia, fatigue, nausea, rash, mucositis, and alopecia. CONCLUSIONS The addition of TAK-228 to alisertib potentiates the antitumor activity of alisertib in vivo, resulting in increased cell death and apoptosis. The combination is tolerable in patients with advanced solid tumors and should be evaluated further in expansion cohorts with additional pharmacodynamic assessment.
Collapse
Affiliation(s)
| | | | | | - James D Orth
- University of Colorado Boulder, Boulder, Colorado
| | | | | | - Elaine T Lam
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | | | | | - Jihye Kim
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Anna Capasso
- Department of Oncology, The University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Kyrie L Lopez
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado
| | - S Gail Eckhardt
- Department of Oncology, The University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Todd M Pitts
- University of Colorado Cancer Center, Aurora, Colorado
| | | |
Collapse
|
16
|
Simulation of electrochemical properties of naturally occurring quinones. Sci Rep 2020; 10:13571. [PMID: 32782387 PMCID: PMC7419317 DOI: 10.1038/s41598-020-70522-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/30/2020] [Indexed: 11/08/2022] Open
Abstract
Quinones are produced in organisms and are utilized as electron transfer agents, pigments and in defence mechanisms. Furthermore, naturally occurring quinones can also be cytotoxins with antibacterial properties. These properties can be linked to their redox properties. Recent studies have also shown that quinones can be utilized in flow battery technology, though naturally occurring quinones have not yet been investigated. Here, we have analyzed the properties of 990 different quinones of various biological sources through a computation approach to determine their standard reduction potentials and aqueous solubility. The screening was performed using the PBE functional and the 6-31G** basis set, providing a distribution of reduction potentials of the naturally occurring quinones varying from - 1.4 V to 1.5 V vs. the standard hydrogen electrode. The solvation energy for each quinone, which indicates the solubility in aqueous solution, was calculated at the same level. A large distribution of solubilities was obtained, containing both molecules that show tendencies of good solubilities and molecules that do not. The solubilities are dependent on the nature of the side groups and the size of the molecules. Our study shows that the group containing the quinones of fungal origin, which is also the largest of the groups considered, has the largest antimicrobial and electrochemical potential, when considering the distribution of reduction potentials for the compounds.
Collapse
|
17
|
Venturini W, Olate-Briones A, Valenzuela C, Méndez D, Fuentes E, Cayo A, Mancilla D, Segovia R, Brown NE, Moore-Carrasco R. Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. Int J Mol Sci 2020; 21:ijms21093287. [PMID: 32384773 PMCID: PMC7246568 DOI: 10.3390/ijms21093287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the main risk factors for the development of chronic diseases, with both the vascular endothelium and platelets becoming functionally altered. Cellular senescence is a form of permanent cell cycle arrest initially described in primary cells propagated in vitro, although it can also be induced by anticancer drugs and other stressful stimuli. Attesting for the complexity of the senescent phenotype, senescent cells synthesize and secrete a wide variety of bioactive molecules. This “senescence-associated secretory phenotype” (SASP) endows senescent cells with the ability to modify the tissue microenvironment in ways that may be relevant to the development of various physiological and pathological processes. So far, however, the direct role of factors secreted by senescent endothelial cells on platelet function remains unknown. In the present work, we explore the effects of SASP factors derived from senescent endothelial cells on platelet function. To this end, we took advantage of a model in which immortalized endothelial cells (HMEC-1) were induced to senesce following exposure to doxorubicin, a chemotherapeutic drug widely used in the clinic. Our results indicate that (1) low concentrations of doxorubicin induce senescence in HMEC-1 cells; (2) senescent HMEC-1 cells upregulate the expression of selected components of the SASP and (3) the media conditioned by senescent endothelial cells are capable of inducing platelet activation and aggregation. These results suggest that factors secreted by senescent endothelial cells in vivo could have a relevant role in the platelet activation observed in the elderly or in patients undergoing therapeutic stress.
Collapse
Affiliation(s)
- Whitney Venturini
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Alexandra Olate-Briones
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7500000, Chile
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca 3460000, Chile
| | - Diego Méndez
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Eduardo Fuentes
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000 Chile
| | - Angel Cayo
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Daniel Mancilla
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
| | - Raul Segovia
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
| | - Nelson E. Brown
- Center for Medical Research, University of Talca Medical School, Talca 3460000, Chile; (W.V.); (A.O.-B.); (C.V.); (A.C.); (D.M.); (R.S.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| | - Rodrigo Moore-Carrasco
- Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (D.M.); (E.F.)
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Talca 3460000, Chile
- Correspondence: (N.E.B.); (R.M.-C.)
| |
Collapse
|
18
|
Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9474823. [PMID: 31885826 PMCID: PMC6914999 DOI: 10.1155/2019/9474823] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this investigation, we examined the effect of anthracycline antibiotics on oxygen radical metabolism in Ehrlich tumor cells. In tumor microsomes and nuclei, doxorubicin increased superoxide anion production in a dose-dependent fashion that appeared to follow saturation kinetics; the apparent K m and V max for superoxide formation by these organelles was 124.9 μM and 22.6 nmol/min/mg, and 103.4 μM and 4.8 nmol/min/mg, respectively. In both tumor microsomes and nuclei, superoxide formation required NADPH as a cofactor, was accompanied by the formation of hydrogen peroxide, and resulted from the transfer of electrons from NADPH to the doxorubicin quinone by NADPH:cytochrome P-450 reductase (NADPH:ferricytochrome oxidoreductase, EC 1.6.2.4). Anthracycline antibiotics also significantly enhanced superoxide anion production by tumor mitochondria with an apparent K m and V max for doxorubicin of 123.2 μM and 14.7 nmol/min/mg. However, drug-stimulated superoxide production by mitochondria required NADH and was increased by rotenone, suggesting that the proximal portion of the electron transport chain in tumor cells was responsible for reduction of the doxorubicin quinone at this site. The net rate of drug-related oxygen radical production was also determined for intact Ehrlich tumor cells; in this system, treatment with doxorubicin produced a dose-related increase in cyanide-resistant respiration that was enhanced by changes in intracellular reducing equivalents. Finally, we found that in the presence of iron, treatment with doxorubicin significantly increased the production of formaldehyde from dimethyl sulfoxide, an indication that the hydroxyl radical could be produced by intact tumor cells following anthracycline exposure. These experiments suggest that the anthracycline antibiotics are capable of significantly enhancing oxygen radical metabolism in Ehrlich tumor cells at multiple intracellular sites by reactions that could contribute to the cytotoxicity of this class of drugs.
