1
|
Magnussen JH, Ettrup A, Lehel S, Peters D, Dyssegaard A, Thomsen MS, Mikkelsen JD, Knudsen GM. Characterizing the binding of TC-5619 and encenicline on the alpha7 nicotinic acetylcholine receptor using PET imaging in the pig. FRONTIERS IN NEUROIMAGING 2024; 3:1358221. [PMID: 38601007 PMCID: PMC11004359 DOI: 10.3389/fnimg.2024.1358221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been considered a promising therapeutic target for addressing cognitive impairments associated with a spectrum of neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, despite this potential, clinical trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline (EVP-6124) have fallen short in demonstrating sufficient efficacy. We here investigate the target engagement of TC-5619 and encenicline in the pig brain by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding both with in vitro autoradiography and in vivo occupancy using positron emission tomography (PET). In vitro autoradiography demonstrates significant concentration-dependent binding of 11C-NS14492, and both TC-5619 and encenicline can block this binding. Of particular significance, our in vivo investigations demonstrate that TC-5619 achieves substantial α7-nAChR occupancy, effectively blocking approximately 40% of α7-nAChR binding, whereas encenicline exhibits more limited α7-nAChR occupancy. This study underscores the importance of preclinical PET imaging and target engagement analysis in informing clinical trial strategies, including dosing decisions.
Collapse
Affiliation(s)
- Janus H. Magnussen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET and Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Morten S. Thomsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Nguyen QA, Klein PM, Xie C, Benthall KN, Iafrati J, Homidan J, Bendor JT, Dudok B, Farrell JS, Gschwind T, Porter CL, Keravala A, Dodson GS, Soltesz I. Acetylcholine receptor based chemogenetics engineered for neuronal inhibition and seizure control assessed in mice. Nat Commun 2024; 15:601. [PMID: 38238329 PMCID: PMC10796428 DOI: 10.1038/s41467-024-44853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Epilepsy is a prevalent disorder involving neuronal network hyperexcitability, yet existing therapeutic strategies often fail to provide optimal patient outcomes. Chemogenetic approaches, where exogenous receptors are expressed in defined brain areas and specifically activated by selective agonists, are appealing methods to constrain overactive neuronal activity. We developed BARNI (Bradanicline- and Acetylcholine-activated Receptor for Neuronal Inhibition), an engineered channel comprised of the α7 nicotinic acetylcholine receptor ligand-binding domain coupled to an α1 glycine receptor anion pore domain. Here we demonstrate that BARNI activation by the clinical stage α7 nicotinic acetylcholine receptor-selective agonist bradanicline effectively suppressed targeted neuronal activity, and controlled both acute and chronic seizures in male mice. Our results provide evidence for the use of an inhibitory acetylcholine-based engineered channel activatable by both exogenous and endogenous agonists as a potential therapeutic approach to treating epilepsy.
Collapse
Affiliation(s)
- Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| | - Cheng Xie
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Katelyn N Benthall
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jillian Iafrati
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Jacob T Bendor
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Charlotte L Porter
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Annahita Keravala
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - G Steven Dodson
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Pant S, Nain S. Recent Advances in the Development of Pyrimidine-based CNS Agents. Curr Drug Discov Technol 2023; 20:14-28. [PMID: 36200187 DOI: 10.2174/1570163819666221003094402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In the past few decades, considerable progress has been made in CNS drug discovery, and various new CNS agents have been developed. Pyrimidine is an important scaffold in the area of medicinal chemistry. Recently, pyrimidine-containing compounds have been successfully designed as potent CNS agents. Substantial research has been carried out on pyrimidine-bearing compounds to treat different disorders of CNS in various animal models. METHODS Utilizing various databases, including Google Scholar, PubMed, Science Direct, and Web of Science, the literature review was conducted. The specifics of significant articles were discussed with an emphasis on the potency of pyrimidines derivatives possessing CNS activity. RESULTS Recent papers indicating pyrimidine derivatives with CNS activity were incorporated into the manuscript. (46) to (50) papers included different pyrimidine derivatives as 5-HT agonist/antagonists, (62) to (67) as adenosine agonist/antagonist, (70) to (75) as anticonvulsant agents, (80) to (83) as cannabinoid receptor agonists, (102) to (103) as nicotinic and (110) as muscarinic receptor agonists. The remaining papers (113) to (114) represented pyrimidine-based molecular imaging agents. CONCLUSION Pyrimidine and its derivatives have been studied in detail to evaluate their efficacy in overcoming multiple central nervous system disorders. The article covers the current updates on pyrimidine-based compounds as potent CNS and molecular imaging agents and will definitely provide a better platform for the development of potent pyrimidine-based CNS drugs in the near future.
Collapse
Affiliation(s)
- Swati Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| |
Collapse
|
4
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Canning BJ, Liu Q, Tao M, DeVita R, Perelman M, Hay DW, Dicpinigaitis PV, Liang J. Evidence for Alpha 7 Nicotinic Receptor Activation During the Cough Suppressing Effects Induced by Nicotine and Identification of ATA-101 as a Potential Novel Therapy for the Treatment of Chronic Cough. J Pharmacol Exp Ther 2022; 380:94-103. [PMID: 34782407 PMCID: PMC8969114 DOI: 10.1124/jpet.121.000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 β 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Qi Liu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Mayuko Tao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Robert DeVita
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Michael Perelman
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Douglas W Hay
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Peter V Dicpinigaitis
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Jing Liang
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| |
Collapse
|
7
|
Potasiewicz A, Faron-Gorecka A, Popik P, Nikiforuk A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav Brain Res 2021; 409:113338. [PMID: 33940049 DOI: 10.1016/j.bbr.2021.113338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the treatment of cognitive decline in patients with schizophrenia, Alzheimer's disease, and attention-deficit/hyperactivity disorder. Here we examined the promnesic activity of the α7 nAChR agonist (A582941), the type I (CCMI), and the type II (PNU120596) positive allosteric modulators (PAMs) in rats following single and repeated (once daily for seven days) treatment. To determine the neuronal mechanisms underlying the procognitive activity of the tested compounds, levels of the extracellular signal-regulated kinases (Erk1/2) and the activity-regulated cytoskeleton-associated protein (Arc) mRNAs were assessed in the frontal cortical and hippocampal brain regions. Using the novel object recognition test, we demonstrate that the lower doses of A582941 (0.1 mg/kg), CCMI (1 mg/kg), and PNU120596 (0.3 mg/kg) improved recognition memory after repeated but not single administration, suggesting a cumulative effect of repeated dosing. In contrast, the higher doses of A582941 (0.3 mg/kg), CCMI (3 mg/kg) and PNU120596 (1 mg/kg) demonstrated promnesic efficacy following both single and repeated administration. Subsequent in situ hybridization revealed that repeated treatment with A582941 and CCMI, but not PNU120596 enhanced mRNA expression of the Erk1/2 and Arc in the frontal cortex and hippocampus. Present data suggest that both the α7 nAChR agonist and PAMs exhibit procognitive effects after single and repeated administration. The increased level of the Erk1/2 and Arc genes is likely to be at least partially involved in this effect.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland.
