1
|
Eissa N, Azimullah S, Jayaprakash P, Jayaraj RL, Reiner D, Ojha SK, Beiram R, Stark H, Łażewska D, Kieć-Kononowicz K, Sadek B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact 2019; 312:108775. [DOI: 10.1016/j.cbi.2019.108775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
|
2
|
Alachkar A, Khan N, Łażewska D, Kieć-Kononowicz K, Sadek B. Histamine H3 receptor antagonist E177 attenuates amnesia induced by dizocilpine without modulation of anxiety-like behaviors in rats. Neuropsychiatr Dis Treat 2019; 15:531-542. [PMID: 30863075 PMCID: PMC6388968 DOI: 10.2147/ndt.s193125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is the main cause of dementia in elderly people. The potential of histamine H3 receptor (H3R) antagonists as a pharmacological treatment of several neuropsychiatric diseases is well established. METHODS The novel non-imidazole-based H3R antagonist E177 was screened for its pro-cognitive effects on the inhibitory avoidance paradigm (IAP) and novel object recognition (NOR) task in a dizocilpine (DIZ)-induced model of amnesia in male Wistar rats. Donepezil, an acetylcholine esterase inhibitor, was used as the reference drug. RESULTS Acute systemic treatment with E177 (1.25, 2.5, 5, and 10 mg/kg intraperitoneally [i.p.]) significantly attenuated the cognitive impairments induced by DIZ in the IAP (all P-values <0.05, n=7), and the protective effect of the most promising dose of E177 (5 mg/kg) was abrogated when H3R agonist R-(α)-methylhistamine (RAMH; 10 mg/kg i.p.) was co-administered (P=0.281 for DIZ-amnesia group vs DIZ + E177 + RAMH group, n=7). The discrimination index calculated for E177 (5 mg/kg, i.p.) showed a significant memory-enhancing effect on DIZ-induced short-term memory impairment in the NOR task (P<0.05, n=6), with the enhancement nullified when animals were co-administered RAMH (10 mg/kg). Moreover, the results revealed that E177 (5 and 10 mg/kg, i.p.) did not alter the anxiety levels and locomotor activity of animals naïve to the open-field test (all P-values >0.05, n=8) or the elevated plus maze test (all P-values >0.05, n=6-8), which indicated that the E177-induced enhancement of memory performance in the IAP or NOR task was unrelated to changes in emotional response or in spontaneous locomotor activity. CONCLUSION The observed results suggested a possible contribution of H3Rs in the alteration of brain neurotransmitters that accompany neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | - Nadia Khan
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| |
Collapse
|
3
|
Pockes S, Wifling D, Keller M, Buschauer A, Elz S. Highly Potent, Stable, and Selective Dimeric Hetarylpropylguanidine-Type Histamine H 2 Receptor Agonists. ACS OMEGA 2018; 3:2865-2882. [PMID: 30221224 PMCID: PMC6130797 DOI: 10.1021/acsomega.8b00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
On the basis of the long-known prototypic pharmacophore 3-(1H-imidazol-4-yl)propylguanidine (SK&F 91486, 2), monomeric, homodimeric, and heterodimeric bisalkylguanidine-type histamine H2 receptor (H2R) agonists with various alkyl spacers were synthesized. Aiming at increased H2R selectivity of the ligands, the imidazol-4-yl moiety was replaced by imidazol-1-yl, 2-aminothiazol-5-yl or 2-amino-4-methylthiazol-5-yl according to a bioisosteric approach. All compounds turned out to be partial or full agonists at the h/gp/rH2R. The most potent analogue, the thiazole-type heterodimeric ligand 63 (UR-Po461), was a partial agonist (Emax = 88%) and 250 times more potent than histamine (pEC50: 8.56 vs 6.16, gpH2R, atrium). The homodimeric structures 56 (UR-Po395) and 58 (UR-Po448) exhibited the highest hH2R affinities (pKi: 7.47, 7.33) in binding studies. Dimeric amino(methyl)thiazole derivatives, such as 58, generated an increased hH2R selectivity compared to the monomeric analogues, e.g., 139 (UR-Po444). Although monomeric ligands showed up lower affinities and potencies at the H2R, compounds with a short alkylic side chain like 129 (UR-Po194) proved to be highly affine hH4R ligands.