Collapse
|
19
|
Alotaibi MR, As Sobeai HM, Alaqil FA, Almutairi M, Alhazzani K, Sulaiman AA, Isab AA, Hadal Alotaibi N. A newly synthesized platinum-based compound (PBC-II) increases chemosensitivity of HeLa ovarian cancer cells via inhibition of autophagy. Saudi Pharm J 2019; 27:1203-1209. [PMID: 31885480 PMCID: PMC6921179 DOI: 10.1016/j.jsps.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022] Open
Abstract
There are many mechanisms of resistance, chemoresistance of HeLa cells to anti-cancer agents seems to be autophagy-mediated. While using very effective anti-cancers such as Doxorubicin and cisplatin, cells overcome the cytotoxicity of these drugs through promotion of what so-called cytoprotective autophagy. Here in this study, we sought to introduce a novel platinum-based compound PBC-II that possesses anti-cancer activity. Our data showed that PBC-II is able to induce apoptosis at relatively low concentrations, with no detectable reactive oxygen species (ROS). However, further experiments demonstrated that exposure of HeLa cells to PBC-II did not promote autophagy; rather, it resulted in accumulation of p62 and decrease in LC3-II levels. Autophagy was then promoted in HeLa cells pharmacologically by Doxorubicin and genetically by siRNA IL-10. In order to confirm promotion of autophagy in our model, we performed acridine orange staining to assess for autophagy under microscope as well as via flow cytometry. We then measured protein level of autophagy markers p62 and LC3 by western blot. Our data indicated that PBC-II interferes with therapy-induced autophagy. We also determined PI3K activity while co-incubation of PBC-II with autophagy inducers. It was clear that PI3K activation decreased when PBC-II was co-administered with autophagy inducers. Collectively, PBC-II exerts unique anti-proliferative effects associated with inhibition of autophagy, which indicates that PBC-II is potentially a promising agent to be used in resistant ovarian tumors.
Collapse
Affiliation(s)
- Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood Moqbel As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mashal Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam A.A. Sulaiman
- Lab Technical Support Office (LTSO), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| |
Collapse
|
20
|
Doroshow JH, Juhasz A. Modulation of selenium-dependent glutathione peroxidase activity enhances doxorubicin-induced apoptosis, tumour cell killing and hydroxyl radical production in human NCI/ADR-RES cancer cells despite high-level P-glycoprotein expression. Free Radic Res 2019; 53:882-891. [PMID: 31290351 DOI: 10.1080/10715762.2019.1641602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To define the role of glutathione peroxidase (GPx) in modulating the oxygen radical-related cytotoxicity of doxorubicin and H2O2 in cells that overexpress P-glycoprotein (Pgp), the GPx activity of NCI/ADR-RES cancer cells was altered by growth in 0.5% serum with (MR-30 subline) or without (MR-0 subline) selenium supplementation. GPx activity increased from 2.2 nmol/min/mg (MR-0) to 22.5 nmol/min/mg (MR-30) when cells were grown in 30-nM selenium, p < .01; the activities of other antioxidant enzymes were unchanged by selenium. By reverse transcriptase polymerase chain reaction, MR-30 and MR-0 cells expressed similar levels of the MDR1, GPx-1, BCL2 and TOP2A mRNA. The IC50 concentration for H2O2 in MR-0 cells was 10-fold lower than in the MR-30 subline, p < .01. Despite identical anthracycline accumulation and efflux in these two lines that expressed equivalent levels of Pgp, the doxorubicin IC50 decreased fivefold in MR-0 versus MR-30 cells, p < .01. Log-linear tumour cell killing by doxorubicin was observed only in selenium-deficient MR-0 cells. Doxorubicin exposure also produced substantially more apoptosis in MR-0 than MR-30 cells; this was not related to the presence of selenium per se. MR-0 cells generated ≈5-times more methane from dimethyl sulfoxide (a measure of reactive oxygen metabolism) than MR-30 cells in the presence of equimolar doxorubicin concentrations (p < .05). These studies suggest that GPx-mediated detoxification of peroxides can modulate the antitumor activity of doxorubicin in the presence of high levels of Pgp.
Collapse
Affiliation(s)
- James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center , Duarte , CA , USA
| |
Collapse
|
21
|
Slobodnyuk K, Radic N, Ivanova S, Llado A, Trempolec N, Zorzano A, Nebreda AR. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis 2019; 10:376. [PMID: 31092814 PMCID: PMC6520338 DOI: 10.1038/s41419-019-1607-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
Apoptosis and senescence are two mutually exclusive cell fate programs that can be activated by stress. The factors that instruct cells to enter into senescence or apoptosis are not fully understood, but both programs can be regulated by the stress kinase p38α. Using an inducible system that specifically activates this pathway, we show that sustained p38α activation suffices to trigger massive autophagosome formation and to enhance the basal autophagic flux. This requires the concurrent effect of increased mitochondrial reactive oxygen species production and the phosphorylation of the ULK1 kinase on Ser-555 by p38α. Moreover, we demonstrate that macroautophagy induction by p38α signaling determines that cancer cells preferentially enter senescence instead of undergoing apoptosis. In agreement with these results, we present evidence that the induction of autophagy by p38α protects cancer cells from chemotherapy-induced apoptosis by promoting senescence. Our results identify a new mechanism of p38α-regulated basal autophagy that controls the fate of cancer cells in response to stress.
Collapse
Affiliation(s)
- Konstantin Slobodnyuk
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Nevenka Radic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Llado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Natalia Trempolec
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain. .,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
22
|
Zidan AAA, El-Ashmawy NE, Khedr EG, Ebeid EZM, Salem ML, Mosalam EM. Loading of doxorubicin and thymoquinone with F2 gel nanofibers improves the antitumor activity and ameliorates doxorubicin-associated nephrotoxicity. Life Sci 2018; 207:461-470. [PMID: 29885348 DOI: 10.1016/j.lfs.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
AIMS This study aimed to elucidate the benefits of nanoformulation of doxorubicin (DOX) and thymoquinone (TQ) loaded with nanofibers of poly-N-acetyl glucosamine (pGlcNAc), which is known as F2 gel, over their conventional free forms. Moreover, evaluate the role of TQ in improving chemotherapeutic effect and ameliorating nephrotoxicity of DOX. MAIN METHODS The drugs were loaded into F2 gel followed by measurement of physicochemical characterization. Next, MCF-7 and HEPG2 cells were treated with the prepared formulations and assessed for apoptosis alongside with cellular proliferation. Furthermore, we experimentally induced Heps liver carcinoma in mice and at the end of the treatment, mice were sacrificed and serum samples were used to assess nephrotoxicity markers; blood urea nitrogen (BUN) and creatinine. Additionally, renal tissue was used for determination of oxidative markers and antioxidant enzymes; whereas, tumor tissue was utilized to measure nuclear factor kappa B (NF-κB) and caspase 3. KEY FINDINGS Nanoformulation showed dramatic increase in apoptosis, caspase 3, and antioxidant enzymes; in contrast to, dramatic fall in cell viability, tumor volume, oxidative and nephrotoxicity markers, and NF-κB compared to corresponding free therapies. Combined therapy was superior in conserving the measured parameters compared to other treated groups. SIGNIFICANCE F2 gel loaded with DOX and TQ revealed enhanced antitumor activity with minimal toxicity. Moreover, using TQ as an adjuvant with DOX could augment its cytotoxicity and ameliorate nephrotoxicity.