| | - Agata Faron-Gorecka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Krakow, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| |
Collapse
|
8
|
Verma MK, Goel RN, Bokare AM, Dandekar MP, Koul S, Desai S, Tota S, Singh N, Nigade PB, Patil VB, Modi D, Mehta M, Gundu J, Walunj SS, Karche NP, Sinha N, Kamboj RK, Palle VP. LL-00066471, a novel positive allosteric modulator of α7 nicotinic acetylcholine receptor ameliorates cognitive and sensorimotor gating deficits in animal models: Discovery and preclinical characterization. Eur J Pharmacol 2021; 891:173685. [PMID: 33127363 DOI: 10.1016/j.ejphar.2020.173685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023]
Abstract
α7 nicotinic acetylcholine receptor (α7 nAChR) is an extensively validated target for several neurological and psychiatric conditions namely, dementia and schizophrenia, owing to its vital roles in cognition and sensorimotor gating. Positive allosteric modulation (PAM) of α7 nAChR represents an innovative approach to amplify endogenous cholinergic signaling in a temporally restricted manner in learning and memory centers of brain. α7 nAChR PAMs are anticipated to side-step burgeoning issues observed with several clinical-stage orthosteric α7 nAChR agonists, related to selectivity, tolerance/tachyphylaxis, thus providing a novel dimension in therapeutic strategy and pharmacology of α7 nAChR ion-channel. Here we describe a novel α7 nAChR PAM, LL-00066471, which potently amplified agonist-induced Ca2+ fluxes in neuronal IMR-32 neuroblastoma cells in a α-bungarotoxin (α-BTX) sensitive manner. LL-00066471 showed excellent oral bioavailability across species (mouse, rat and dog), low clearance and good brain penetration (B/P ratio > 1). In vivo, LL-00066471 robustly attenuated cognitive deficits in both procognitive and antiamnesic paradigms of short-term episodic and recognition memory in novel object recognition task (NORT) and social recognition task (SRT), respectively. Additionally, LL-00066471 mitigated apomorphine-induced sensorimotor gating deficits in acoustic startle reflex (ASR) and enhanced antipsychotic efficacy of olanzapine in conditioned avoidance response (CAR) task. Further, LL-00066471 corrected redox-imbalances and reduced cortico-striatal infarcts in stroke model. These finding together suggest that LL-00066471 has potential to symptomatically alleviate cognitive deficits associated with dementias, attenuate sensorimotor gating deficits in schizophrenia and correct redox-imbalances in cerebrovascular disorders. Therefore, LL-00066471 presents potential for management of cognitive impairments associated with neurological and psychiatric conditions.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cell Line, Tumor
- Cholinergic Agents/pharmacokinetics
- Cholinergic Agents/pharmacology
- Cognition/drug effects
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/psychology
- Disease Models, Animal
- Dogs
- Exploratory Behavior/drug effects
- Gait Disorders, Neurologic/metabolism
- Gait Disorders, Neurologic/physiopathology
- Gait Disorders, Neurologic/prevention & control
- Gait Disorders, Neurologic/psychology
- Ischemic Stroke/drug therapy
- Ischemic Stroke/metabolism
- Ischemic Stroke/physiopathology
- Male
- Mice, Inbred BALB C
- Open Field Test/drug effects
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Rats, Wistar
- Reflex, Startle/drug effects
- Sensory Gating/drug effects
- Signal Transduction
- Social Behavior
- alpha7 Nicotinic Acetylcholine Receptor/drug effects
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Mahip K Verma
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India.
| | - Rajan N Goel
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Anand M Bokare
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Manoj P Dandekar
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sarita Koul
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sagar Desai
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Santoshkumar Tota
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Nilendra Singh
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Prashant B Nigade
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Vinod B Patil
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Dipak Modi
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Maneesh Mehta
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Jayasagar Gundu
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Sameer S Walunj
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Navnath P Karche
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Neelima Sinha
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Rajender K Kamboj
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| | - Venkata P Palle
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Lupin Research Park, Pune, Maharashtra, 412115, India
| |
Collapse
|
9
|
Fernandes RA, Kumar P, Choudhary P. Advances in catalytic and protecting-group-free total synthesis of natural products: a recent update. Chem Commun (Camb) 2020; 56:8569-8590. [PMID: 32537619 DOI: 10.1039/d0cc02659j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Catalytic processes in protecting-group-free syntheses of natural products are fast emerging towards achieving the goal of efficiency and economy in total synthesis. Present day sustainable development in synthesis of natural products does not permit the luxury of using stoichiometric reagents and protecting groups. Catalysis and step-economy can contribute significantly toward economy and efficiency of synthesis. This feature article details the ingenious efforts by many researchers in the last couple of years toward concise total syntheses, based on catalytic steps and protecting-group-free-strategies. These would again serve as guidelines in future development of reagents and catalysts aimed at achieving higher efficiency and chemoselectivity to the point that catalysis and protecting-group-free synthesis will be an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| | | | | |
Collapse
|
10
|
Lewis AS, Picciotto MR. Regulation of aggressive behaviors by nicotinic acetylcholine receptors: Animal models, human genetics, and clinical studies. Neuropharmacology 2020; 167:107929. [PMID: 32058178 PMCID: PMC7080580 DOI: 10.1016/j.neuropharm.2019.107929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are frequently complicated by aggressive behaviors. For some individuals, existing behavioral and psychopharmacological treatments are ineffective or confer significant side effects, necessitating development of new ways to treat patients with severe aggression. Nicotinic acetylcholine receptors (nAChRs) are a large and diverse family of ligand-gated ion channels expressed throughout the brain that influence behaviors highly relevant for neuropsychiatric disorders, including attention, mood, and impulsivity. Nicotine and other drugs targeting nAChRs can reduce aggression in animal models of offensive, defensive, and predatory aggression, as well as in human laboratory studies. Human genetic studies have suggested a relationship between the CHRNA7 gene encoding the alpha-7 nAChR and aggressive behavior, although these effects are heterogeneous and strongly influenced by genetic background and environment. Here we review animal, human genetic, and clinical studies supporting a consistent role of nicotine and nAChR signaling in modulation of aggressive behaviors. We integrate findings from recent studies of aggression neuroscience, discuss the circuitry that may be involved in these effects of nAChRs, and identify multiple key questions that must be answered prior to safe and effective translation for human patients. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | | |
Collapse
|
11
|
Donat CK, Hansen HH, Hansen HD, Mease RC, Horti AG, Pomper MG, L’Estrade ET, Herth MM, Peters D, Knudsen GM, Mikkelsen JD. In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [ 125I]Iodo-ASEM and [ 18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules 2020; 25:molecules25061425. [PMID: 32245032 PMCID: PMC7144377 DOI: 10.3390/molecules25061425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Collapse
Affiliation(s)
- Cornelius K. Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Brain Sciences, Imperial College London, London W12 0 LS, UK
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| | - Henrik H. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Hanne D. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Elina T. L’Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| |
Collapse
|
12
|
Terry AV, Callahan PM. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology 2020; 170:108053. [PMID: 32188568 DOI: 10.1016/j.neuropharm.2020.108053] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Schizophrenia is a devastating mental illness and its effective treatment is among the most challenging issues in psychiatry. The symptoms of schizophrenia are heterogeneous ranging from positive symptoms (e.g., delusions, hallucinations) to negative symptoms (e.g., anhedonia, social withdrawal) to cognitive dysfunction. Antipsychotics are effective at ameliorating positive symptoms in some patients; however, they are not reliably effective at improving the negative symptoms or cognitive impairments. The inability to address the cognitive impairments is a particular concern since they have the greatest long-term impact on functional outcomes. While decades of research have been devoted to the development of pro-cognitive agents for schizophrenia, to date, no drug has been approved for clinical use. Converging behavioral, neurobiological, and genetic evidence led to the identification of the α7-nicotinic acetylcholine receptor (α7-nAChR) as a therapeutic target several years ago and there is now extensive preclinical evidence that α7-nAChR ligands have pro-cognitive effects and other properties that should be beneficial to schizophrenia patients. However, like the other pro-cognitive strategies, no α7-nAChR ligand has been approved for clinical use in schizophrenia thus far. In this review, several topics are discussed that may impact the success of α7-nAChR ligands as pro-cognitive agents for schizophrenia including the translational value of the animal models used, clinical trial design limitations, confounding effects of polypharmacy, dose-effect relationships, and chronic versus intermittent dosing considerations. Determining the most optimal pharmacologic strategy at α7-nAChRs: agonist, positive allosteric modulator, or potentially even receptor antagonist is also discussed. article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| |
Collapse
|
13
|
Wang X, Bell IM, Uslaner JM. Activators of α7 nAChR as Potential Therapeutics for Cognitive Impairment. Curr Top Behav Neurosci 2020; 45:209-245. [PMID: 32451955 DOI: 10.1007/7854_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a promising target for the treatment of cognitive deficits associated with psychiatric and neurological disorders, including schizophrenia and Alzheimer's disease (AD). Several α7 nAChR agonists and positive allosteric modulators (PAMs) have demonstrated procognitive effects in preclinical models and early clinical trials. However, despite intense research efforts in the pharmaceutical industry and academia, none of the α7 nAChR ligands has been approved for clinical use. This chapter will focus on the α7 nAChR ligands that have advanced to clinical studies and explore the reasons why these agents have not met with unequivocal clinical success.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA
| | - Ian M Bell
- Department of Discovery Chemistry, Merck & Co. Inc., West Point, PA, USA
| | - Jason M Uslaner
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA.