Collapse
Affiliation(s)
- Steffen Pockes
- Institute of Pharmacy, Faculty
of Chemistry and Pharmacy, University of
Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty
of Chemistry and Pharmacy, University of
Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty
of Chemistry and Pharmacy, University of
Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty
of Chemistry and Pharmacy, University of
Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty
of Chemistry and Pharmacy, University of
Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Eissa N, Khan N, Ojha SK, Łazewska D, Kieć-Kononowicz K, Sadek B. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats. Front Neurosci 2018; 12:42. [PMID: 29483860 PMCID: PMC5816071 DOI: 10.3389/fnins.2018.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023] Open
Abstract
The role of Histamine H3 receptors (H3Rs) in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP) and novel object recognition (NOR) task in adult male rats, using donepezil (DOZ) as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7). The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p.) was reversed when rats were co-injected with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.) (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6). In the NOR paradigm, DL77 (5 mg/kg, i.p.) counteracted long-term memory (LTM) deficits induced with MK801 (P < 0.05, n = 6-8), and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6-8), and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p.) (p = 0.877, n = 6, as compared to the (MK801)-amnesic group). However, DL77 (5 mg/kg, i.p.) did not alter short-term memory (STM) impairment in NOR test (p = 0.772, n = 6-8, as compared to (MK801)-amnesic group). Moreover, DL77 (5 mg/kg) failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM) (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6), demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating neurotransmitters related to neurodegenerative disorders, e.g., AD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nadia Khan
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łazewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Hattori Y, Seifert R. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handb Exp Pharmacol 2017; 241:63-118. [PMID: 28233175 PMCID: PMC7120522 DOI: 10.1007/164_2016_124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [35S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl-, Br-, I-) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| |
Collapse
|
6
|
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors. Sci Rep 2016; 6:25327. [PMID: 27138239 PMCID: PMC4853784 DOI: 10.1038/srep25327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.
Collapse
|
7
|
Wittmann HJ, Seifert R, Strasser A. Sodium binding to hH3R and hH4R — a molecular modeling study. J Mol Model 2014; 20:2394. [DOI: 10.1007/s00894-014-2394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022]
|
8
|
Wittmann HJ, Seifert R, Strasser A. Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacol 2014; 2:1. [PMID: 27502620 PMCID: PMC4644138 DOI: 10.1186/s40203-014-0001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022] Open
Abstract
Purpose It was shown by several experimental studies that some G protein coupled receptors (GPCR) are sensitive to sodium ions. Furthermore, mutagenesis studies or the determination of crystal structures of the adenosine A2A or δ-opioid receptor revealed an allosteric Na+ binding pocket near to the highly conserved Asp2.50. Within a previous study, the influence of NaCl concentration onto the steady-state GTPase activity at the human histamine H3 receptor (hH3R) in presence of the endogenous histamine or the inverse agonist thioperamide was analyzed. The purpose of the present study was to examine and quantify the Na+-sensitivity of hH3R on a molecular level. Methods To achieve this, we developed a set of equations, describing constitutive activity and the different ligand-receptor equilibria in absence or presence of sodium ions. Furthermore, in order to gain a better understanding of the ligand- and Na+-binding to hH3R on molecular level, we performed molecular dynamic (MD) simulations. Results The analysis of the previously determined experimental steady-state GTPase data with the set of equations presented within this study, reveals that thioperamide binds into the orthosteric binding pocket of the hH3R in absence or presence of a Na+ in its allosteric binding site. However, the data suggest that thioperamide binds preferentially into the hH3R in absence of a sodium ion in its allosteric site. These experimental results were supported by MD simulations of thioperamide in the binding pocket of the inactive hH3R. Furthermore, the MD simulations revealed two different binding modes for thioperamide in presence or absence of a Na+ in its allosteric site. Conclusion The mathematical model presented within this study describes the experimental data regarding the Na+-sensitivity of hH3R in an excellent manner. Although the present study is focused onto the Na+-sensitivity of the hH3R, the resulting equations, describing Na+- and ligand-binding to a GPCR, can be used for all other ion-sensitive GPCRs.