Collapse
Affiliation(s)
- Abdel-Aziz A Zidan
- Zoology Department, Faculty of Science, Damanhour University, Egypt; Center of Excellence in cancer Research (CECR), Tanta University, Tanta, Egypt.
| | | | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - El-Zeiny M Ebeid
- Physical Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
23
|
Abstract
Failure to eliminate cancer cells that have been exposed to cytotoxic agents may contribute to the development of resistance to antitumor drugs. A widespread model in present day oncology is that antitumor therapy involves the triggering of tumor cells to undergo apoptosis, and cells that can avoid apoptosis will be resistant to such therapy. Apoptosis is a defined program of cell death that is markedly influenced by the fact that many routes leading to it are mutated or deregulated in human cancer. Mutations in the tumor suppressor protein p53, a common feature of many cancers, may decrease the sensitivity of cells to some antitumor agents. Moreover, it has been increasingly reported that antitumor therapy not only causes apoptosis, but other forms of cell death as well, such as mitotic catastrophe, necrosis and autophagy, or a permanent cell arrest with phenotype characteristics of senescence. Mitotic catastrophe is a form of cell death that results from abnormal mitosis, which does not seem to depend on wild-type p53. Sometimes mitotic catastrophe is used restrictively for faulty mitosis leading to cell death, which may occur via apoptosis or necrosis. We critically review herein how antitumor therapy may elicit the response of human cancers through different cell pathways leading to cell death.
Collapse
|
24
|
Panchuk RR, Skorokhyd NR, Kozak YS, Lehka LV, Moiseenok AG, Stoika RS. Tissue-protective activity of selenomethionine and D-panthetine in B16 melanoma-bearing mice under doxorubicin treatment is not connected with their ROS scavenging potential. Croat Med J 2017; 58:171-184. [PMID: 28409500 PMCID: PMC5410729 DOI: 10.3325/cmj.2017.58.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim To evaluate molecular mechanisms of tissue-protective effects of antioxidants selenomethionine (SeMet) and D-pantethine (D-Pt) applied in combination with doxorubicin (Dx) in B16 melanoma-bearing-mice. Methods Impact of the chemotherapy scheme on a survival of tumor-bearing animals, general nephro- and hepatotoxicity, blood cell profile in vivo, and ROS content in B16 melanoma cells in vitro was compared with the action of Dx applied alone. Nephrotoxicity of the drugs was evaluated by measuring creatinine indicator assay, hepatotoxicity was studied by measuring the activity of ALT/AST enzymes, and myelotoxicity was assessed by light microscopic analysis of blood smears. Changes in ROS content in B16 melanoma cells under Dx, SeMet, and D-Pt action in vitro were measured by incubation with fluorescent dyes dihydrodichlorofluoresceindiacetate (DCFDA, H2O2-specific) and dihydroethidium (DHE, O2--specific), and further analysis at FL1 (DCFDA) or FL2 channels (DHE) of FACScan flow cytometer. The impact of aforementioned compounds on functional status of mitochondria was measured by Rhodamine 123 assay and further analysis at FL1 channel of FACScan flow cytometer. Results Selenomethionine (1200 µg/kg) and D-pantethine (500 mg/kg) in combination with Dx (10 mg/kg) significantly reduced tumor-induced neutrophilia, lymphocytopenia, and leukocytosis in comparison to Dx treatment alone. Moreover, SeMet and D-Pt decreased several side effects of Dx, namely an elevated creatinine level in blood and monocytosis, thus normalizing health conditions of B16 melanoma-bearing animals. Conclusions Our results showed that antioxidants selenomethionine and D-pantethine possess significant nephroprotective and myeloprotective activity toward Dx action on murine B16 melanoma in vivo, but fail to boost a survival of B16 melanoma-bearing animals. The observed cytoprotective effects of studied antioxidants are not directly connected with their ROS scavenging.
Collapse
Affiliation(s)
- Rostyslav R Panchuk
- Rostyslav R. Panchuk, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine,
| | | | | | | | | | | |
Collapse
|
25
|
Panchuk RR, Lehka LV, Terenzi A, Matselyukh BP, Rohr J, Jha AK, Downey T, Kril IJ, Herbacek I, van Schoonhoven S, Heffeter P, Stoika RS, Berger W. Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic Biol Med 2017; 106:134-147. [PMID: 28189848 PMCID: PMC5552372 DOI: 10.1016/j.freeradbiomed.2017.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
Abstract
Landomycin E (LE) is an angucycline antibiotic produced by Streptomyces globisporus. Previously, we have shown a broad anticancer activity of LE which is, in contrast to the structurally related and clinically used anthracycline doxorubicin (Dx), only mildly affected by multidrug resistance-mediated drug efflux. In the present study, cellular and molecular mechanisms underlying the anticancer activity of landomycin E towards Jurkat T-cell leukemia cells were dissected focusing on the involvement of radical oxygen species (ROS). LE-induced apoptosis distinctly differed in several aspects from the one induced by Dx. Rapid generation of both extracellular and cell-derived hydrogen peroxide already at one hour drug exposure was observed in case of LE but not found before 24h for Dx. In contrast, Dx but not LE induced production of superoxide radicals. Mitochondrial damage, as revealed by JC-1 staining, was weakly enhanced already at 3h LE treatment and increased significantly with time. Accordingly, activation of the intrinsic apoptosis pathway initiator caspase-9 was not detectable before 12h exposure. In contrast, cleavage of the down-stream caspase substrate PARP-1 was clearly induced already at the three hour time point. Out of all caspases tested, only activation of effector caspase-7 was induced at this early time points paralleling the LE-induced oxidative burst. Accordingly, this massive cleavage of caspase-7 at early time points was inhibitable by the radical scavenger N-acetylcysteine (NAC). Additionally, only simultaneous inhibition of multiple caspases reduced LE-induced apoptosis. Specific scavengers of both H2O2 and OH• effectively decreased LE-induced ROS production, but only partially inhibited LE-induced apoptosis. In contrast, NAC efficiently blocked both parameters. Summarizing, rapid H2O2 generation and a complex caspase activation pattern contribute to the antileukemic effects of LE. As superoxide generation is considered as the main cardiotoxic mechanism of Dx, LE might represent a better tolerable drug candidate for further (pre)clinical development.