| |
Collapse
|
14
|
Tregellas JR, Wylie KP. Alpha7 Nicotinic Receptors as Therapeutic Targets in Schizophrenia. Nicotine Tob Res 2019; 21:349-356. [PMID: 30137618 DOI: 10.1093/ntr/nty034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022]
Abstract
While current treatments for schizophrenia often provide much relief for positive symptoms such as hallucinations, other symptoms, particularly cognitive deficits, persist and contribute to substantial suffering and reduced quality of life for patients. In searching for novel therapeutic avenues to treat cognitive deficits in schizophrenia, recent work is exploring nicotinic receptor neurobiology. Supported by a large body of evidence, with contributions from studies of smoking behaviors, genetics, receptor distribution and function, animal models and nicotinic effects on illness symptoms, the alpha7 nicotinic receptor has emerged as a potential therapeutic target. Despite promise in early clinical trials, however, no drug targeting nicotinic systems has succeeded in larger phase 3 trials. Following a brief review of nicotinic receptor biology and the evidence that has led to pursuit of alpha7 nicotinic agonism as a therapeutic strategy, this review will provide an update on the status of recent trials, discuss potential issues that may have contributed to negative outcomes, and point to new directions and promising advances in developing alpha7 nicotinic receptor-based treatment for cognitive symptoms in schizophrenia. IMPLICATIONS By examining alpha7 nicotinic receptor biology and recent efforts to target the receptor in clinical trials, it is hoped that investigators will be motivated to explore novel, promising directions focusing on the receptor as a strategy to treat cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO.,Research Service, Denver VA Medical Center, Denver, CO
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO.,Research Service, Denver VA Medical Center, Denver, CO
| |
Collapse
|
15
|
Sinha N, Karche NP, Verma MK, Walunj SS, Nigade PB, Jana G, Kurhade SP, Hajare AK, Tilekar AR, Jadhav GR, Thube BR, Shaikh JS, Balgude S, Singh LB, Mahimane V, Adurkar SK, Hatnapure G, Raje F, Bhosale Y, Bhanage D, Sachchidanand S, Dixit R, Gupta R, Bokare AM, Dandekar M, Bharne A, Chatterjee M, Desai S, Koul S, Modi D, Mehta M, Patil V, Singh M, Gundu J, Goel RN, Shah C, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Novel, Potent, Brain-Permeable, and Orally Efficacious Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptor [4-(5-(4-Chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure-Activity Relationship and Preclinical Characterization. J Med Chem 2019; 63:944-960. [PMID: 31755711 DOI: 10.1021/acs.jmedchem.9b01569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The discovery of a series of thiophenephenylsulfonamides as positive allosteric modulators (PAM) of α7 nicotinic acetylcholine receptor (α7 nAChR) is described. Optimization of this series led to identification of compound 28, a novel PAM of α7 nicotinic acetylcholine receptor (α7 nAChR). Compound 28 showed good in vitro potency, with pharmacokinetic profile across species with excellent brain penetration and residence time. Compound 28 robustly reversed the cognitive deficits in episodic/working memory in both time-delay and scopolamine-induced amnesia paradigms in the novel object and social recognition tasks, at very low dose levels. Additionally, compound 28 has shown excellent safety profile in phase 1 clinical trials and is being evaluated for efficacy and safety as monotherapy in patients with mild to moderate Alzheimer's disease.
Collapse
Affiliation(s)
- Neelima Sinha
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Navnath P Karche
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Mahip Kalyan Verma
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sameer S Walunj
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Prashant B Nigade
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Gourhari Jana
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sanjay P Kurhade
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Anil K Hajare
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Ajay R Tilekar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Ganesh R Jadhav
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Baban R Thube
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Javed S Shaikh
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sudhakar Balgude
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Lairikyengbam Bikramjit Singh
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Vijaya Mahimane
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Shridhar K Adurkar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Girish Hatnapure
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Firoj Raje
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Yogesh Bhosale
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Dnyaneshwar Bhanage
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sachchidanand Sachchidanand
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Ruchi Dixit
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rajesh Gupta
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Anand M Bokare
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Manoj Dandekar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Ashish Bharne
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Manavi Chatterjee
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sagar Desai
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sarita Koul
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Dipak Modi
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Maneesh Mehta
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Vinod Patil
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Minakshi Singh
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rajan N Goel
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Chirag Shah
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sharad Sharma
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Venkata P Palle
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| |
Collapse
|
16
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|
17
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
18
|
Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 2019; 15:39-52. [PMID: 31674217 DOI: 10.1080/17460441.2020.1682993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Neurological diseases present a difficult challenge in drug discovery. Many of the current treatments have limited efficiency or result in a variety of debilitating side effects. The search of new therapies is of a paramount importance, since the number of patients that require a better treatment is growing rapidly. As an in vitro model, Xenopus oocytes provide the drug developer with many distinct advantages, including size, durability, and efficiency in exogenous protein expression. However, there is an increasing need to refine the recent breakthroughs.Areas covered: This review covers the usage and recent advancements of Xenopus oocytes for drug discovery in neurological diseases from expression and functional measurement techniques to current applications in Alzheimer's disease, painful neuropathies, and amyotrophic lateral sclerosis (ALS). The existing limitations of Xenopus oocytes in drug discovery are also discussed.Expert opinion: With the rise of aging population and neurological disorders, Xenopus oocytes, will continue to play an important role in understanding the mechanism of the disease, identification and validation of novel molecular targets, and drug screening, providing high-quality data despite the technical limitations. With further advances in oocytes-related techniques toward an accurate modeling of the disease, the diagnostics and treatment of neuropathologies will be becoming increasing personalized.