Collapse
Affiliation(s)
- Hans-Joachim Wittmann
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Andrea Strasser
- Department of Pharmaceutical and Medicinal Chemistry II, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg, 93040, Germany.
| |
Collapse
|
9
|
Wagner E, Wittmann HJ, Elz S, Strasser A. Pharmacological profile of astemizole-derived compounds at the histamine H1 and H4 receptor—H1/H4 receptor selectivity. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:235-50. [DOI: 10.1007/s00210-013-0926-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
10
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A. Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 2013; 34:33-58. [PMID: 23254267 PMCID: PMC3869951 DOI: 10.1016/j.tips.2012.11.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/03/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
The human histamine receptors hH(1)R and hH(2)R constitute important drug targets, and hH(3)R and hH(4)R have substantial potential in this area. Considering the species-specificity of pharmacology of H(x)R orthologs, it is important to analyze hH(x)Rs. Here, we summarize current knowledge of hH(x)Rs endogenously expressed in human cells and hH(x)Rs recombinantly expressed in mammalian and insect cells. We present the advantages and disadvantages of the various systems. We also discuss problems associated with the use of hH(x)R antibodies, an issue of general relevance for G-protein-coupled receptors (GPCRs). There is much greater overlap in activity of 'selective' ligands for other hH(x)Rs than the cognate receptor subtype than generally appreciated. Studies with native and recombinant systems support the concept of ligand-specific receptor conformations, encompassing agonists and antagonists. It is emerging that for characterization of hH(x)R ligands, one cannot rely on a single test system and a single parameter. Rather, multiple systems and parameters have to be studied. Although such studies are time-consuming and expensive, ultimately, they will increase drug safety and efficacy.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Interactions of recombinant human histamine H1, H2, H3, and H4 receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:145-70. [DOI: 10.1007/s00210-011-0704-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
|
13
|
Role of the second and third extracellular loops of the histamine H4 receptor in receptor activation. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:301-17. [DOI: 10.1007/s00210-011-0673-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
14
|
Pop N, Igel P, Brennauer A, Cabrele C, Bernhardt G, Seifert R, Buschauer A. Functional reconstitution of human neuropeptide Y (NPY) Y2and Y4receptors in Sf9 insect cells. J Recept Signal Transduct Res 2011; 31:271-85. [DOI: 10.3109/10799893.2011.583253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Sutor S, Heilmann J, Seifert R. Impact of fusion to Gα(i2) and co-expression with RGS proteins on pharmacological properties of human cannabinoid receptors CB₁R and CB₂R. ACTA ACUST UNITED AC 2011; 63:1043-55. [PMID: 21718288 DOI: 10.1111/j.2042-7158.2011.01307.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES G protein coupled receptor (GPCR)-Gα fusion proteins are often employed to investigate receptor/G protein interaction. In this study, the impact of Gα fusion proteins on pharmacology of CBRs, both mediating signals through Gα(i) proteins, were investigated. Gα(i2) was fused to the C-terminus of the CBRs or co-expressed with non-fused Gα(i2) in Sf9 cells, always together with Gβ₁γ₂. Furthermore, the impact of RGS proteins on CBR signaling in combination with the CBR fusion approach was examined, using RGS4 and RGS19 as paradigms. METHODS CBR ligands were characterized in the steady-state GTPase assay and pharmacological properties of ligands in the different test systems were correlated. KEY FINDINGS Fusion of CBRs to Gα(i2) enhanced the maximal stimulatory effects of ligands compared to the co-expression system, especially for CB₂R. RGS4, but not RGS19, behaved as a GTPase-activating protein at CBRs in the Gα(i2) co-expression and fusion system. Fusion of GPCR, most prominently CB₂R, to Gα(i2) , and co-expression with RGS4 altered the pharmacological properties of ligands. CONCLUSIONS Our data suggest that fusion of CB₂R to Gα(i2) and co-expression with RGS4 impedes with conformational changes. Moreover, our results support the concept of ligand-specific receptor conformations. Finally, this paper describes the most sensitive CBR test system currently available.
Collapse
Affiliation(s)
- Sarah Sutor
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| | | | | |
Collapse
|
16
|
Abstract
The investigation of constitutive activity of GPCRs in transfected mammalian cells is often hampered by the presence of other constitutively active receptors that generate a high background signal. This impairs the measurement of constitutive activity and of inverse agonistic effects, both of which often occur in a relatively small signal range. Moreover, constitutive activity of a GPCR depends on the interacting G-protein. Since the commonly used mammalian cells contain a set of several different G-protein types, it is very difficult to investigate the influence of specific Gα and Gβγ subunits on constitutive activity in more detail in these expression systems. Here, we show that the Sf9 cell/baculovirus expression system provides excellent conditions for the characterization of constitutively active GPCRs. Sf9 cells express a restricted set of G-protein subtypes that show only a limited capability of interacting with mammalian GPCRs. Moreover, the Sf9 cell/baculovirus expression system allows the combined expression of up to four different proteins encoded by the respective genetically modified baculoviruses. Using the highly constitutively active human histamine H₄R (hH₄R) as a paradigm, we demonstrate how the coexpression of hH₄R with different signaling proteins (Gα, Gβγ, and RGS-proteins) in combination with sensitive functional assays (high-affinity agonist binding and steady-state GTPase- and GTPγS-binding assays) allows in-depth studies of constitutive activity. The preparation of Sf9 cell membranes, coexpressing hH₄R and various additional proteins, is described in detail as well as the procedures of the different functional assays. Moreover, we show that coexpression of GPCRs with signal transduction components in Sf9 cells can also be applied to the characterization of other constitutively active receptors, for example, the formyl peptide receptor and β₂-adrenoceptor.