Collapse
Affiliation(s)
| | - Lilya V Lehka
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Bohdan P Matselyukh
- D.K. Zabolotny Institute of Microbiology and Virology NAS of Ukraine, Lviv, Ukaine
| | - Jürgen Rohr
- University of Kentucky, College of Pharmacy, Lexington, USA
| | - Amit K Jha
- University of Kentucky, College of Pharmacy, Lexington, USA
| | - Theresa Downey
- University of Kentucky, College of Pharmacy, Lexington, USA
| | - Iryna J Kril
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Irene Herbacek
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Shi Y, Zhao Y, Shao N, Ye R, Lin Y, Zhang N, Li W, Zhang Y, Wang S. Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells. Oncol Lett 2017; 13:4402-4412. [PMID: 28588711 DOI: 10.3892/ol.2017.6025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNA/miR) are short non-coding RNAs that function in the endogenous regulation of genes. miRNAs serve important roles in cellular events such as apoptosis, cell proliferation, migration, invasion, autophagy and the cell cycle. They also control the genesis and progression of tumors. Autophagy is a self-digestive process that occurs as a response to stress, and serves two opposite roles in tumor promotion or inhibition that may result in resistance to therapy. A number of studies have revealed that miRNAs control autophagic activity by targeting autophagy-associated genes, particularly in cancer. These previous studies demonstrated that miR-96-5p is upregulated in several types of malignant tumors. However, other functions of miR-96-5p in breast cancer, particularly those that are associated with autophagy, remain unknown. miR-96-5p expression was demonstrated to be upregulated in breast cancer cells compared with in normal breast epithelial cells. The overexpression of miR-96-5p inhibited autophagy, particularly starvation-induced autophagy, in MCF-7 and MDA-MB-231 cells. In addition, this inhibitory effect may have resulted in the suppression of Forkhead box O1. Additionally, the overexpression of miR-96-5p may promote cell proliferation, migration and invasion and inhibit apoptosis in MCF-7 and MDA-MB-231 cells. These data indicate that miR-96-5p is involved in the progression of breast cancer cells and may represent a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yawei Shi
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Nan Shao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Runyi Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yin Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ning Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yunjian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shenming Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China.,Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
27
|
Meredith AM, Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. ACTA ACUST UNITED AC 2016; 68:729-41. [PMID: 26989862 DOI: 10.1111/jphp.12539] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The use of doxorubicin, a drug utilised for many years to treat a wide variety of cancers, has long been limited due to the significant toxicity that can occur not only during, but also years after treatment. It has multiple mechanisms of action including the intercalation of DNA, inhibition of topoisomerase II and the production of free radicals. We review the literature, with the aim of highlighting the role of drug concentration being an important determinant on the unfolding cell biological events that lead to cell stasis or death. METHODS The PubMed database was consulted to compile this review. KEY FINDINGS It has been found that the various mechanisms of action at the disposal of doxorubicin culminate in either cell death or cell growth arrest through various cell biological events, such as apoptosis, autophagy, senescence and necrosis. Which of these events is the eventual cause of cell death or growth arrest appears to vary depending on factors such as the patient, cell and cancer type, doxorubicin concentration and the duration of treatment. CONCLUSIONS Further understanding of doxorubicin's influence on cell biological events could lead to an improvement in the drug's efficacy and reduce toxicity.
Collapse
Affiliation(s)
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, WA, Australia.,Curtin Biosciences Research Precinct, Bentley, WA, Australia
| |
Collapse
|
28
|
Zhu XF, Li W, Ma JY, Shao N, Zhang YJ, Liu RM, Wu WB, Lin Y, Wang SM. Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells. Oncol Lett 2015; 10:2974-2980. [PMID: 26722274 DOI: 10.3892/ol.2015.3735] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Heme oxygenase-1 (HMOX-1) is a microsomal enzyme that exerts anti-apoptotic and cytoprotective effects. In the present study, HMOX-1 was demonstrated to be overexpressed and able to be induced by doxorubicin in breast cancer cell lines. Knockdown of HMOX-1 using short interfering (si)RNA enhanced the cytotoxicity of doxorubicin in MDA-MB-231 and BT549 cells. Knockdown of HMOX-1 downregulated B cell lymphoma (Bcl)-2 and Bcl-extra large expression, and significantly enhanced doxorubicin-induced apoptosis in MDA-MB-231 and BT549 cells. Additionally, knockdown of HMOX-1 upregulated light chain 3B expression and markedly increased the accumulation of autophagic vacuoles in MDA-MB-231 and BT549 cells treated with doxorubicin. These results indicated that HMOX-1 may be involved in conferring the chemoresistance of breast cancer cells, by preventing apoptosis and autophagy. Therefore, HMOX-1 may represent a potential therapeutic target for enhancing the cytotoxicity and efficacy of doxorubicin during the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China ; Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jie-Yi Ma
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Nan Shao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yun-Jian Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Rui-Ming Liu
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China ; Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei-Bin Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shen-Ming Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China ; Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
29
|
Zhang Y, Xie Y, You S, Han Q, Cao Y, Zhang X, Xiao G, Chen R, Liu C. Autophagy and Apoptosis in the Response of Human Vascular Endothelial Cells to Oxidized Low-Density Lipoprotein. Cardiology 2015; 132:27-33. [PMID: 26021729 DOI: 10.1159/000381332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Oxidized low-density lipoprotein (ox-LDL) may induce autophagy, apoptosis, necrosis or proliferation of cultured endothelial cells depending on the concentration and exposure time. Our previous studies found that ox-LDL exposure for 6 h increases the autophagic level of human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. The present study investigates the relationship between autophagy and apoptosis in HUVECs exposed to ox-LDL. METHODS Flow cytometry and Western blot were used to study the apoptotic and autophagic phenomena. The contribution of autophagic and apoptotic mechanisms to ox-LDL-induced upregulation of MAP1-LC3, beclin1 and p53 protein levels were assessed by pretreatment with the autophagic inhibitors 3-MA and Atg5 small interfering (si)RNA, as well as z-vad-fmk, an apoptosis inhibitor. RESULTS ox-LDL induced the apoptosis of HUVECs in a concentration-dependent way. The increased expression of the autophagic proteins, LC3-II and beclin1, can be reversed by 3-MA and z-vad-fmk pretreatment. 3-MA and Atg5 siRNA increased the ox-LDL-induced increases of the p53 protein level and the annexin V-positive staining, which was decreased by z-vad-fmk. CONCLUSION These results suggest that overstimulation of ox-LDL can induce autophagy and apoptosis in HUVECs. Inhibition of apoptosis leads to an inhibition of autophagy induced by ox-LDL. However, inhibition of autophagy leads to an increase in the ox-LDL-induced apoptosis.