Collapse
Affiliation(s)
- Steven L Zeng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of α7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res 2019; 383:111546. [PMID: 31398352 DOI: 10.1016/j.yexcr.2019.111546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Mang-Hua Xu
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
20
|
Terry AV, Callahan PM. Nicotinic Acetylcholine Receptor Ligands, Cognitive Function, and Preclinical Approaches to Drug Discovery. Nicotine Tob Res 2019; 21:383-394. [PMID: 30137518 PMCID: PMC6379039 DOI: 10.1093/ntr/nty166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Interest in nicotinic acetylcholine receptor (nAChR) ligands as potential therapeutic agents for cognitive disorders began more than 30 years ago when it was first demonstrated that the tobacco alkaloid nicotine could improve cognitive function in nicotine-deprived smokers as well as nonsmokers. Numerous animal and human studies now indicate that nicotine and a variety of nAChR ligands have the potential to improve multiple domains of cognition including attention, spatial learning, working memory, recognition memory, and executive function. The purpose of this review is to (1) discuss several pharmacologic strategies that have been developed to enhance nAChR activity (eg, agonist, partial agonist, and positive allosteric modulator) and improve cognitive function, (2) provide a brief overview of some of the more common rodent behavioral tasks with established translational validity that have been used to evaluate nAChR ligands for effects on cognitive function, and (3) briefly discuss some of the topics of debate regarding the development of optimal therapeutic strategies using nAChR ligands. Because of their densities in the mammalian brain and the amount of literature available, the review primarily focuses on ligands of the high-affinity α4β2* nAChR ("*" indicates the possible presence of additional subunits in the complex) and the low-affinity α7 nAChR. The behavioral task discussion focuses on representative methods that have been designed to model specific domains of cognition that are relevant to human neuropsychiatric disorders and often evaluated in human clinical trials. IMPLICATIONS The preclinical literature continues to grow in support of the development of nAChR ligands for a variety of illnesses that affect humans. However, to date, no new nAChR ligand has been approved for any condition other than nicotine dependence. As discussed in this review, the studies conducted to date provide the impetus for continuing efforts to develop new nAChR strategies (ie, beyond simple agonist and partial agonist approaches) as well as to refine current behavioral strategies and create new animal models to address translational gaps in the drug discovery process.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| |
Collapse
|
21
|
Chen YQ, Wang Z, Wu Y, Wisniewski SR, Qiao JX, Ewing WR, Eastgate MD, Yu JQ. Overcoming the Limitations of γ- and δ-C-H Arylation of Amines through Ligand Development. J Am Chem Soc 2018; 140:17884-17894. [PMID: 30500192 DOI: 10.1021/jacs.8b07109] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
L,X-Type transient directing groups (TDGs) based on a reversible imine linkage have emerged as broadly useful tools for C-H activation of ketones and free amines. However, competitive binding interactions among multiple reaction components (TDG itself, substrate, and substrate-TDG adduct) with the palladium catalyst often lead to the formation of multiple unreactive complexes, rendering ligand development extremely challenging. Herein, we report the finding of versatile 2-pyridone ligands that addresses these problems and significantly improves the γ-methylene arylation of alkyl amines, extending the coupling partners to a wide range of medicinally important heteroaryl iodides and even previously unreactive heteroaryl bromides. The combination of an appropriate transient directing group and pyridone ligand has also enabled the δ-arylation of alkyl amines. Notably, our transient directing group design reveals the importance of matching the size of the Pd-chelation with different transient directing groups and the size of palladacycles generated from γ- and δ-C-H bonds: TDGs that coordinate with Pd(II) to form a six-membered chelate are selective toward γ-C-H bonds, whereas TDGs that coordinate with Pd(II) via a five-membered chelate tend to activate δ-C-H bonds. These findings provide an avenue for developing protecting group free and selective C-H functionalization using the transient directing group strategy.
Collapse
Affiliation(s)
- Yan-Qiao Chen
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Zhen Wang
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Yongwei Wu
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Steven R Wisniewski
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Jennifer X Qiao
- Discovery Chemistry , Bristol-Myers Squibb , PO Box 4000, Princeton , New Jersey 08543 , United States
| | - William R Ewing
- Discovery Chemistry , Bristol-Myers Squibb , PO Box 4000, Princeton , New Jersey 08543 , United States
| | - Martin D Eastgate
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Jin-Quan Yu
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
22
|
Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. Eur J Med Chem 2018; 160:207-228. [PMID: 30342362 DOI: 10.1016/j.ejmech.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are relevant therapeutic targets for a variety of disorders including neurodegeneration, cognitive impairment, and inflammation. Although traditionally identified as an ionotropic receptor, the α7 subtype showed metabotropic-like functions, mainly linked to the modulation of immune responses. In the present work, we investigated the structure-activity relationships in a set of novel α7 ligands incorporating the 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole scaffold, i.e. derivatives 21a-34a and 21b-34b, aiming to identify the structural requirements able to preferentially trigger one of the two activation modes of this receptor subtype. The new compounds were characterized as partial and silent α7 nAChR agonists in electrophysiological assays, which allowed to assess the contribution of the different groups towards the final pharmacological profile. Overall, modifications of the selected structural backbone mainly afforded partial agonists, among them tertiary bases 27a-33a, whereas additional hydrogen-bond acceptor groups in permanently charged ligands, such as 29b and 31b, favored a silent desensitizing profile at the α7 nAChR.
Collapse
|
23
|
Affiliation(s)
- Yu-Wen Huang
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ke Kong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
24
|
Huang YW, Kong K, Wood JL. Total Synthesis of (+)- and (±)-Hosieine A. Angew Chem Int Ed Engl 2018; 57:7664-7667. [DOI: 10.1002/anie.201804076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-Wen Huang
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ke Kong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
25
|
Li Y, Sun L, Yang T, Jiao W, Tang J, Huang X, Huang Z, Meng Y, Luo L, Wang X, Bian X, Zhang F, Wang K, Sun Q. Design and Synthesis of Novel Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors with the Ability To Rescue Auditory Gating Deficit in Mice. J Med Chem 2018; 62:159-173. [DOI: 10.1021/acs.jmedchem.7b01492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuanheng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lilan Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Taoyi Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenxuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingshu Tang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zongze Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Laichun Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xintong Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiling Bian
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
26
|
Matera C, Dondio G, Braida D, Ponzoni L, De Amici M, Sala M, Dallanoce C. In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7 nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton. Eur J Pharmacol 2018; 820:265-273. [DOI: 10.1016/j.ejphar.2017.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
27
|
Weed MR, Polino J, Signor L, Bookbinder M, Keavy D, Benitex Y, Morgan DG, King D, Macor JE, Zaczek R, Olson R, Bristow LJ. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning. PLoS One 2017; 12:e0187609. [PMID: 29261656 PMCID: PMC5736175 DOI: 10.1371/journal.pone.0187609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.
