1
|
Van der Speeten K, Kusamura S, Villeneuve L, Piso P, Verwaal VJ, González-Moreno S, Glehen O. The 2022 PSOGI International Consensus on HIPEC Regimens for Peritoneal Malignancies: HIPEC Technologies. Ann Surg Oncol 2024; 31:7090-7110. [PMID: 39037523 DOI: 10.1245/s10434-024-15513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
This manuscript reports the results of an international consensus on technologies of hyperthermic intraperitoneal perioperative chemotherapy (HIPEC) performed with the following goals: To provide recommendations for the technological parameters to perform HIPEC. To identify the role of heat and its application forms in treating peritoneal metastases. To provide recommendations regarding the correct dosimetry of intraperitoneal chemotherapy drugs and their carrier solutions. To identify for each intraperitoneal chemotherapy regimen the best dosimetry and fractionation. To identify areas of future research pertaining to HIPEC technology and regimens. This consensus was performed by the Delphi technique and comprised two rounds of voting. In total, 96 of 102 eligible panelists replied to both Delphi rounds (94.1%) with a consensus of 39/51 questions on HIPEC technical aspects. Among the recommendations that met with the strongest consensus were those concerning the dose of HIPEC drug established in mg/m2, a target temperature of at least 42°C, and the use of at least three temperature probes to pursue hyperthermia. Ninety minutes as the ideal HIPEC duration seemed to make consensus. These results should be considered when designing new clinical trials in patients with peritoneal surface malignancies.
Collapse
Affiliation(s)
- Kurt Van der Speeten
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium.
- Faculty of Life Sciences, BIOMED Research Institute, University Hasselt, Hasselt, Belgium.
| | - Shigeki Kusamura
- Department of Surgical Oncology, PSM unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laurent Villeneuve
- Department of Surgical Oncology, Centre Hospitalier Lyon-sud, Lyon, France
| | - Pompiliu Piso
- Department of General and Visceral Surgery, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Vic J Verwaal
- Peritoneal Surface Malignancy and HIPEC Institute for Regional Sundhedforskning, Syddansk University, Odense, Sweden
| | | | - Olivier Glehen
- Department of Surgical Oncology, Centre Hospitalier Lyon-sud, Lyon, France
| |
Collapse
|
2
|
Wang Y, Gan X, Cheng X, Jia Y, Wang G, Tang X, Du H, Li X, Liu X, Xing X, Ji J, Li Z. ABCC2 induces metabolic vulnerability and cellular ferroptosis via enhanced glutathione efflux in gastric cancer. Clin Transl Med 2024; 14:e1754. [PMID: 39095325 PMCID: PMC11296884 DOI: 10.1002/ctm2.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Although it is traditionally believed that ATP binding cassette subfamily C member 2 (ABCC2) is a multidrug resistance-associated protein correlated with a worse prognosis, our previous and several other studies demonstrated the contrary to be true in gastric cancer (GC). We aim to explore the underlying mechanism of this discovery. METHODS Our study utilized whole-exome sequencing (WES), RNA sequencing, and droplet digital PCR (ddPCR) analysis of 80 gastric cancer samples, along with comprehensive immunohistochemical (IHC) analysis of 1044 human GC tissue samples.By utilizing CRISPRCas9 to genetically modify cell lines with the ABCC2-24C > T (rs717620) point mutation and conducting dual-luciferase reporter assays, we identified that transcription factors SOX9 and ETS1 serve as negative regulators of ABCC2 expression. Seahorse assay and mass spectrometry were used to discover altered metabolic patterns. Gain and loss-of-function experiments in GC cell lines and preclinical models were carried out to validate ABCC2 biological function. RESULTS ABCC2 high expression correlated with better prognosis, and rs717620 can influence ABCC2 expression by disrupting the binding of ETS1 and SOX9. Gain and loss-of-function experiments in GC cell lines demonstrated amino acid deprivation reduces proliferation, migration, and drug resistance in ABCC2-high GC cells. ABCC2 leads to reduced intracellular amino acid pools and disruption of cellular energy metabolism. This phenomenon depended on ABCC2-mediated GSH extrusion, resulting in alterations in redox status, thereby increasing the cell's susceptibility to ferroptosis. Furthermore, patient-derived organoids and patient-derived tumor-like cell clusters were used to observe impact of ABCC2 on therapeutic effect. In the xenograft model with high ABCC2 expression, we observed that constricting amino acid intake in conjunction with GPX4 inactivation resulted in notable tumor regression. CONCLUSIONS Our findings demonstrate a significant role of ABCC2 in amino acid metabolism and ferroptosis by mediating GSH efflux in GC. This discovery underlines the potential of combining multiple ferroptosis targets as a promising therapeutic strategy for GC with high ABCC2 expression. HIGHLIGHTS ABCC2 plays a crucial role in inducing metabolic vulnerability and ferroptosis in gastric cancer through enhanced glutathione efflux. The ABCC2 24C > T polymorphism is a key factor influencing its expression. These results highlight the potential of ABCC2 as a predictive biomarker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yiding Wang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xuejun Gan
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaojing Cheng
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Yongning Jia
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Gangjian Wang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xijuan Liu
- Department of Central LaboratoryKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Ziyu Li
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| |
Collapse
|
3
|
Alinaghi M, Mokarram P, Ahmadi M, Bozorg-Ghalati F. Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: evaluation of anticancer activity. Sci Rep 2024; 14:5798. [PMID: 38461314 PMCID: PMC10925055 DOI: 10.1038/s41598-024-56275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.