Collapse
Affiliation(s)
- Yanlin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu B, Zhang X, Chen Y, Yao Z, Yang Z, Gao D, Jiang Q, Liu J, Jiang Z. Enzymatic synthesis of poly(ω-pentadecalactone-co-butylene-co-3,3′-dithiodipropionate) copolyesters and self-assembly of the PEGylated copolymer micelles as redox-responsive nanocarriers for doxorubicin delivery. Polym Chem 2015. [DOI: 10.1039/c4py01321b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PEG-polyester copolymers bearing disulfide groups were synthesized to serve as redox-responsive anticancer drug carriers with an enhanced efficacy.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery
- The Ling Nan Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Xiaofang Zhang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Ya Chen
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Zhicheng Yao
- Department of General Surgery
- The Ling Nan Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Zhe Yang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Di Gao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Qing Jiang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jie Liu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Zhaozhong Jiang
- Department of Biomedical Engineering
- Molecular Innovations Center
- Yale University
- West Haven
- USA
| |
Collapse
|
31
|
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 2014; 5:675-80. [PMID: 25483338 PMCID: PMC4615906 DOI: 10.4161/19490976.2014.969989] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is suspected to promote colorectal cancer (CRC). Escherichia coli are more frequently found in CCR biopsies than in healthy mucosa; furthermore, the majority of mucosa-associated E. coli isolated from CCR harbors the pks genomic island (pks+ E. coli) that is responsible for the synthesis of colibactin, a genotoxic compound. We have recently reported that transient contact of a few malignant cells with colibactin-producing E. coli increases tumor growth in a xenograft mouse model. Growth is sustained by cellular senescence that is accompanied by the production of growth factors. We demonstrated that cellular senescence is a consequence of the pks+ E. coli-induced alteration of p53 SUMOylation, an essential post-translational modification in eukaryotic cells. The underlying mechanisms for this process involve the induction of miR-20a-5p expression, which targets SENP1, a key protein in the regulation of the SUMOylation process. These results are consistent with the expression of SENP1, miR-20a-5p and growth factors that are observed in a CRC mouse model and in human CCR biopsies colonized by pks+ E. coli. Overall, the data reveal a new paradigm for carcinogenesis in which pks+ E. coli infection induces cellular senescence characterized by the production of growth factors that promote the proliferation of uninfected cells and, subsequently, tumor growth.
Collapse
Key Words
- AOM, azoxymethane
- CM, conditioned medium
- CRC, colorectal cancer
- DSS, dextran sodium sulfate
- Escherichia coli, microbiota
- MOI, multiplicity of infection
- SA-β-gal, senescence-associated β-galactosidase
- SASP, senescence-associated secretory phenotype
- SENP1
- SUMO
- colibactin
- colorectal cancer
- miR, microRNA
- pks+ E. coli, colibactin-producing E. coli
- pks- E. coli, isogenic mutant of pks+ E. coli deficient for colibactin production
- toxin, microRNA
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Clermont Université; Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France
| | - Antony Cougnoux
- Clermont Université; Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Clermont Université; Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France,Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Clermont Université; Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France,Centre Hospitalier Universitaire, Clermont-Ferrand, France,This article is dedicated to the memory of Arlette Darfeuille-Michaud. This work would never been achieved without her enthusiasm and energy.
| | - Richard Bonnet
- Clermont Université; Université d'Auvergne; Inserm U1071; INRA USC2018, Clermont-Ferrand, France,Centre Hospitalier Universitaire, Clermont-Ferrand, France,Correspondence to: Richard Bonnet;
| |
Collapse
|
32
|
Hsiao YL, Hsieh TZ, Liou CJ, Cheng YH, Lin CT, Chang CY, Lai YS. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines. BMC Vet Res 2014; 10:229. [PMID: 25267010 PMCID: PMC4189743 DOI: 10.1186/s12917-014-0229-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022] Open
Abstract
Background Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. Results We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. Conclusion We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.
Collapse
|
33
|
Hu B, Du Q, Deng S, An HM, Pan CF, Shen KP, Xu L, Wei MM, Wang SS. Ligustrum lucidum Ait. fruit extract induces apoptosis and cell senescence in human hepatocellular carcinoma cells through upregulation of p21. Oncol Rep 2014; 32:1037-42. [PMID: 25017491 DOI: 10.3892/or.2014.3312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023] Open
Abstract
Nü-zhen-zi, the fruit of Ligustrum lucidum Ait., is one of the most frequently used liver Yin tonifying Chinese herbs for the treatment of liver cancer. However, the effect of Ligustrum lucidum fruit on hepatocarcinoma cells remains unknown. In the present study, we evaluated the effects of a Ligustrum lucidum fruit extract (LLFE) on human hepatocellular carcinoma Bel-7402 cells. The results showed that LLFE inhibited the proliferation of the Bel-7402 cells in a dose- and time-dependent manner. LLFE induced apoptosis in Bel-7402 cells accompanied by activation of caspase-3, -8 and -9. LLFE-induced apoptosis was completely abrogated by a pan caspase inhibitor, Z-VAD-FMK. LLFE treatment also caused a large and flat morphologic cellular change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in the Bel-7402 cells, accompanied by upregulation of p21 and downregulation of RB phosphorylation. Specific knockdown of p21 expression by RNA interference partially abrogated LLFE-induced apoptosis, and significantly abrogated LLFE-induced cell senescence. These observations suggest that Nü-zhen-zi is a potential anticancer herb and support the traditional use of Nü-zhen-zi for hepatocarcinoma treatment.