Collapse
Affiliation(s)
- Michael R. Weed
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
- * E-mail:
| | - Joseph Polino
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Laura Signor
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Mark Bookbinder
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Deborah Keavy
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Yulia Benitex
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Daniel G. Morgan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Dalton King
- Discovery Chemistry, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - John E. Macor
- Discovery Chemistry, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Robert Zaczek
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Richard Olson
- Discovery Chemistry, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| | - Linda J. Bristow
- Genetically Defined Diseases and Genomics, Bristol-Myers Squibb Company, Wallingford, CT, United States of America
| |
Collapse
|
28
|
The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B 2017; 7:611-622. [PMID: 29159020 PMCID: PMC5687317 DOI: 10.1016/j.apsb.2017.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/06/2023] Open
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.
Collapse
Key Words
- 5-CSRTT, five-choice serial reaction time task
- 5-HT, serotonin
- ACh, acetylcholine
- AD, Alzheimer's disease
- ADHD, attention deficit hyperactivity disorder
- Acetylcholine
- Alpha7
- Alzheimer's disease
- Aβ, amyloid-β peptide
- CNS, central nervous system
- DMTS, delayed matching-to-sample
- ECD, extracellular domain
- GABA, γ-aminobutyric acid
- Ion channel
- MLA, methyllycaconitine
- NOR, novel object recognition
- PAMs, positive allosteric modulators
- PCP, neonatal phencyclidine
- PD, Parkinson's disease
- PPI, prepulse inhibition
- Positive allosteric modulators
- SAR, structure–activity relationship
- Schizophrenia
- TMD, transmembrane domains
- nAChR
- nAChR, nicotinic acetylcholine receptor
- α-Btx, α-bungarotoxin
Collapse
|
29
|
D’Souza GX, Waldvogel HJ. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease. J Huntingtons Dis 2017; 5:333-342. [PMID: 27983560 PMCID: PMC5181681 DOI: 10.3233/jhd-160200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, we outline the role of the cholinergic system in Huntington’s disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington’s disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington’s disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.
Collapse
Affiliation(s)
| | - Henry J. Waldvogel
- Correspondence to: Associate Professor Henry J. Waldvogel, Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. Tel.: +64 9 923 6051; E-mail:
| |
Collapse
|
30
|
Ning H, Cao D, Wang H, Kang B, Xie S, Meng Y. Effects of haloperidol, olanzapine, ziprasidone, and PHA-543613 on spatial learning and memory in the Morris water maze test in naïve and MK-801-treated mice. Brain Behav 2017; 7:e00764. [PMID: 28828223 PMCID: PMC5561323 DOI: 10.1002/brb3.764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Cognitive impairment is the core symptom of schizophrenia, significantly impacting the functional outcome. Improvement of cognitive function has been an important aspect of the treatment of schizophrenia. Therefore, this study is to demonstrate the effects of first-generation antipsychotic haloperidol, second-generation antipsychotic olanzapine and ziprasidone, and alpha-7 nicotinic acetylcholine receptor agonist PHA-543613 on spatial learning and memory. MATERIAL AND METHODS C57BL/6 mice received intraperitoneal injections of haloperidol (2 mg/kg), olanzapine (2.5 mg/kg), ziprasidone (2 mg/kg), and PHA-543613 (1 mg/kg), and cognitive dysfunctions were induced by MK-801 (0.1 mg/kg). Morris water maze was used for investigating the effects of all agents. RESULTS Mk-801 significantly increased the mean escape latency to the platform and decreased the number of platform area crossings. Ziprasidone had no effect on the mean escape latency to platform and the number of platform area crossings in naïve mice, but haloperidol, olanzapine, and PHA-543613 did not. Haloperidol and olanzapine significantly increased the mean escape latency to platform and decreased the number of platform area crossings, while ziprasidone and PHA-543613 did not. All the agents had no effect on swimming speed. CONCLUSIONS Ziprasidone and alpha-7 nicotinic acetylcholine receptor agonist PHA-543613 might be helpful in the treatment of CIAS.
Collapse
Affiliation(s)
- Houxu Ning
- Department of Psychiatry of Chinese Medicine Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing China
| | - Dong Cao
- Department of Psychiatry Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing China
| | - Haidong Wang
- Department of Psychiatry of Chinese Medicine Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing China
| | - Bing Kang
- Department of Psychiatry of Chinese Medicine Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing China
| | - Shiping Xie
- Department of Psychiatry Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing China
| | - Yujing Meng
- Department of Psychiatry Nanjing Medical University Nanjing China
| |
Collapse
|
31
|
King D, Iwuagwu C, Cook J, McDonald IM, Mate R, Zusi FC, Hill MD, Fang H, Zhao R, Wang B, Easton AE, Miller R, Post-Munson D, Knox RJ, Gallagher L, Westphal R, Molski T, Fan J, Clarke W, Benitex Y, Lentz KA, Denton R, Morgan D, Zaczek R, Lodge NJ, Bristow LJ, Macor JE, Olson RE. BMS-933043, a Selective α7 nAChR Partial Agonist for the Treatment of Cognitive Deficits Associated with Schizophrenia. ACS Med Chem Lett 2017; 8:366-371. [PMID: 28337332 DOI: 10.1021/acsmedchemlett.7b00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.
Collapse
Affiliation(s)
- Dalton King
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christiana Iwuagwu
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jim Cook
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ivar M. McDonald
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert Mate
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - F. Christopher Zusi
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D. Hill
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Haiquan Fang
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rulin Zhao
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Bei Wang
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy E. Easton
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Regina Miller
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Debra Post-Munson
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ronald J. Knox
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lizbeth Gallagher
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ryan Westphal
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Thaddeus Molski
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jingsong Fan
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy Clarke
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yulia Benitex
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberley A. Lentz
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rex Denton
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Daniel Morgan
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert Zaczek
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas J. Lodge
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Linda J. Bristow
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard E. Olson
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
32
|
Potasiewicz A, Nikiforuk A, Hołuj M, Popik P. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats. J Psychopharmacol 2017; 31:260-271. [PMID: 28168926 DOI: 10.1177/0269881116675509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction plays an important role in schizophrenia. Positive allosteric modulators of α7 nAChR have emerged as a promising therapeutic approach to manage cognitive deficits that are inadequately treated in schizophrenic patients. The aim of the present study was to evaluate the ability of type I (CCMI) and type II (PNU120596) α7 nAChR positive allosteric modulators to counteract MK-801-induced cognitive and sensorimotor gating deficits. The activity of these compounds was compared with the action of the α7 nAChR agonist A582941. CCMI, PNU120596 and A582941 reversed the sensorimotor gating impairment evoked by MK-801 based on the prepulse inhibition of the startle response. Additionally, no MK-801-evoked working memory deficits were observed with α7 nAChR ligand pretreatment as assessed in a discrete paired-trial delayed alternation task. However, these compounds did not affect the rats' attentional performances in the five-choice serial reaction time test. The α7 nAChR agents demonstrated a beneficial effect on sensorimotor gating and some aspects of cognition tested in a rat model of schizophrenia. Therefore, these results support the use of α7 nAChR positive allosteric modulators as a potential treatment strategy in schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Hołuj
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- 1 Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,2 Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
33
|
Potasiewicz A, Hołuj M, Kos T, Popik P, Arias HR, Nikiforuk A. 3-Furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic receptor, reverses schizophrenia-like cognitive and social deficits in rats. Neuropharmacology 2017; 113:188-197. [DOI: 10.1016/j.neuropharm.2016.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/20/2016] [Accepted: 10/01/2016] [Indexed: 12/19/2022]
|
34
|
Post-Munson DJ, Pieschl RL, Molski TF, Graef JD, Hendricson AW, Knox RJ, McDonald IM, Olson RE, Macor JE, Weed MR, Bristow LJ, Kiss L, Ahlijanian MK, Herrington J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur J Pharmacol 2017; 799:16-25. [PMID: 28132910 DOI: 10.1016/j.ejphar.2017.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.