Collapse
Affiliation(s)
- Moloud Alinaghi
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mazaher Ahmadi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Farzaneh Bozorg-Ghalati
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zhao M, Guo Z, Zou YH, Li X, Yan ZP, Chen MS, Fan WJ, Li HL, Yang JJ, Chen XM, Xu LF, Zhang YW, Zhu KS, Sun JH, Li JP, Jin Y, Yu HP, Duan F, Xiong B, Yin GW, Lin HL, Ma YL, Wang HM, Gu SZ, Si TG, Wang XD, Zhao C, Yu WC, Guo JH, Zhai J, Huang YH, Wang WY, Lin HF, Gu YK, Chen JZ, Wang JP, Zhang YM, Yi JZ, Lyu N. Arterial chemotherapy for hepatocellular carcinoma in China: consensus recommendations. Hepatol Int 2024; 18:4-31. [PMID: 37864725 DOI: 10.1007/s12072-023-10599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/17/2023] [Indexed: 10/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ying-Hua Zou
- Department of Interventional and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Ping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min-Shan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Jun Fan
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ji-Jin Yang
- Department of Interventional Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ming Chen
- Department of Interventional Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin-Feng Xu
- Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Wei Zhang
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Kang-Shun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Hui Sun
- Division of Hepatobiliary and Pancreatic Surgery, Hepatobiliary and Pancreatic Interventional Treatment Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Ping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Jin
- The Interventional Therapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Peng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Feng Duan
- Department of Interventional Radiology, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Wen Yin
- Department of Interventional Radiology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Lan Lin
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi-Long Ma
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Ming Wang
- Department of Interventional Therapy, The Fifth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shan-Zhi Gu
- Department of Interventional Therapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tong-Guo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiao-Dong Wang
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chang Zhao
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Chang Yu
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jian-Hai Guo
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Zhai
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yong-Hui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Yu Wang
- Department of Interventional Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Feng Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yang-Kui Gu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jin-Zhang Chen
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Peng Wang
- Department of Oncology, First People's Hospital of Foshan, Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Yi-Min Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| |
Collapse
|
5
|
Ding Y, Wang S, Qiu Z, Zhu C, Wang Y, Zhao S, Qiu W, Wang K, Lv J, Qi W. The worthy role of hepatic arterial infusion chemotherapy in combination with anti-programmed cell death protein 1 monoclonal antibody immunotherapy in advanced hepatocellular carcinoma. Front Immunol 2023; 14:1284937. [PMID: 38022559 PMCID: PMC10644007 DOI: 10.3389/fimmu.2023.1284937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic therapy remains the primary therapeutic approach for advanced hepatocellular carcinoma (HCC). Nonetheless, its efficacy in achieving control of intrahepatic lesions is constrained. Hepatic arterial infusion chemotherapy (HAIC) is a therapeutic approach that combines localized treatment with systemic antitumor effects, which aim is to effectively manage the progression of cancerous lesions within the liver, particularly in patients with portal vein tumor thrombosis (PVTT). Combining HAIC with anti-programmed cell death protein 1 (anti-PD-1) monoclonal antibody (mAb) immunotherapy is anticipated to emerge as a novel therapeutic approach aimed at augmenting the response inside the localized tumor site and achieving prolonged survival advantages. In order to assess the effectiveness, safety, and applicability of various therapeutic modalities and to address potential molecular mechanisms underlying the efficacy of HAIC-sensitizing immunotherapy, we reviewed the literature about the combination of HAIC with anti-PD-1 mAb therapies.
Collapse
Affiliation(s)
- Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Kongjia Wang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Lee J, Jang CH, Kim Y, Oh J, Kim JS. Quercetin-Induced Glutathione Depletion Sensitizes Colorectal Cancer Cells to Oxaliplatin. Foods 2023; 12:foods12081733. [PMID: 37107528 PMCID: PMC10138196 DOI: 10.3390/foods12081733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Quercetin is an antioxidant phytochemical which belongs to the natural flavonoids group. Recently, the compound has been reported to inhibit glutathione reductase responsible for replenishing reduced forms of glutathione and thus leads to glutathione depletion, triggering cell death. In this study, we examined if quercetin sensitizes tumors to oxaliplatin by inhibiting glutathione reductase activity in human colorectal cancer cells, and thereby facilitates apoptotic cell death. A combined treatment with quercetin and oxaliplatin was found to synergistically inhibit glutathione reductase activity, lower intracellular glutathione level, increase reactive oxygen species production, and reduce cell viability, compared to treatment with oxaliplatin alone in human colorectal HCT116 cancer cells. Furthermore, the incorporation of sulforaphane, recognized for its ability to scavenge glutathione, in combination with quercetin and oxaliplatin, substantially suppressed tumor growth in an HCT116 xenograft mouse model. These findings suggest that the depletion of intracellular glutathione by quercetin and sulforaphane could strengthen the anti-cancer efficacy of oxaliplatin.
Collapse
Affiliation(s)
- Jinkyung Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Long F, Chen S, Li R, Lin Y, Han J, Guo J, Chen Y, Li C, Song P. Efficacy and safety of HAIC alone vs. HAIC combined with lenvatinib for treatment of advanced hepatocellular carcinoma. Med Oncol 2023; 40:147. [PMID: 37043113 DOI: 10.1007/s12032-023-02012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023]
Abstract
To investigate efficacy and safety of hepatic arterial infusion chemotherapy combined with lenvatinib (HAIC-Len) and HAIC alone for the treatment of advanced hepatocellular carcinoma (Ad-HCC). Totally 349 patients with Ad-HCC participated in the research from February 2018 to October 2020. On the basis of propensity score matching (PSM), 132 and 110 cases were assigned to the HAIC group and the HAIC-Len group, respectively, with a ratio of 1:1. Progression-free survival (PFS), overall survival (OS), and complications were compared between two groups. The Kaplan-Meier method and log-rank test were utilized to estimate cumulative OS and PFS. Additionally, uni- and multi-variate Cox regression models were employed to identify significant independent factors. The median follow-up period in this study was set to be 20.8 months. Following PSM, the one-, two- and three-year cumulative OS rates in the HAIC-Len and HAIC groups were 63.6%, 12.1%, and 3.0%, and 47.2%, 11.8%, and 2.7%, respectively, with a significant difference (P < 0.001). The first-three-year cumulative incidence rates PFS in the HAIC-Len and the HAIC groups were 15.2%, 1.5%, and ND, and 11.8%, 4.5%, and 3.6%, respectively, with no significant difference detected (P = 0.092). BMI (HR 0.709. 95% CI 0.549, 0.915. P = 0.008) and AST (HR 1.005. 95% CI 1.003, 1.007. P < 0.001) represented independent prognostic factors for OS. Additionally, the two groups exhibited no significant difference in the incidence rates of adverse events. HAIC-Len significantly improved survival outcomes of patients with Ad-HCC and demonstrated acceptable toxicity compared to HAIC alone.