Collapse
Affiliation(s)
- Bing Hu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Qin Du
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Shan Deng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Hong-Mei An
- Department of Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chuan-Fang Pan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Ke-Ping Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Ling Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Meng-Meng Wei
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| | - Shuang-Shuang Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, P.R. China
| |
Collapse
|
34
|
A novel manganese complex LMnAc selectively kills cancer cells by induction of ROS-triggered and mitochondrial-mediated cell death. SCIENCE CHINA-LIFE SCIENCES 2014; 57:998-1010. [PMID: 24935782 DOI: 10.1007/s11427-014-4682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
We previously identified a novel synthesized metal compound, LMnAc ([L2Mn2(Ac)(H2O)2](Ac) (L=bis(2-pyridylmethyl) amino-2-propionic acid)). This compound exhibited significant inhibition on cancer cell proliferation and was more selective against cancer cells than was the popular chemotherapeutic reagent cisplatin. In this study, we further investigated the underlying molecular mechanisms of LMnAc-induced cancer cell death. We found that LMnAc achieved its selectivity against cancer cells through the transferrin-transferrin receptor system, which is highly expressed in tumor cells. LMnAc triggered cancer cells to commit autophagy and apoptosis, which was mediated by the mitochondrial pathway. Moreover, LMnAc disrupted mitochondrial function, resulting in mitochondrial membrane potential collapse and ATP reduction. In addition, LMnAc induced intracellular Ca(2+) overload and reactive oxygen species generation. Interestingly, its anticancer effect was significantly reduced following pretreatment with the antioxidant N-acetyl cysteine, indicating that reactive oxygen species triggered cell death. Altogether, our data suggest that LMnAc appears to be a selectively promising anticancer drug candidate.
Collapse
|
35
|
Ristic B, Bosnjak M, Arsikin K, Mircic A, Suzin-Zivkovic V, Bogdanovic A, Perovic V, Martinovic T, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp Cell Res 2014; 326:90-102. [PMID: 24907655 DOI: 10.1016/j.yexcr.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.
Collapse
Affiliation(s)
- Biljana Ristic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Arsikin
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Violeta Suzin-Zivkovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia.
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
36
|
Cytotoxic autophagy in cancer therapy. Int J Mol Sci 2014; 15:10034-51. [PMID: 24905404 PMCID: PMC4100138 DOI: 10.3390/ijms150610034] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/17/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.
Collapse
|
37
|
Leonel C, Gelaleti GB, Jardim BV, Moschetta MG, Regiani VR, Oliveira JG, Zuccari DAPC. Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors. BMC Vet Res 2014; 10:49. [PMID: 24565113 PMCID: PMC3975948 DOI: 10.1186/1746-6148-10-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 02/15/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Glutathione (GSH) is one of the most important agents of the antioxidant defense system of the cell because, in conjunction with the enzymes glutathione peroxidase (GSH-Px) and glutathione S transferase pi (GSTpi), it plays a central role in the detoxification and biotransformation of chemotherapeutic drugs. This study evaluated the expression of GSH and the GSH-Px and GSTpi enzymes by immunohistochemistry in 30 canine mammary tumors, relating the clinicopathological parameters, clinical outcome and survival of the bitches. In an in vitro study, the expression of the genes glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS) that synthesize GSH and GSH-Px gene were verified by qPCR and subjected to treatment with doxorubicin, to check the resistance of cancer cells to chemotherapy. RESULTS The immunohistochemical expression of GSH, GSH-Px and GSTpi was compared with the clinical and pathological characteristics and the clinical outcome in the bitches, including metastasis and death.The results showed that high immunoexpression of GSH was correlated to the absence of tumor ulceration and was present in dogs without metastasis (P < 0.05). There was significant correlation of survival with the increase of GSH (P < 0.05). The expression of the GSH-Px and GSTpi enzymes showed no statistically significant correlation with the analyzed variables (p > 0.05). The analysis of the relative expression of genes responsible for the synthesis of GSH (GCLC and GSS) and GSH-Px by quantitative PCR was done with cultured cells of 10 tumor fragments from dogs with mammary tumors.The culture cells showed a decrease in GCLC and GSS expression when compared with no treated cells (P < 0.05). High GSH immunoexpression was associated with better clinical outcomes. CONCLUSION Therefore, high expression of the GSH seems to play an important role in the clinical outcome of patients with mammary tumors and suggest its use as prognostic marker. The in vitro doxorubicin treatment significantly reduces the expression of GCLC and GSS genes so we can consider them to be candidates for predictive markers of therapeutic response in mammary cancer.
Collapse
Affiliation(s)
- Camila Leonel
- Graduate Program in Genetics, Universidade Estadual Paulista – UNESP/IBILCE, São José do Rio Preto, SP, Brazil
| | - Gabriela B Gelaleti
- Graduate Program in Genetics, Universidade Estadual Paulista – UNESP/IBILCE, São José do Rio Preto, SP, Brazil
| | - Bruna V Jardim
- Graduate Program in Genetics, Universidade Estadual Paulista – UNESP/IBILCE, São José do Rio Preto, SP, Brazil
| | - Marina G Moschetta
- Graduate Program in Health Sciencies, Laboratory of Molecular Reserach in Cancer (LIMC), Departament of Molecular Biology, Faculdade de Medicina de São José do Rio Preto, FAMERP, São José do Rio Preto, SP, Brazil
| | - Vitor R Regiani
- Graduate Program in Health Sciencies, Research Unit Genetics and Molecular Biology (UPGEM), Faculdade de Medicina de São José do Rio Preto, FAMERP, São José do Rio Preto, SP, Brazil
| | | | - Debora APC Zuccari
- Departament of Molecular Biology, Faculdade de Medicina de São José do Rio Preto, FAMERP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
38
|
Zhou Y, Shu F, Liang X, Chang H, Shi L, Peng X, Zhu J, Mi M. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One 2014; 9:e89021. [PMID: 24551210 PMCID: PMC3923868 DOI: 10.1371/journal.pone.0089021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
Ampelopsin (AMP), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. In this study, we investigated its anti-cancer activity in human breast cancer cell lines, and explored the underlying mechanism of this action. Our results showed that treatment with AMP dose-dependently inhibited cell viability and induced apoptosis in MCF-7 and MDA-MB-231 breast cancer cells without cytotoxicity in human normal breast epithelial cells MCF-10A. Meanwhile, AMP dose- dependently triggered reactive oxygen species (ROS) generation in both breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) strongly attenuated AMP-induced ROS production, along with cell growth inhibition and apoptosis. Furthermore, AMP was observed to activate endoplasmic reticulum (ER) stress, as evidenced by the up-regulation of ER stress-related proteins, including GRP78, p-PERK, p-elF2α, cleaved ATF6α and CHOP, while knockdown of ATF6α or PERK markedly down-regulated AMP-induced CHOP expression. Blocking ER stress using 4-phenylbutyric acid not only down-regulated AMP-induced GRP78 and CHOP expression, but also significantly decreased AMP-induced cell growth inhibition and apoptosis, whereas ER stress inducer thapsigargin played opposing effects. Additionally, NAC inhibited AMP-induced ER stress by down-regulating GRP78 and CHOP expression. Conversely, blocking ER stress using CHOP siRNA decreased AMP-induced ROS production and cell apoptosis. Taken together, these results demonstrate that AMP has anti-tumor effects against breast cancer cells through ROS generation and ER stress pathway, which therefore provide experimental evidences for developing AMP as a new therapeutic drug for breast cancer.