Collapse
Affiliation(s)
- Debra J Post-Munson
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Rick L Pieschl
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Thaddeus F Molski
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John D Graef
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Adam W Hendricson
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ronald J Knox
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ivar M McDonald
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Richard E Olson
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John E Macor
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael R Weed
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J Bristow
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Laszlo Kiss
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael K Ahlijanian
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - James Herrington
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA.
| |
Collapse
|
35
|
Sarasamkan J, Scheunemann M, Apaijai N, Palee S, Parichatikanond W, Arunrungvichian K, Fischer S, Chattipakorn S, Deuther-Conrad W, Schüürmann G, Brust P, Vajragupta O. Varying Chirality Across Nicotinic Acetylcholine Receptor Subtypes: Selective Binding of Quinuclidine Triazole Compounds. ACS Med Chem Lett 2016; 7:890-895. [PMID: 27774124 DOI: 10.1021/acsmedchemlett.6b00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
The novel quinuclidine anti-1,2,3-triazole derivatives T1-T6 were designed based on the structure of QND8. The binding studies revealed that the stereochemistry at the C3 position of the quinuclidine scaffold plays an important role in the nAChR subtype selectivity. Whereas the (R)-enantiomers are selective to α7 over α4β2 (by factors of 44-225) and to a smaller degree over α3β4 (3-33), their (S)-counterparts prefer α3β4 over α4β2 (62-237) as well as over α7 (5-294). The (R)-derivatives were highly selective to α7 over α3β4 subtypes compared to (RS)- and (R)-QND8. The (S)-enantiomers are 5-10 times more selective to α4β2 than their (R) forms. The overall strongest affinity is observed for the (S)-enantiomer binding to α3β4 (Ki, 2.25-19.5 nM) followed by their (R)-counterpart binding to α7 (Ki, 22.5-117 nM), with a significantly weaker (S)-enantiomer binding to α4β2 (Ki, 414-1980 nM) still above the very weak respective (R)-analogue affinity (Ki, 5059-10436 nM).
Collapse
Affiliation(s)
- Jiradanai Sarasamkan
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand
- Department
of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße15, 04318 Leipzig, Germany
- National
Cyclotron and PET Centre, Chulabhorn Hospital, 54 Kamphaengphet 6 Road, Bangkok 10210, Thailand
| | - Matthias Scheunemann
- Department
of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße15, 04318 Leipzig, Germany
| | - Nattayaporn Apaijai
- Neurophysiology
Unit, Cardiac Electrophysiology Research and Training Center, Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Palee
- Neurophysiology
Unit, Cardiac Electrophysiology Research and Training Center, Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warisara Parichatikanond
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya
Road, Bangkok 10400, Thailand
| | - Kuntarat Arunrungvichian
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand
| | - Steffen Fischer
- Department
of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße15, 04318 Leipzig, Germany
| | - Siriporn Chattipakorn
- Neurophysiology
Unit, Cardiac Electrophysiology Research and Training Center, Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winnie Deuther-Conrad
- Department
of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Department
of Ecological Chemistry, Helmholtz Centre for Environmental Research−UFZ, Permoserstraße15, 04318 Leipzig, Germany
- Institute
for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße29, 09596 Freiberg, Germany
| | - Peter Brust
- Department
of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße15, 04318 Leipzig, Germany
| | - Opa Vajragupta
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand
| |
Collapse
|
36
|
The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia. PLoS One 2016; 11:e0159996. [PMID: 27467081 PMCID: PMC4965148 DOI: 10.1371/journal.pone.0159996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.
Collapse
|
37
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
38
|
Trenkwalder C, Berg D, Rascol O, Eggert K, Ceballos-Baumann A, Corvol JC, Storch A, Zhang L, Azulay JP, Broussolle E, Defebvre L, Geny C, Gostkowski M, Stocchi F, Tranchant C, Derkinderen P, Durif F, Espay AJ, Feigin A, Houeto JL, Schwarz J, Di Paolo T, Feuerbach D, Hockey HU, Jaeger J, Jakab A, Johns D, Linazasoro G, Maruff P, Rozenberg I, Sovago J, Weiss M, Gomez-Mancilla B. A Placebo-Controlled Trial of AQW051 in Patients With Moderate to Severe Levodopa-Induced Dyskinesia. Mov Disord 2016; 31:1049-54. [PMID: 26990766 DOI: 10.1002/mds.26569] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This phase 2 randomized, double-blind, placebo-controlled study evaluated the efficacy and safety of the nicotinic acetylcholine receptor α7 agonist AQW051 in patients with Parkinson's disease and levodopa-induced dyskinesia. METHODS Patients with idiopathic Parkinson's disease and moderate to severe levodopa-induced dyskinesia were randomized to AQW051 10 mg (n = 24), AQW051 50 mg (n = 24), or placebo (n = 23) once daily for 28 days. Coprimary end points were change in Modified Abnormal Involuntary Movement Scale and Unified Parkinson's Disease Rating Scale part III scores. Secondary outcomes included pharmacokinetics. RESULTS In total, 67 patients completed the study. AQW051-treated patients experienced no significant improvements in Modified Abnormal Involuntary Movement Scale or Unified Parkinson's Disease Rating Scale part III scores by day 28. AQW051 was well tolerated; the most common adverse events were dyskinesia, fatigue, nausea, and falls. CONCLUSIONS AQW051 did not significantly reduce dyskinesia or parkinsonian severity. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Claudia Trenkwalder
- Paracelsus-Elena Hospital, Kassel, Germany.,Department of Neurosurgery, University Medical Center, Goettingen, Germany.,German Parkinson Study Group, Marburg, Germany
| | - Daniela Berg
- German Parkinson Study Group, Marburg, Germany.,Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, NeuroToul Excellence Center for Neurodegenerative Disorders, University UPS of Toulouse III, CIC-9302/INSERM UMR825, Hôpital Purpan - Pavillon Riser, Toulouse, France.,NS PARK/FCRIN Network, France
| | - Karla Eggert
- German Parkinson Study Group, Marburg, Germany.,Department of Neurology, Philipps-University of Marburg, Marburg, Germany
| | - Andres Ceballos-Baumann
- German Parkinson Study Group, Marburg, Germany.,Schön Klinik München-Schwabing, München, Germany
| | - Jean-Christophe Corvol
- NS PARK/FCRIN Network, France.,Sorbonne Universités, UPMC Univ Paris 06, and INSERM UMRS 1127 /CIC-1422, and CNRS UMR 7225, and AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, Paris, France
| | - Alexander Storch
- German Parkinson Study Group, Marburg, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Lin Zhang
- Department of Neurology, UC Davis MIND Institute, Sacramento, California, USA
| | - Jean-Philippe Azulay
- NS PARK/FCRIN Network, France.,Service de Neurologie et pathologie du Mouvement, Hôpital de la Timone, Marseille Cedex, France
| | - Emmanuel Broussolle
- NS PARK/FCRIN Network, France.,Univisité Lyon 1, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Lyon, France.,CNRS UMR 5229, Centre de Neurosciences Cognitives, Team Basal Ganglia, Bron, France
| | - Luc Defebvre
- NS PARK/FCRIN Network, France.,Service de Neurologie et Pathologie du movement, EA 1046, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Christian Geny
- NS PARK/FCRIN Network, France.,Movement to Health (M2H) laboratory, Euromov, University Montpellier 1, Hôpital gui de Chauliac, Montpellier, France
| | - Michal Gostkowski
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fabrizio Stocchi
- Department of Neurology, Institute for Research and Medical Care, IROCS, Rome, Italy
| | - Christine Tranchant
- NS PARK/FCRIN Network, France.,Service de Neurologie, Hôpital de Hautepierre, Strasbourg, France
| | - Pascal Derkinderen
- NS PARK/FCRIN Network, France.,Centre Investigation Clinique Neurologie, CHU Nantes, Hôpital G&R Laennec, Nantes, France
| | - Franck Durif