Collapse
Affiliation(s)
- Fang Long
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, No.613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Shali Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Ruidong Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Yinsheng Lin
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Jian Han
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Jiandong Guo
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Yongxin Chen
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, No. 613 of West Huangpu Avenue, Guangzhou, 510630, China.
| | - Peng Song
- Department of Oncology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
8
|
Lo YL, Lin HC, Tseng WH. Tumor pH-functionalized and charge-tunable nanoparticles for the nucleus/cytoplasm-directed delivery of oxaliplatin and miRNA in the treatment of head and neck cancer. Acta Biomater 2022; 153:465-480. [PMID: 36115656 DOI: 10.1016/j.actbio.2022.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Prospective tumor pH-responsive and charge-convertible nanoparticles have been utilized to reduce side effects and improve the active tumor-targeting ability and nuclear/cytoplasmic localization of chemo- and gene therapeutics for the treatment of head and neck cancer (HNC). Oxaliplatin (Oxa) is a third-generation platinum compound that prevents DNA replication. miR-320 may regulate cancer cell apoptosis, resistance, and progression. Innovative nanoparticles incorporating miR-320 and Oxa were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The nanoparticles were coated with a charge/size-tunable shield to prevent peptide degradation and decoated at acidic tumor sites to expose peptides for active targeting. Results indicated that the designed nanoparticles exhibited a uniform size and satisfactory drug encapsulation efficiency. The nanoparticles displayed the pH-responsive release and uptake of Oxa and miR-320 into human tongue squamous carcinoma SAS cells. The nanoparticles successfully delivered Oxa and miR-320 to the nucleus and cytoplasm, respectively. This work is the first to demonstrate the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3β/FOXM1/β-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit the growth, progression, and multidrug resistance of cancer cells. In SAS-bearing mice, co-treatment with Oxa- and miR-320-loaded nanoparticles exhibited superior antitumor efficacy and remarkably decreased Oxa-associated toxicities. The nucleus/cytoplasm-localized nanoparticles with a tumor pH-sensitive and size/charge-adjustable coating may be a useful combinatorial spatiotemporal nanoplatform for nucleic acids and chemotherapeutics to achieve maximum therapeutic safety and efficacy against HNC. STATEMENT OF SIGNIFICANCE: Innovative nanoparticles incorporating miR-320 and oxaliplatin were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The tumor pH-sensitive and charge/size-adjustable shield of polyglutamic acid-PEG protected against peptide degradation during systemic circulation. This work represents the first example of the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3β/FOXM1/β-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit cancer cell growth, cancer cell progression, and multidrug resistance simultaneously. The versatile nanoparticles with a tumor pH-functionalized coating could deliver chemotherapeutics and miRNA to the nucleus/cytoplasm. The nanoparticles successfully reduced chemotherapy-associated toxicities and maximized the antitumor efficacy of combinatorial therapy against head and neck cancer.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Hua-Ching Lin
- Division of Colorectal Surgery, Surgical Department, Chen-Hsin General Hospital, Taipei, Taiwan; Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan
| | - Wei-Hsuan Tseng
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
9
|
Chen X, Yu H, Fan Q, Yuan Q, Jiang W, Rui S, Zhou WC. Comparative effectiveness of interventional therapeutic modalities for unresectable hepatocellular carcinoma: A systematic review and network meta‑analysis. Oncol Lett 2022; 24:366. [PMID: 36238837 PMCID: PMC9494298 DOI: 10.3892/ol.2022.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
It is unclear whether hepatic artery infusion chemotherapy (HAIC) or transcatheter arterial chemoembolization (TACE) is more efficient in the combination therapy of hepatocellular carcinoma (HCC). Head-to-head comparisons among HAIC-related therapies are lacking. For this network meta-analysis, PubMed, EMBASE and Cochrane Library databases were searched up to April 1, 2022. Randomized controlled trials (RCTs) were eligible if they evaluated the use or prolongation of TACE or HAIC in patients with advanced HCC and reported or collected survival data. A network meta-analysis was performed to synthesize data and make direct and indirect comparisons between treatments. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to explore the efficacy of various treatment options on overall survival (OS), odds ratios (ORs) with 95% CI were used for overall response rate (ORR), whereas risk ratios (RRs) with 95% CI were used for serious adverse events (SAEs). The analysis of 7 trials including a total of 1,073 patients found that sorafenib with HAIC-oxaliplatin improved survival (HR=0.33, 95% CI: 0.25-0.44); the ORR was also improved in patients treated with sorafenib plus HAIC-oxaliplatin and sorafenib plus PF-HAIC (OR=22.18, 95% CI: 10.69-52.56; and OR=2.72, 95% CI: 1.43-5.36, respectively). The incidence of liver injury was elevated in patients treated with sorafenib plus TACE (OR=5.93, 95% CI: 2.70-15.41). However, no differences in the incidences of other SAEs were identified among the treatment groups. The present meta-analysis provides preliminary evidence for the comparative safety and efficacy of HAIC and TACE combined with sorafenib, and indicates the dominance of HAIC-oxaliplatin in HCC interventional therapy. However, high-quality RCTs are required to further confirm the efficacy of HAIC-oxaliplatin. The present study has been registered with PROSPERO (registration no. CRD42021288497).