Collapse
Affiliation(s)
- Yong Zhou
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Furong Shu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Xinyu Liang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Hui Chang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Linying Shi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Xiaoli Peng
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
- * E-mail: (JDZ); (MTM)
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Medical Nutrition, Chongqing, P.R. China
- * E-mail: (JDZ); (MTM)
| |
Collapse
|
39
|
Lin MG, Liu LP, Li CY, Zhang M, Chen Y, Qin J, Gu YY, Li Z, Wu XL, Mo SL. Scutellaria Extract Decreases the Proportion of Side Population Cells in a Myeloma Cell Line by Down-regulating the Expression of ABCG2 Protein. Asian Pac J Cancer Prev 2013; 14:7179-86. [DOI: 10.7314/apjcp.2013.14.12.7179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
B-9-3, a novel β-carboline derivative exhibits anti-cancer activity via induction of apoptosis and inhibition of cell migration in vitro. Eur J Pharmacol 2013; 724:219-30. [PMID: 24380828 DOI: 10.1016/j.ejphar.2013.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022]
Abstract
Peganum harmala L is an important medicinal plant that has been used from ancient time due to its alkaloids rich of ß-carbolines. Harmane is a naturally occurring ß-carboline extracted from Peganum harmala L, that exhibits a wide range of biological, psychopharmacological, and toxicological actions. The synthesis of novel derivatives with high anti-cancer activity and less side effects is necessary. In the present study, B-9-3-a semi-synthetic compound that is formed of two harmane molecules bound by a butyl group-showed a strong anti-cancer activity against a human lung cancer cell line, a human breast cancer cell line, and a human colorectal carcinoma cell line. B-9-3 anti-proliferative effect followed a similar pattern in the three cell lines. This pattern includes a dose-dependent induction of apoptosis, or necroptosis as confirmed by Hoechst staining, flow cytometry and western blot analyses, and the inhibition of cancer cells migration that was shown to be dependent on the drug׳s concentration as well. Moreover, B-9-3 inhibited tube formation in human umbilical vascular endothelial cell line (HUVEC), which indicates an anti-angiogenesis activity in vitro. In summary, B-9-3, a semi-synthetic derivative of ß-carboline, has an anti-proliferative effect against tumor cells via induction of apoptosis and inhibition of cell migration.
Collapse
|
41
|
Sodium valproate induces cell senescence in human hepatocarcinoma cells. Molecules 2013; 18:14935-47. [PMID: 24304587 PMCID: PMC6270308 DOI: 10.3390/molecules181214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs). Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP), a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.
Collapse
|
42
|
Nestal de Moraes G, Vasconcelos FC, Delbue D, Mognol GP, Sternberg C, Viola JPB, Maia RC. Doxorubicin induces cell death in breast cancer cells regardless of Survivin and XIAP expression levels. Eur J Cell Biol 2013; 92:247-56. [PMID: 24064045 DOI: 10.1016/j.ejcb.2013.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the leading cause of deaths in women around the world. Resistance to therapy is the main cause of treatment failure and still little is known about predictive biomarkers for response to systemic therapy. Increasing evidence show that Survivin and XIAP overexpression is closely associated with chemoresistance and poor prognosis in breast cancer. However, their impact on resistance to doxorubicin (dox), a chemotherapeutic agent widely used to treat breast cancer, is poorly understood. Here, we demonstrated that dox inhibited cell viability and induced DNA fragmentation and activation of caspases-3, -7 and -9 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, regardless of different p53 status. Dox exposure resulted in reduction of Survivin and XIAP mRNA and protein levels. However, when we transfected cells with a Survivin-encoding plasmid, we did not observe a cell death-resistant phenotype. XIAP and Survivin silencing, either alone or in combination, had no effect on breast cancer cells sensitivity towards dox. Altogether, we demonstrated that breast cancer cells are sensitive to the chemotherapeutic agent dox irrespective of Survivin and XIAP expression levels. Also, our findings suggest that dox-mediated modulation of Survivin and XIAP might sensitize cells to taxanes when used in a sequential regimen.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Cellular and Molecular Hemato-Oncology Laboratory, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Praça da Cruz Vermelha, 23/6° andar, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Differential effects of methoxyamine on doxorubicin cytotoxicity and genotoxicity in MDA-MB-231 human breast cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:140-7. [PMID: 23958474 DOI: 10.1016/j.mrgentox.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Pharmacological inhibition of DNA repair is a promising approach to increase the effectiveness of anticancer drugs. The chemotherapeutic drug doxorubicin (Dox) may act, in part, by causing oxidative DNA damage. The base excision repair (BER) pathway effects the repair of many DNA lesions induced by reactive oxygen species (ROS). Methoxyamine (MX) is an indirect inhibitor of apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional BER protein. We have evaluated the effects of MX on the cytotoxicity and genotoxicity of Dox in MDA-MB-231 metastatic breast cancer cells. MX has little effects on the viability and proliferation of Dox-treated cells. However, as assessed by the cytokinesis-block micronucleus assay (CBMN), MX caused a significant 1.4-fold increase (P<0.05) in the frequency of micronucleated binucleated cells induced by Dox, and also altered the distribution of the numbers of micronuclei. The fluorescence probe dihydroethidium (DHE) indicated little production of ROS by Dox. Overall, our results suggest differential outcomes for the inhibition of APE1 activity in breast cancer cells exposed to Dox, with a sensitizing effect observed for genotoxicity but not for cytotoxicity.