- NS PARK/FCRIN Network, France.,Service de Neurologie, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati Academic Health Center, Cincinnati, Ohio, USA
| | - Andrew Feigin
- Feinstein Institute for Medical Research, North Shore - LIJ Health System, Manhasset, New York, USA
| | - Jean-Luc Houeto
- NS PARK/FCRIN Network, France.,Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Université de Poitiers, Poitiers, France
| | - Johannes Schwarz
- German Parkinson Study Group, Marburg, Germany.,Klinik Haag, Haag, Germany
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Québec, Canada.,Faculty of Pharmacy, Laval University, Québec, Canada
| | | | - Hans-Ulrich Hockey
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Biometrics Matters Ltd, Hamilton, New Zealand
| | - Judith Jaeger
- Albert Einstein College of Medicine, New York, NY, USA, and CognitionMetrics, LLC, Wilmington, Delaware, USA
| | - Annamaria Jakab
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Donald Johns
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | | | - Judit Sovago
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Baltazar Gomez-Mancilla
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| |
Collapse
|
39
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
40
|
Walling D, Marder SR, Kane J, Fleischhacker WW, Keefe RSE, Hosford DA, Dvergsten C, Segreti AC, Beaver JS, Toler SM, Jett JE, Dunbar GC. Phase 2 Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) in Negative and Cognitive Symptoms of Schizophrenia. Schizophr Bull 2016; 42:335-43. [PMID: 26071208 PMCID: PMC4753586 DOI: 10.1093/schbul/sbv072] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This trial was conducted to test the effects of an alpha7 nicotinic receptor full agonist, TC-5619, on negative and cognitive symptoms in subjects with schizophrenia. METHODS In 64 sites in the United States, Russia, Ukraine, Hungary, Romania, and Serbia, 477 outpatients (18-65 years; male 62%; 55% tobacco users) with schizophrenia, treated with a new-generation antipsychotic, were randomized to 24 weeks of placebo (n = 235), TC-5619, 5mg (n = 121), or TC-5619, 50 mg (n = 121), administered orally once daily. The primary efficacy measure was the Scale for the Assessment of Negative Symptoms (SANS) composite score. Key secondary measures were the Cogstate Schizophrenia Battery (CSB) composite score and the University of California San Diego Performance-Based Skills Assessment-Brief Version (UPSA-B) total score. Secondary measures included: Positive and Negative Syndrome Scale in Schizophrenia (PANSS) total and subscale scores, SANS domain scores, CSB item scores, Clinical Global Impression-Global Improvement (CGI-I) score, CGI-Severity (CGI-S) score, and Subject Global Impression-Cognition (SGI-Cog) total score. RESULTS SANS score showed no statistical benefit for TC-5619 vs placebo at week 24 (5 mg, 2-tailed P = .159; 50 mg, P = .689). Likewise, no scores of CSB, UPSA-B, PANSS, CGI-I, CGI-S, or SGI-Cog favored TC-5619 (P > .05). Sporadic statistical benefit favoring TC-5619 in some of these outcome measures were observed in tobacco users, but these benefits did not show concordance by dose, country, gender, or other relevant measures. TC-5619 was generally well tolerated. CONCLUSION These results do not support a benefit of TC-5619 for negative or cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
| | - Stephen R. Marder
- Desert Pacific Mental Illness Research, Education, and Clinical Center UCLA Semel Institute for Neuroscience, Los Angeles, CA
| | - John Kane
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY
| | - W. Wolfgang Fleischhacker
- Department for Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University Innsbruck, Innsbruck, Austria
| | - Richard S. E. Keefe
- Schizophrenia Research Group, Psychiatry & Behavioral Sciences, Division of Medical Psychology, School of Medicine, Duke University, Durham, NC
| | - David A. Hosford
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - Chris Dvergsten
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - Anthony C. Segreti
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - Jessica S. Beaver
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - Steven M. Toler
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - John E. Jett
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| | - Geoffrey C. Dunbar
- Department of Clinical Development and Regulatory Affairs, Targacept Inc., Winston-Salem, NC
| |
Collapse
|
41
|
Nikiforuk A, Kos T, Hołuj M, Potasiewicz A, Popik P. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats. Neuropharmacology 2016; 101:389-400. [DOI: 10.1016/j.neuropharm.2015.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
|
42
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Featherstone RE, Siegel SJ. The Role of Nicotine in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:23-78. [PMID: 26472525 DOI: 10.1016/bs.irn.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with by severe disruptions in thought, cognition, emotion, and behavior. Patients show a marked increase in rates of smoking and nicotine dependence relative to nonaffected individuals, a finding commonly ascribed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Indeed, many studies have demonstrated improvement in patients following the administration of nicotine. Such findings have led to an increased emphasis on the development of therapeutic agents to target the nicotinic system as well as increasing the impetus to understand the genetic basis for nicotinic dysfunction in schizophrenia. The goal of this review article is to provide a critical summary of evidence for the role of the nicotinic system in schizophrenia. The first part will review the role of nicotine in normalization of primary dysfunctions and endophenotypical changes found in schizophrenia. The second part will provide a summary of genetic evidence linking polymorphisms in nicotinic receptor genes to smoking and schizophrenia. The third part will summarize attempts to treat schizophrenia using agents specifically targeting nicotinic and nicotinic receptor subtypes. Although currently available antipsychotic treatments are generally able to manage some aspects of schizophrenia (e.g., positive symptoms) they fail to address several other critically effected aspects of the disease. As such, the search for novel mechanisms to treat this disease is necessary.
Collapse
Affiliation(s)
- Robert E Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Steven J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 2015; 97:388-398. [PMID: 26231940 DOI: 10.1016/j.bcp.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023]
Abstract
The challenges associated with developing more effective treatments for neurologic and psychiatric illness such as Alzheimer's disease and schizophrenia are considerable. Both the symptoms and the pathophysiology of these conditions are complex and poorly understood and the clinical presentations across different patients can be very heterogeneous. Moreover, it has become apparent that the reductionist approach to drug discovery for these illnesses that has dominated the field for decades (i.e., the development of highly selective compounds or other treatment modalities focused on a very specific pathophysiologic target) has not been widely successful. Accordingly, a variety of new strategies have emerged including the development of "multitarget-directed ligands" (MTDLs), the development and/or identification of compounds that exhibit "multifunctional" activity (e.g., pro-cognitive plus neuroprotective, pro-cognitive plus antipsychotic activity), "repurposing" strategies for existing compounds that have other clinical indications, and novel "adjunctive" treatment strategies that might enhance the efficacy of the currently available treatments. Interestingly, a variety of ligands at nicotinic acetylcholine receptors (nAChRs) appear to have the potential to fulfill one or more of these desirable properties (i.e., multifunctional, repurposing, or adjunctive treatment potential). The purpose of this review (while not all-inclusive) is to provide an overview of a variety of nAChR ligands that demonstrate potential in these categories, particularly, "multifunctional" properties. Due to their densities in the mammalian brain and the amount of literature available, the review will focus on ligands of the high affinity α4β2 nAChR and the low affinity α7 nAChR.