Collapse
Affiliation(s)
- Xin‑Long Chen
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hai‑Chuan Yu
- First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qi‑Gang Fan
- First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qi Yuan
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen‑Kai Jiang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shao‑Zhen Rui
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Ce Zhou
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
10
|
Taibi A, Sgarbura O, Hübner M, Bardet SM, Alyami M, Bakrin N, Durand Fontanier S, Eveno C, Gagniere J, Pache B, Pocard M, Quenet F, Teixeira Farinha H, Thibaudeau E, Dumont F, Glehen O. Feasibility and Safety of Oxaliplatin-Based Pressurized Intraperitoneal Aerosol Chemotherapy With or Without Intraoperative Intravenous 5-Fluorouracil and Leucovorin for Colorectal Peritoneal Metastases: A Multicenter Comparative Cohort Study. Ann Surg Oncol 2022; 29:5243-5251. [PMID: 35318519 DOI: 10.1245/s10434-022-11577-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND This retrospective multicenter cohort study compared the feasibility and safety of oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy (PIPAC-Ox) with or without intraoperative intravenous 5-fluorouracil (5-FU) and leucovorin (L). METHODS Our study included consecutive patients with histologically proven unresectable and isolated colorectal peritoneal metastases (cPM) treated with PIPAC-Ox in seven tertiary referral centers between January 2015 and April 2020. Toxicity events and oncological outcomes (histological response, progression-free survival, and overall survival) were compared between patients who received intraoperative intravenous 5-FU/L (PIPAC-Ox + 5-FU/L group) and patients who did not (PIPAC-Ox group). RESULTS In total, 101 patients (263 procedures) were included in the PIPAC-Ox group and 30 patients (80 procedures) were included in the PIPAC-Ox + 5-FU/L group. Common Terminology Criteria for Adverse Events v4.0 grade 2 or higher adverse events occurred in 48 of 101 (47.5%) patients in the PIPAC-Ox group and in 13 of 30 (43.3%) patients in the PIPAC-Ox + 5-FU/L group (p = 0.73). The complete histological response rates according to the peritoneal regression grading score were 27% for the PIPAC-Ox + 5-FU/L group and 18% for the PIPAC-Ox group (p = 0.74). No statistically significant differences were observed in overall or progression-free survival between the two groups. CONCLUSIONS The safety and feasibility of PIPAC-Ox + 5-FU/L appears to be similar to the safety and feasibility of PIPAC-Ox alone in patients with unresectable cPM. Oncological outcomes must be evaluated in larger studies.
Collapse
Affiliation(s)
- Abdelkader Taibi
- Digestive Surgery Department, Dupuytren Limoges University Hospital, Limoges, France. .,CNRS, XLIM, UMR 7252, University Limoges, Limoges, France.
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute Montpellier (ICM), University of Montpellier, Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Mohammed Alyami
- Department of General Surgery and Surgical Oncology, Lyon Sud University Hospital, Pierre Benite, France.,Department of General Surgery and Surgical Oncology, King Khalid Hospital, Najran, Saudi Arabia
| | - Naoual Bakrin
- Department of General Surgery and Surgical Oncology, Lyon Sud University Hospital, Pierre Benite, France
| | - Sylvaine Durand Fontanier
- Digestive Surgery Department, Dupuytren Limoges University Hospital, Limoges, France.,CNRS, XLIM, UMR 7252, University Limoges, Limoges, France
| | - Clarisse Eveno
- Department of General Surgery, University Hospital Lille, Lille, France
| | - Johan Gagniere
- Department of General Surgery, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Basile Pache
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marc Pocard
- INSERM U1275, CAP Paris-Tech, Carcinomatosis Peritoneum Paris Technology, Lariboisière Hospital, AP-HP, Paris 7 -Diderot University, Sorbonne Paris Cité, Paris, France.,Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation Pitié-Salpêtrière Hospital Assistance Publique/Hôpitaux de Paris, 75013, Paris, France
| | - François Quenet
- Department of Surgical Oncology, Cancer Institute Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Hugo Teixeira Farinha
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Emilie Thibaudeau
- Department of Surgical Oncology, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Frederic Dumont
- Department of Surgical Oncology, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Olivier Glehen
- Department of General Surgery and Surgical Oncology, Lyon Sud University Hospital, Pierre Benite, France
| |
Collapse
|
11
|
Pan Y, Mei J, Chen J, Zhang D, Wang J, Wang X, Yi M, Zhou Z, Zhang Y, Chen M, Guo R, Xu L. Comparison Between Portal Vein Perfusion Chemotherapy and Neoadjuvant Hepatic Arterial Infusion Chemotherapy for Resectable Intermediate to Advanced Stage Hepatocellular Carcinoma. Ann Surg Oncol 2021; 29:2016-2029. [PMID: 34637058 DOI: 10.1245/s10434-021-10903-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with intermediate to advanced stage hepatocellular carcinoma (HCC; Barcelona Clinic Liver Cancer [BCLC] stage B/C) have few choices of curable treatments and thus suffer from dismal outcomes. Although surgical resection could prolong survival in certain selected patients with BCLC stage B/C HCC, the frequent postoperative recurrence and poor survival of these patients need to be improved by combining other therapies perioperatively. OBJECTIVE This study was conducted to investigate the survival associations of adjuvant portal vein perfusion chemotherapy (PVC) and neoadjuvant hepatic arterial infusion chemotherapy (HAIC) in patients with resectable BCLC stage B/C HCC. METHODS A retrospective study was conducted in consecutive patients who underwent R0 resection for intermediate to advanced stage HCC, combined with either PVC or HAIC perioperatively between January 2017 and December 2018. Patients treated with PVC or HAIC were analyzed according to intention-to-treat (ITT) and per protocol (PP) principles, respectively. The chemotherapy regimen of adjuvant PVC and neoadjuvant HAIC included 5-fluorouracil/leucovorin/oxaliplatin. Survival analysis and Cox regression for overall survival (OS) and event-free survival (EFS) were used to compare the outcomes. RESULTS Among all 64 patients enrolled in this study, 28 received perioperative PVC and 36 received HAIC for ITT analysis. Age (median 44.00 vs. 46.50 years; p = 0.364), sex (male: 25/28 vs. 35/36; p = 0.435), and tumor size (median 9.55 vs. 8.10 cm; p = 0.178) were comparable between the two groups. In the ITT analysis, the median OS was significantly longer in patients in the HAIC group compared with the PVC group (median OS not reached vs. 19.47 months; p = 0.004); in the PP analysis, patients who received neoadjuvant HAIC followed by hepatectomy presented with much better EFS than patients in the PVC group (modified EFS 16.90 vs. 3.17 months; p = 0.022); and in the multivariate analysis, neoadjuvant HAIC presented as a significant predictor for enhanced EFS (hazard ratio [HR] 0.296; p = 0.007) and OS (HR 0.095; p = 0.007) for BCLC stage B/C HCC patients who received hepatectomy. CONCLUSIONS Compared with adjuvant PVC, neoadjuvant HAIC treatment was associated with better survival and fewer recurrences in HCC patients who received R0 resection at the intermediate to advanced stage. These results need to be further validated prospectively.