Collapse
|
17
|
Abstract
In many cases, the coexpression of GPCRs with G-proteins and/or regulators of G-protein signaling (RGS-proteins) allows a successful reconstitution of high-affinity agonist binding and functional responses. However, in some cases, coexpressed GPCRs and G-proteins interact inefficiently, resulting in weak [³⁵S]GTPγS- and steady-state GTPase assay signals. This may be, for example, caused by a rapid dissociation of the G-protein from the plasma membrane, as has been reported for Gα(s). Moreover, for a detailed characterization of GPCR/G-protein interactions, it may be required to work with a defined GPCR/G-protein stoichiometry and to avoid cross-interaction with endogenous G-proteins. Cross-talk to endogenous G-proteins has been shown to play a role in some mammalian expression systems. These problems can be addressed by the generation of GPCR-Gα fusion proteins and their expression in Sf9 insect cells. When the C-terminus of the receptor is fused to the N-terminus of the G-protein, a 1:1 stoichiometry of both proteins is achieved. In addition, the close proximity of GPCR and G-protein in fusion proteins leads to enhanced interaction efficiency, resulting in increased functional signals. This approach can also be extended to fusion proteins of GPCRs with RGS-proteins, specifically when steady-state GTP hydrolysis is used as read-out. GPCR-RGS fusion proteins optimize the interaction of RGS-proteins with coexpressed Gα subunits, since the location of the RGS-protein is close to the site of receptor-mediated G-protein activation. Moreover, in contrast to coexpression systems, GPCR-Gα and GPCR-RGS fusion proteins provide a possibility to imitate physiologically occurring interactions, for example, the precoupling of receptors and G-proteins or the formation of complexes between GPCRs, G-proteins and RGS-proteins (transducisomes). In this chapter, we describe the technique for the generation of fusion proteins and show the application of this approach for the characterization of constitutively active receptors.
Collapse
|
18
|
Schnell D, Brunskole I, Ladova K, Schneider EH, Igel P, Dove S, Buschauer A, Seifert R. Expression and functional properties of canine, rat, and murine histamine H₄ receptors in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:457-70. [PMID: 21359967 DOI: 10.1007/s00210-011-0612-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/13/2010] [Indexed: 01/14/2023]
Abstract
The histamine H₄ receptor (H₄R) is expressed on cells of the immune system including eosinophils, dendritic cells, and T cells and plays an important role in the pathogenesis of bronchial asthma, atopic dermatitis, and pruritus. Analysis of the H₄R in these diseases depends on the use of animal models. However, there are substantial pharmacological differences between various H₄R species orthologs. The purpose of this study was to analyze the pharmacological properties of canine, rat, and murine H₄R in comparison to human H₄R expressed in Sf9 insect cells. Only hH₄R and cH₄R exhibited a sufficiently high [³H]histamine affinity for radioligand binding studies. Generally, cH₄R exhibited lower ligand-affinities than hH₄R. Similarly, in high-affinity GTPase studies, ligands were more potent at hH₄R than at other H₄R species orthologs. Unlike the other H₄R species orthologs, hH₄R exhibited high agonist-independent (constitutive) activity. Most strikingly, the prototypical H₄R antagonist (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) (JNJ7777120) exhibited partial agonistic activity at cH₄R, rH₄R, and mH₄R, whereas at hH₄R, JNJ7777120 was a partial inverse agonist. H₄R agonists from the class of N ( G )-acylated imidazolylpropylguanidines and cyanoguanidines exhibited substantial differences in terms of affinity, potency, and efficacy among H₄R species orthologs, too. The species-dependent pharmacological profiles are not due to the highly variable amino acid sequence position 341. Finally, H₄R species orthologs differ from each other in terms of regulation by NaCl. Collectively, there are profound pharmacological differences between H₄R species orthologs. Most importantly, caution must be exerted when interpreting pharmacological effects of "the prototypical H₄R antagonist" JNJ7777120 as H₄R antagonism.