Collapse
|
44
|
Polewska J, Skwarska A, Augustin E, Konopa J. DNA-Damaging Imidazoacridinone C-1311 Induces Autophagy followed by Irreversible Growth Arrest and Senescence in Human Lung Cancer Cells. J Pharmacol Exp Ther 2013; 346:393-405. [DOI: 10.1124/jpet.113.203851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Jardim BV, Moschetta MG, Leonel C, Gelaleti GB, Regiani VR, Ferreira LC, Lopes JR, Zuccari DAPDC. Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. Oncol Rep 2013; 30:1119-28. [PMID: 23765060 DOI: 10.3892/or.2013.2540] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/18/2013] [Indexed: 11/05/2022] Open
Abstract
The use of prognostic markers for breast cancer allows therapeutic strategies to be defined more efficiently. The expression of glutathione (GSH) and glutathione peroxidase (GPX) in tumor cells has been evaluated as a predictor of prognosis and response to cytotoxic treatments. Its immunoexpression was assessed in 63 women diagnosed with invasive ductal carcinoma in a retrospective study. The results showed that high GSH expression was associated with tumors negative for the estrogen receptor (ER) (P<0.05), and GPX expression was associated with tumors negative for the progesterone receptor (PR) and patient mortality. Focusing on the 37 patients who received adjuvant chemotherapy/radiotherapy (Group I), high expression of GPX was associated with a high rate of patient mortality (P<0.05). The 19 patients who received only adjuvant chemotherapy (Group II) showed high expression of GSH in relation to metastasis (P<0.05). In addition, high levels of GPX expression were significantly associated with a shorter overall survival (P<0.05). To confirm this, the expression of precursor genes of GSH [glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS)] and the GPX gene was analyzed using quantitative PCR in cultured neoplastic mammary cells treated with doxorubicin. Doxorubicin treatment was able to eliminate tumor cells without alterations in the gene expression of GSS, but led to underexpression of the GCLC and GPX genes. Our results suggest that high levels of GPX may be related to the development of resistance to chemotherapy in these tumors, response to treatment and the clinical course of the breast cancer patients.
Collapse
Affiliation(s)
- Bruna Victorasso Jardim
- Department of Biology, Sao Paulo State University - UNESP/IBILCE, 15090-000 São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Peng RQ, Li DD, Ding Y, Wu XQ, Zeng YX, Zhu XF, Zhang XS. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. CHINESE JOURNAL OF CANCER 2013; 30:690-700. [PMID: 21959046 PMCID: PMC4012269 DOI: 10.5732/cjc.011.10056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the anti-malaria drug chloroquine (CQ) has been shown to enhance chemotherapy and radiation sensitivity in clinical trials, the potential mechanisms underlying this enhancement are still unclear. Here, we examined the relevant mechanisms by which the multipotent CQ enhanced the cytotoxicity of topotecan (TPT). The lung cancer cell line A549 was treated with TPT alone or TPT combined with CQ at non-cytotoxic concentrations. Cell viability was assessed using the MTT assay. The percentage of apoptotic cells and the presence of a side population of cells were both determined by flow Cytometry. Autophagy and the expression of Bcl-2 family proteins were examined by Western blotting. The accumulation of YFP-LC3 dots and the formation of acidic vesicular organelles were examined by confocal microscopy. CQ sensitized A549 cells to TPT and enhanced TPT-induced apoptosis in a Bcl-2 family protein-independent fashion. CQ inhibited TPT-induced autophagy, which modified the cytotoxicity of TPT. However, CQ failed to modify the transfer of TPT across the cytoplasmic membrane and did not increase lysosomal permeability. This study showed that CQ at non-cytotoxic concentrations potentiated the cytotoxicity of TPT by interfering with autophagy, implying that CQ has significant potential as a chemotherapeutic enhancer.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Oncology in South China, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi JH, Lyu SY, Lee HJ, Jung J, Park WB, Kim GJ. Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif 2012; 45:420-9. [PMID: 22925501 DOI: 10.1111/j.1365-2184.2012.00839.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The balance between survival and death is a key point for regulation of physiology of stem cells. Recently, applications of natural products to enhance efficiencies in culturing and differentiation of stem cells are increasing. Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) has been known to be toxic to some cancer cells, but it is still unclear whether VCA has a cytotoxic or indeed a proliferative effect on mesenchymal stem cells (MSCs). Here, we have compared effects of VCA in naïve placenta-derived stem cells (PDSCs), immortalized PDSCs and cancer cells (HepG2), and analysed their mechanisms. MATERIALS AND METHODS MTT assay was performed to analyse effects of VCA on naïve PDSCs, immortalized PDSCs and HepG2. FACS, ROS, caspase-3 assay, western blotting and immunofluorescence were performed to detect signalling events involved in self-renewal of the above cell types. RESULTS VCA had cancer cell-specific toxicity to HepG2 cells even with low concentrations of VCA (1-5 pg/ml), toxicity was observed to immortalized PDSCs and HepG2s, while proliferation of naïve PDSCs was significantly increased (P < 0.05). ROS production by VCA treatment in naïve PDSCs was significantly lower compared to controls (P < 0.05). Furthermore, autophagy was activated in naïve PDSCs treated with VCA through increase in type II LC3 and decrease in phosphorylated mTOR. CONCLUSIONS VCA can promote MSC proliferation through an activated autophagic mechanism.
Collapse
Affiliation(s)
- J H Choi
- Department of Biomedical Science, CHA University, Kangnak-ku, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, Rodier F, Davalos AR, Gewirtz DA. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther 2012; 343:763-78. [PMID: 22927544 DOI: 10.1124/jpet.112.197590] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated.
Collapse
Affiliation(s)
- Rachel W Goehe
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Razandi M, Pedram A, Jordan VC, Fuqua S, Levin ER. Tamoxifen regulates cell fate through mitochondrial estrogen receptor beta in breast cancer. Oncogene 2012; 32:3274-85. [PMID: 22907432 PMCID: PMC3505272 DOI: 10.1038/onc.2012.335] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
Abstract
Tamoxifen has both cytostatic and cytotoxic properties for breast cancer. Tamoxifen engaged mitochondrial estrogen receptor beta (ERβ) as an antagonist in MCF-7 BK cells, increasing reactive oxygen species (ROS) concentrations from the mitochondria that were required for cytotoxicity. In part this derived from tamoxifen down-regulating manganese superoxide dismutase (MnSOD) activity through nitrosylating tyrosine 34, thereby increasing ROS. ROS activated protein kinase C delta and c-jun N-terminal kinases, resulting in the mitochondrial translocation of Bax and cytochrome C release. Interestingly, tamoxifen failed to cause high ROS levels or induce cell death in MCF7BK-TR cells due to stimulation of MnSOD activity through agonistic effects at mitochondrial ERβ. In several mouse xenograft models, lentiviral shRNA-induced knockdown of MnSOD caused tumors that grew in the presence of tamoxifen to undergo substantial apoptosis. Tumor MnSOD and mitochondrial ERβ are therefore targets for therapeutic intervention to reverse tamoxifen resistance and enhance a cell death response.
Collapse
Affiliation(s)
- M Razandi
- Division of Endocrinology, Medical Service 111-I, Veterans Affairs Medical Center, Long Beach, CA, USA
| | | | | | | | | |
Collapse
|
50
|
Li Y, Luo Q, Yuan L, Miao C, Mu X, Xiao W, Li J, Sun T, Ma E. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells. Toxicol Appl Pharmacol 2012; 263:21-31. [DOI: 10.1016/j.taap.2012.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/10/2012] [Accepted: 05/25/2012] [Indexed: 02/08/2023]
|