Collapse
Affiliation(s)
- Yangxun Pan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jie Mei
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jinbin Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Deyao Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Juncheng Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaohui Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Minjiang Yi
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Rongping Guo
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Li Xu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
12
|
He M, Li Q, Zou R, Shen J, Fang W, Tan G, Zhou Y, Wu X, Xu L, Wei W, Le Y, Zhou Z, Zhao M, Guo Y, Guo R, Chen M, Shi M. Sorafenib Plus Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin vs Sorafenib Alone for Hepatocellular Carcinoma With Portal Vein Invasion: A Randomized Clinical Trial. JAMA Oncol 2020; 5:953-960. [PMID: 31070690 DOI: 10.1001/jamaoncol.2019.0250] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Sorafenib is the first-line treatment for hepatocellular carcinoma with portal vein invasion; however, it has shown unsatisfactory survival benefit. Sorafenib plus hepatic arterial infusion chemotherapy (HAIC) of oxaliplatin, fluorouracil, and leucovorin (FOLFOX) has shown promising results for these patients in a previous phase 2 study. Objective To investigate the efficacy and safety of sorafenib plus HAIC compared with sorafenib for hepatocellular carcinoma with portal vein invasion. Design, Setting, and Participants This randomized, open-label clinical trial enrolled 818 screened patients. Of the 818 participants, 247 with hepatocellular carcinoma and portal vein invasion were randomly assigned (1:1) via a computer-generated sequence to receive sorafenib plus HAIC or sorafenib. This trial was conducted at 5 hospitals in China and enrolled patients from April 1, 2016, to October 10, 2017, with a follow-up period of 10 months. Interventions Randomization to receive 400 mg sorafenib twice daily (sorafenib group) or 400 mg sorafenib twice daily plus HAIC (SoraHAIC group) (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, fluorouracil bolus 400 mg/m2 on day 1, and fluorouracil infusion 2400 mg/m2 for 46 hours, every 3 weeks). Main Outcomes and Measures The primary endpoint was overall survival by intention-to-treat analysis. Safety was assessed in patients who received at least 1 dose of study treatment. Results For 247 patients (median age, 49 years; range, 18-75 years; 223 men and 24 women), median overall survival was 13.37 months (95% CI, 10.27-16.46) in the SoraHAIC group vs 7.13 months (95% CI, 6.28-7.98) in the sorafenib group (hazard ratio [HR], 0.35; 95% CI, 0.26-0.48; P < .001). The SoraHAIC group showed a higher response rate than the sorafenib group (51 [40.8%] vs 3 [2.46%]; P < .001), and a longer median progression-free survival (7.03 [95% CI, 6.05-8.02] vs 2.6 [95% CI, 2.15-3.05] months; P < .001). Grade 3/4 adverse events that were more frequent in the SoraHAIC group than in the sorafenib group included neutropenia (12 [9.68%] vs 3 [2.48%]), thrombocytopenia (16 [12.9%] vs 6 [4.96%]), and vomiting (8 [6.45%] vs 1 [0.83%]). Conclusions and Relevance Sorafenib plus HAIC of FOLFOX improved overall survival and had acceptable toxic effects compared with sorafenib in patients with hepatocellular carcinoma and portal vein invasion. Trial Registration ClinicalTrials.gov identifier: NCT02774187.
Collapse
Affiliation(s)
- MinKe He
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - QiJiong Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - RuHai Zou
- Department of Ultrasonography, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - JingXian Shen
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - GuoSheng Tan
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - YuanMin Zhou
- Guangzhou No.12 People's Hospital, Guangzhou, China
| | - XiaoPing Wu
- The First Affiliated Hospital of the University of South China, HengYang, China
| | - Li Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong Le
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - ZhongGuo Zhou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Zhao
- Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Guo
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - RongPing Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - MinShan Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
13
|
Radiogenomics-based cancer prognosis in colorectal cancer. Sci Rep 2019; 9:9743. [PMID: 31278324 PMCID: PMC6611779 DOI: 10.1038/s41598-019-46286-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Radiogenomics aims at investigating the relationship between imaging radiomic features and gene expression alterations. This study addressed the potential prognostic complementary value of contrast enhanced computed tomography (CE-CT) radiomic features and gene expression data in primary colorectal cancers (CRC). Sixty-four patients underwent CT scans and radiomic features were extracted from the delineated tumor volume. Gene expression analysis of a small set of genes, previously identified as relevant for CRC, was conducted on surgical samples from the same tumors. The relationships between radiomic and gene expression data was assessed using the Kruskal–Wallis test. Multiple testing was not performed, as this was a pilot study. Cox regression was used to identify variables related to overall survival (OS) and progression free survival (PFS). ABCC2 gene expression was correlated with N (p = 0.016) and M stages (p = 0.022). Expression changes of ABCC2, CD166, CDKNV1 and INHBB genes exhibited significant correlations with some radiomic features. OS was associated with Ratio 3D Surface/volume (p = 0.022) and ALDH1A1 expression (p = 0.042), whereas clinical stage (p = 0.004), ABCC2 expression (p = 0.035), and EntropyGLCM_E (p = 0.0031), were prognostic factors for PFS. Combining CE-CT radiomics with gene expression analysis and histopathological examination of primary CRC could provide higher prognostic stratification power, leading to improved patient management.