Collapse
Affiliation(s)
- David Schnell
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
20
|
Geiger S, Nickl K, Schneider EH, Seifert R, Heilmann J. Establishment of recombinant cannabinoid receptor assays and characterization of several natural and synthetic ligands. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:177-91. [PMID: 20617431 DOI: 10.1007/s00210-010-0534-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
Abstract
Cannabinoid receptors (CBR) are important drug targets for the treatment of various inflammatory, metabolic and neurological diseases. Therefore, sensitive test systems for the assessment of ligands are needed. In this study, a steady-state GTPase assay for human CBR subtypes 1 and 2 was developed to characterize the pharmacological property of ligands at a very proximal point of the signal transduction cascade. Establishing these in vitro test sytems, we studied cell or tissue membranes heterogenously or endogenously expressing CBR, such as CBR-infected Human Embryonic Kidney (HEK) 293 cells, rat cerebellum and spleen cells. The lack of effects in the GTPase assay and in [(35)S]GTPgammaS binding experiments in these expression system, directed us to use Spodoptera frugiperda (Sf9) cells. Co-expressing CBR, different Galpha-subunits, Gbetagamma heterodimer, and RGS (Regulator of G-protein signaling)-proteins in Sf9 cell membranes greatly improved the sensitivity of the assay, with highest GTPase activation in the CBR + Galpha(i2) + Gbeta(1)gamma(2) + RGS4 system. We examined exogenous and endogenous standard ligands as well as secondary metabolites as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), dodeca-2E,4E-dienoic acid isobutylamide, an alkylamide from Echinacea purpurea, and an E. purpurea hexane extract according their agonistic and antagonistic properties. The suitability of the assay for screening procedures was also proven by detecting the activity of Delta(9)-THC in a matrix of other less active compounds (Delta(9)-THC-free Cannabis sativa extract). In conclusion, we have developed highly sensitive test systems for the analysis of CBR ligands.
Collapse
Affiliation(s)
- Sarah Geiger
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Schneider EH, Strasser A, Thurmond RL, Seifert R. Structural Requirements for Inverse Agonism and Neutral Antagonism of Indole-, Benzimidazole-, and Thienopyrrole-Derived Histamine H4 Receptor Ligands. J Pharmacol Exp Ther 2010; 334:513-21. [DOI: 10.1124/jpet.110.165977] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Deml KF, Beermann S, Neumann D, Strasser A, Seifert R. Interactions of histamine H1-receptor agonists and antagonists with the human histamine H4-receptor. Mol Pharmacol 2009; 76:1019-30. [PMID: 19720730 DOI: 10.1124/mol.109.058651] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human histamine H(4)-receptor (hH(4)R) possesses high constitutive activity and, like the human H(1)-receptor (hH(1)R), is involved in the pathogenesis of type-I allergic reactions. The study aims were to explore the value of dual H(1)/H(4)R antagonists as antiallergy drugs and to address the question of whether H(1)R ligands bind to hH(4)R. In an acute murine asthma model, the H(1)R antagonist mepyramine and the H(4)R antagonist 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine (JNJ 7777120) exhibited synergistic inhibitory effects on eosinophil accumulation in the bronchoalveolar lavage fluid. At the hH(4)R expressed in Sf9 insect cells, 18 H(1)R antagonists and 22 H(1)R agonists showed lower affinity to hH(4)R than to hH(1)R as assessed in competition binding experiments. For a small number of H(1)R antagonists, hH(4)R partial agonism was observed in the steady-state GTPase assay. Most compounds were neutral antagonists or inverse agonists. Twelve phenylhistamine-type hH(1)R partial agonists were also hH(4)R partial agonists. Four histaprodifen-type hH(1)R partial agonists were hH(4)R inverse agonists. Dimeric histaprodifen was a more efficacious hH(4)R inverse agonist than the reference compound thioperamide. Suprahistaprodifen was the only histaprodifen acting as hH(4)R partial agonist. Suprahistaprodifen was docked into the binding pocket of inactive and active hH(4)R models in two different orientations, predominantly stabilizing the active state of hH(4)R. Collectively, the synergistic effects of H(1)R and H(4)R antagonists in an acute asthma model and the overlapping interaction of structurally diverse H(1)R ligands with hH(1)R and hH(4)R indicate that the development of dual H(1)R/H(4)R antagonists is a worthwhile and technically feasible goal for the treatment of type-I allergic reactions.
Collapse
Affiliation(s)
- Karl-Friedrich Deml
- Department of Pharmacology, School of Pharmacy, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|