Collapse
|
45
|
Beinat C, Banister SD, Herrera M, Law V, Kassiou M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs 2015; 29:529-42. [PMID: 26242477 DOI: 10.1007/s40263-015-0260-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homomeric α7 nicotinic acetylcholine receptors (α7 nAChRs) have implications in the regulation of cognitive processes such as memory and attention, and have shown promise as a therapeutic target for the treatment of the cognitive deficits associated with schizophrenia. Multiple α7 nAChR agonists have entered human trials; however, unfavorable side effects and pharmacokinetic issues have hindered the development of a clinical α7 nAChR agonist. Currently, EVP-6124 is in phase III clinical trials, and several other α7 nAChR agonists (GTS-21 and AQW051) are in earlier stages of development. This review will summarize the recent advances and failures of α7 nAChR agonists in clinical trials for the treatment of the aforementioned pathology.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
46
|
Magnussen JH, Ettrup A, Donat CK, Peters D, Pedersen MHF, Knudsen GM, Mikkelsen JD. Radiosynthesis and in vitro validation of (3)H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand. Eur J Pharmacol 2015; 762:35-41. [PMID: 25941084 DOI: 10.1016/j.ejphar.2015.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
The neuronal α7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer׳s disease and schizophrenia. We have previously described (11)C-NS14492 as a suitable agonist radioligand for in vivo positron emission tomography (PET) occupancy studies of the α7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, (3)H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding assays in pig frontal cortex. (3)H-NS14492 showed specific binding to α7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1±0.7nM and a maximum number of binding sites (Bmax) of 15.7±2.0fmol/mg tissue equivalent. Binding distribution was similar to that of another selective ligand (125)I-α-bungarotoxin ((125)I-BTX) in autoradiography, and unlabeled NS14492 displaced (125)I-BTX with an inhibition constant (Ki) of 23nM. (3)H-NS14492 bound to α7 nicotinic receptors in homogenized pig frontal cortex with a Kd of 0.8±0.3nM and a Bmax of 30.2±11.6fmol/mg protein. This binding assay further revealed the Ki rank order for a number of α7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of (3)H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together, these findings show that (3)H-NS14492 is a useful new in vitro radioligand for the pig α7 nicotinic receptor.
Collapse
Affiliation(s)
- Janus H Magnussen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelius K Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin H F Pedersen
- The Hevesy Laboratory, DTU Nutech, The Technical University of Denmark, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
47
|
α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: Implications for cognitive dysfunction in schizophrenia. Neuropharmacology 2015; 90:42-52. [DOI: 10.1016/j.neuropharm.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022]
|
48
|
Feuerbach D, Pezous N, Weiss M, Shakeri-Nejad K, Lingenhoehl K, Hoyer D, Hurth K, Bilbe G, Pryce CR, McAllister K, Chaperon F, Kucher K, Johns D, Blaettler T, Lopez Lopez C. AQW051, a novel, potent and selective α7 nicotinic ACh receptor partial agonist: pharmacological characterization and phase I evaluation. Br J Pharmacol 2015; 172:1292-304. [PMID: 25363835 DOI: 10.1111/bph.13001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the α7 nicotinic ACh receptor (nACh receptor) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nACh receptor agonist AQW051 as a promising drug candidate for this indication. EXPERIMENTAL APPROACH AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. KEY RESULTS In vitro, AQW051 bound with high affinity to α7-nACh receptors and stimulated calcium influx in cells recombinantly expressing the human α7-nACh receptor. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a two- to threefold accumulation compared with steady state was achieved by 1 week. CONCLUSIONS AND IMPLICATIONS These data support further development of AQW051 as a cognitive-enhancing agent, as a therapeutic, for example, in Alzheimer's disease or schizophrenia.
Collapse
|
49
|
Hashimoto K. Targeting of α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker. Curr Pharm Des 2015; 21:3797-806. [PMID: 26044974 PMCID: PMC5024727 DOI: 10.2174/1381612821666150605111345] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that the α7 subtype of nicotinic acetylcholine receptors (nAChRs) plays a key role in inflammatory processes, thought to be involved in the pathophysiology of neuropsychiatric diseases, such as schizophrenia and Alzheimer's disease. Preclinical and clinical studies showed that the diminished suppression of P50 auditory evoked potentials in patients with schizophrenia may be associated with a decreased density of α7 nAChRs in the brain. This points to a role for auditory sensory gating (P50) as a translational biomarker. A number of agonists and positive allosteric modulators (PAMs) for α7 nAChR promoted beneficial effects in animal models with sensory gating and cognitive deficits. Additionally, several clinical studies showed that α7 nAChR agonists could improve suppression in auditory P50 evoked potentials, as well as cognitive deficits, and negative symptoms in patients with schizophrenia. Taken together, α7 nAChR presents as an extremely attractive therapeutic target for schizophrenia. In this article, the author discusses recent findings on α7 nAChR agonists such as DMXB-A, RG3487, TC-5619, tropisetron, EVP-6124 (encenicline), ABT-126, AQW051 and α7 nAChR PAMs such as JNJ-39393406, PNU- 120596 and AVL-3288 (also known as UCI-4083), and their potential as therapeutic drugs for neuropsychiatric diseases, such as schizophrenia.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic, Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
50
|
Fan H, Gu R, Wei D. The α7 nAChR selective agonists as drug candidates for Alzheimer's disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:353-65. [PMID: 25387975 DOI: 10.1007/978-94-017-9245-5_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are ion channels distribute in the central or peripheral nervous system. They are receptors of the neurotransmitter acetylcholine and activation of them by agonists mediates synaptic transmission in the neuron and muscle contraction in the neuromuscular junction. Current studies reveal relationship between the nAChRs and the learning and memory as well as cognation deficit in various neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia and drug addiction. There are various subtypes in the nAChR family and the α7 nAChR is one of the most abundant subtypes in the brain. The α7 nAChR is significantly reduced in the patients of Alzheimer's disease and is believed to interact with the Aβ amyloid. Aβ amyloid is co-localized with α7 nAChR in the senile plaque and interaction between them induces neuron apoptosis and reduction of the α7 nAChR expression. Treatment with α7 agonist in vivo shows its neuron protective and procognation properties and significantly improves the learning and memory ability of the animal models. Therefore, the α7 nAChR agonists are excellent drug candidates for Alzheimer's disease and we summarized here the current agonists that have selectivity of the α7 nAChR over the other nAChR, introduced recent molecular modeling works trying to explain the molecular mechanism of their selectivity and described the design of novel allosteric modulators in our lab.
Collapse
Affiliation(s)
- Huaimeng Fan
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|