Collapse
|
14
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
15
|
Han SH, Kim JW, Kim M, Kim JH, Lee KW, Kim BH, Oh HK, Kim DW, Kang SB, Kim H, Shin E. Prognostic implication of ABC transporters and cancer stem cell markers in patients with stage III colon cancer receiving adjuvant FOLFOX-4 chemotherapy. Oncol Lett 2019; 17:5572-5580. [PMID: 31186779 PMCID: PMC6507487 DOI: 10.3892/ol.2019.10234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/20/2019] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cell (CSC) and ATP-binding cassette (ABC) transporters are associated with treatment resistance and outcomes of patients with cancer. The present study investigated the prognostic implications of pre-therapeutic expression of ABC transporters and CSC markers in patients with colon cancer (CC) who received adjuvant 5-fluorouracil, leucovorin and oxaliplatin combination therapy (FOLFOX-4). The immunohistochemical expression of 3 ABC transporters, including ABC subfamily C member 2 (ABCC2), ABCC3 and ABC subfamily G member 2 (ABCG2), and 3 CSC markers, including sex determining region Y-box 2 (SOX2), leucine-rich repeat-containing G protein-coupled receptor 5 and aldehyde dehydrogenase 1, were determined in 164 CC tissues from patients with stage III CC, who underwent postoperative FOLFOX-4 chemotherapy. The association between the protein expression and patients' prognoses was statistically analyzed. ABCG2 was associated with favorable overall survival rate (OS; P=0.001), and ABCC2, ABCG2 and SOX2 were associated with increased disease-free survival rate (DFS; P=0.001, 0.002 and 0.013, respectively). In multivariate analyses, ABCG2 was an independent prognostic factor for OS [hazard ratio (HR)=2.877; P=0.046], and ABCC2 and SOX2 were independent prognostic factors for DFS (HR=2.831; P=0.014; HR=2.558, P=0.020, respectively). ABCC2, ABCG2 and SOX2 may be promising prognostic markers for patients with CC receiving FOLFOX-4 therapy.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Dong-A University School of Medicine, Busan, South Gyeongsang 49201, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Milim Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine and Hospital, Seoul 02447, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Hyunchul Kim
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| | - Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea.,Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
16
|
Wei W, Xi Y, Jiamin X, Jing Z, Shuwen H. Screening of molecular targets and construction of a ceRNA network for oxaliplatin resistance in colorectal cancer. RSC Adv 2019; 9:31413-31424. [PMID: 35527927 PMCID: PMC9073375 DOI: 10.1039/c9ra06146k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC). This study aimed to screen molecular targets of oxaliplatin resistance in CRC to construct a ceRNA network. The differentially expressed mRNA and lncRNA between the oxaliplatin-resistant and oxaliplatin-sensitive colon cancer cell lines was determined using RNA sequencing data (no. GSE42387) from the NCBI GEO database. Gene Ontology BP (biological process) and KEGG pathway enrichment analyses were used to analyze the function and pathway enrichment of the differentially expressed mRNA and lncRNA. The lnCeDB and starBase v2.0 were used to predict miRNA, and Cytoscape software was used to build a ceRNA network. The top 5 mRNA, miRNAs, and lncRNAs with high degrees of connectivity in the ceRNA network were validated by qPCR. TCGA colon cancer clinical data was used to perform a survival analysis of patients with differential mRNA and lncRNA expression. Between the two groups, 2515 mRNAs and 23 lncRNAs were differentially expressed. We constructed a ceRNA network containing 503 lncRNA–miRNA–mRNA regulatory pairs, 210 lncRNA–miRNA pairs, 382 miRNA–mRNA pairs, and 212 mRNA co-expression pairs. The differentially expressed lncRNA, miRNA and mRNA were verified by qPCR. One lncRNA (HOTAIR) and 14 mRNAs significantly correlated with patient prognosis. The discovery of differentially expressed genes and the construction of ceRNA networks will provide important resources for the search for therapeutic targets of oxaliplatin resistance. Moreover, this resource will aid the discovery of the mechanisms behind this type of drug resistance. Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC).![]()
Collapse
Affiliation(s)
- Wu Wei
- Department of Gastroenterology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Yang Xi
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Xu Jiamin
- Graduate School of Nursing
- Huzhou University
- Huzhou
- China
| | - Zhuang Jing
- Graduate School of Nursing
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Han Shuwen
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| |
Collapse
|
17
|
Human papilloma virus (HPV) 18 proteins E6 and E7 up-regulate ABC transporters in oropharyngeal carcinoma. Involvement of the nonsense-mediated decay (NMD) pathway. Cancer Lett 2018; 428:69-76. [PMID: 29715486 DOI: 10.1016/j.canlet.2018.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
Abstract
Oropharyngeal cancer incidence increased dramatically in the last decades, being infection with human papillomaviruses (HPV) a determinant of this trend. Concerning etiology, treatment response and prognosis, HPV+ and HPV- oropharyngeal cancers constitute different disease entities. The underlying molecular background is not completely understood. ATP-binding cassette (ABC) transporters mediate the efflux of anticancer drugs and are regulated by changes in the intracellular milieu. Furthermore, a role in cancer pathogenesis besides drug transport was reported. We evaluated the effect of transfection with E6 and E7 oncogenes from HPV16 and HPV18 on ABC transporters in oropharyngeal cancer cells. HPV18E6/E7 up-regulated P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and MRP2 expression in HNO206 cells and breast cancer resistance protein (BCRP) in HNO206 and HNO413 cells. While P-gp was regulated translationally, MRP1, MRP2 and BCRP up-regulation resulted from mRNA stabilization. For MRP1 and MRP2, the nonsense-mediated decay pathway was involved. In general, resistance to substrates of up-regulated transporters was increased. Transfection with oncogenes individually indicated a major role of HPV18E7. Our findings suggest ABC transporters as molecular players leading to differences in the pathogenesis of HPV+ and HPV- oropharyngeal cancer.
Collapse
|
18
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Ruiz ML, Villanueva SSM, Weiss J, Mottino AD, Rigalli JP. Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Biochem Pharmacol 2018; 154:118-126. [PMID: 29684377 DOI: 10.1016/j.bcp.2018.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camila Juliana Domínguez
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Expression of ABCG2 Associated with Tumor Response in Metastatic Colorectal Cancer Patients Receiving First-line FOLFOX Therapy – Preliminary Evidence. Int J Biol Markers 2018; 28:182-6. [DOI: 10.5301/jbm.5000004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2013] [Indexed: 01/02/2023]
Abstract
Purpose We retrospectively analyzed ABCG2 expression levels in patients with metastatic colorectal cancer (CRC) to investigate the interaction between ABCG2 expression and the tumor response to oxaliplatin and 5-fluorouracil (FOLFOX). Methods Forty-three patients with CRC with liver metastasis who received first-line FOLFOX treatment at our institution between 2008 and 2010 were enrolled. ABCG2 expression was assessed by immunohistochemistry. Tumor response was determined using the modified Response Evaluation Criteria in Solid Tumors criteria. Results At least 50% tumor shrinkage was observed in 16/43 patients (37.2%), including a complete response in 1 patient. According to the intensity of ABCG2 expression and the percentage of tumor cells expressing ABCG2, 21 tumors displayed high ABCG2 expression. Among these tumors, only 2 (9.5%) exhibited partial responses to FOLFOX; conversely, 63.6% of tumors with low ABCG2 expression (14/22) responded to FOLFOX. Primary and corresponding metastatic samples were available for 15 patients, and 13 of the metastatic tumors had higher ABCG2 expression than the corresponding primary tumors, but only 1 of these tumors responded to FOLFOX (7.7%). Conclusions ABCG2 expression is associated with the tumor response to FOLFOX in patients with metastatic CRC. ABCG2 may be a selective marker for the efficacy of FOLFOX in treating CRC.
Collapse
|
20
|
He MK, Zou RH, Li QJ, Zhou ZG, Shen JX, Zhang YF, Yu ZS, Xu L, Shi M. Phase II Study of Sorafenib Combined with Concurrent Hepatic Arterial Infusion of Oxaliplatin, 5-Fluorouracil and Leucovorin for Unresectable Hepatocellular Carcinoma with Major Portal Vein Thrombosis. Cardiovasc Intervent Radiol 2018; 41:734-743. [PMID: 29327075 DOI: 10.1007/s00270-017-1874-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sorafenib is recommended for the first-line treatment of advanced hepatocellular carcinoma (HCC). However, the median progression-free survival (PFS) of patients with HCC and major portal vein tumor thrombosis treated with sorafenib monotherapy is no more than 3 months. A prospective single-arm phase II study was conducted to determine whether adding hepatic arterial infusion chemotherapy of oxaliplatin, 5-fluorouracil and leucovorin to sorafenib could improve on these results. METHODS Thirty five patients were treated with sorafenib 400 mg orally twice a day, oxaliplatin 85 mg/m2 HAI on day 1, leucovorin 400 mg/m2 HAI on days 1, and 5-fluorouracil 2800 mg/m2 on days 1 and 2, repeated every 21 days. The primary end point was the 3-month PFS rate. RESULTS The 3-, 6-, and 12-month PFS rates were 82.9, 51.4, and 22.9%, respectively. The median PFS and overall survival was 6.7 and 13.2 months, respectively. The objective response rate was 40%, and the disease control rate was 77.1% by RECIST criteria. Five (14.3%) patients achieved conversion to complete resection after the study treatment, and one of them experienced a pathological complete response. Treatment-related deaths did not occur. Grade 3-4 toxicities consisted of increases in aspartate aminotransferase (31.4%), hand-foot syndrome (17.1%), thrombocytopenia (14.3%), and neutropenia (8.6%). CONCLUSIONS The combination treatment met the pre-specified end point of a 3-month progression free survival rate exceeding 65% and was clinical tolerable. The merits of this approach need to be established with a phase III trial. Clinical trial number http://ClinicalTrials.gov (No. NCT02981498).
Collapse
Affiliation(s)
- Min-Ke He
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Ru-Hai Zou
- Department of Ultrasonography, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Qi-Jiong Li
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Zhong-Guo Zhou
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Jing-Xian Shen
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Yong-Fa Zhang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zi-Shan Yu
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Li Xu
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Ming Shi
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China.
| |
Collapse
|
21
|
Savino S, Gandin V, Hoeschele JD, Marzano C, Natile G, Margiotta N. Dual-acting antitumor Pt(iv) prodrugs of kiteplatin with dichloroacetate axial ligands. Dalton Trans 2018; 47:7144-7158. [DOI: 10.1039/c8dt00686e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA and mitochondria of tumor cells are the targets of Pt(iv) complexes of kiteplatin with biologically active dichloroacetate as axial ligands.
Collapse
Affiliation(s)
- Salvatore Savino
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco
- Università di Padova
- 35131 Padova
- Italy
| | | | - Cristina Marzano
- Dipartimento di Scienze del Farmaco
- Università di Padova
- 35131 Padova
- Italy
| | - Giovanni Natile
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Nicola Margiotta
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| |
Collapse
|
22
|
Rigalli JP, Scholz PN, Tocchetti GN, Ruiz ML, Weiss J. The phytoestrogens daidzein and equol inhibit the drug transporter BCRP/ABCG2 in breast cancer cells: potential chemosensitizing effect. Eur J Nutr 2017; 58:139-150. [PMID: 29101532 DOI: 10.1007/s00394-017-1578-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Paul Niklas Scholz
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. Int J Mol Sci 2017; 18:ijms18091926. [PMID: 28880238 PMCID: PMC5618575 DOI: 10.3390/ijms18091926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND One of the main chemotherapeutic drugs used on a routine basis in patients with metastatic colorectal cancer ((m)CRC) is the topoisomerase-1 inhibitor, irinotecan. However, its usefulness is limited by the pre-existing or inevitable development of resistance. The ATP-binding cassette (ABC) transporter ABCG2/breast cancer resistance protein (BRCP) through its function in xenobiotic clearance might play an important role in irinotecan resistance. With a goal to evaluate the clinical significance of ABCG2 measurements, we here review the current literature on ABCG2 in relation to irinotecan treatment in CRC patients. RESULTS Few studies have evaluated the association between ABCG2 gene or protein expression and prognosis in CRC patients. Discordant results were reported. The discrepancies might be explained by the use of different criteria for interpretation of results in the immunohistochemistry studies. Only one large study evaluated the ABCG2 protein expression and efficacy of irinotecan in mCRC (CAIRO study, n = 566). This study failed to demonstrate any correlation between ABCG2 protein expression in the primary tumor and response to irinotecan-based treatment. We recently raised questions on how to evaluate ABCG2 immunoreactivity patterns, and the results in the CAIRO study might be influenced by using a different scoring protocol than the one proposed by us. In contrast, our recent exploratory study of ABCG2 mRNA expression in 580 patients with stage III primary CRC (subgroup from the randomized PETACC-3 study) indicated that high ABCG2 tumor tissue mRNA expression might be predictive for lack of efficacy of irinotecan. CONCLUSION The biological role of ABCG2 in predicting clinical irinotecan sensitivity/resistance in CRC is uncertain. In particular, the significance of ABCG2 cellular localization needs to be established. Data concerning ABCG2 mRNA expression and prediction of adjuvant irinotecan efficacy are still sparse and need to be confirmed.
Collapse
|
24
|
Cao D, Qin S, Mu Y, Zhong M. The role of MRP1 in the multidrug resistance of colorectal cancer. Oncol Lett 2017; 13:2471-2476. [PMID: 28454422 DOI: 10.3892/ol.2017.5741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2016] [Indexed: 12/22/2022] Open
Abstract
The role of multidrug resistance associated protein 1 (MRP1) in the multidrug resistance (MDR) of colorectal cancer (CRC) remains unclear. The present study aimed to investigate the effect of MRP1 in MDR CRC and its therapeutic potential for the treatment of patients with this disease. The human MDR CRC cell lines HCT-8 and Colo205 were established through stable exposure to 5-florouracil (5-FU) over a 5-month period. MRP1 was knocked-down in MDR CRC cells through the transfection of short hairpin RNA targeting MRP1 (shMRP1). Western blotting was performed to assess the efficiency of this silencing. MTT and apoptosis assays were conducted to detect cell viability and apoptosis, respectively. Compared with their parental cells, HCT-8/5-FU and Colo205/5-FU cells were 23.1 and 15.8 times more resistant to 5-FU, and 17.2 and 20.9 times more resistant oxaliplatin, respectively. The knockdown of MRP1 resulted in the attenuation of the MDR phenotype through the induction of apoptosis. The shMRP1-transfected Colo205/5-FU cells were injected subcutaneously into the right scapular region of BALB/c nude mice and tumor size was measured for 15 days post-injection. This in vivo experiment demonstrated that MRP1 knockdown inhibited tumor growth. On the 9, 12 and 15th day post-injection, tumor volume in the shMRP1-transfected Colo205/5-FU cell-injected group was significantly lower compared with that in the Colo205/5-FU cell-injected group (day 9, 2.1±0.8 vs. 6.9±1.9 mm3, P=0.009; day 12, 3.1±1.4 vs. 14.3±4.0 mm3, P=0.008; day 15, 4.8±2.7 vs. 21.3±3.4 mm3; all P<0.001). These results demonstrate that MRP1 serves a role in the MDR phenotype of CRC through inhibiting apoptosis and may serve as a potential therapeutic target for inhibition, which would increase the efficacy of other chemotherapeutic agents in the treatment of CRC.
Collapse
Affiliation(s)
- Dongxing Cao
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Shaolan Qin
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yifei Mu
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
25
|
Kotelevets L, Chastre E, Desmaële D, Couvreur P. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. Int J Pharm 2016; 514:24-40. [DOI: 10.1016/j.ijpharm.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
|
26
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
27
|
Rigalli JP, Tocchetti GN, Arana MR, Villanueva SSM, Catania VA, Theile D, Ruiz ML, Weiss J. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett 2016; 376:165-72. [PMID: 27033456 DOI: 10.1016/j.canlet.2016.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Perego P, Robert J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol 2015; 77:5-18. [PMID: 26589793 DOI: 10.1007/s00280-015-2901-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
Oxaliplatin is a third-generation platinum compound approved for clinical use relatively recently as compared to other drugs of the same class. Its main cellular target is DNA, where similarly to cisplatin and carboplatin it forms cross-links. However, due to a unique indication for colorectal cancer, synergistic interaction with fluoropyrimidines and peculiar toxicity profile, oxaliplatin is different from those compounds. Multiple lines of evidence indicate differences in transport and metabolism, consequences of DNA platination, as well as DNA repair and transduction of DNA damage. Here, we explore the preclinical features that may explain the unique properties of oxaliplatin in the clinics. Among them, the capability to accumulate in tumor cells via organic cation transporters, to kill KRAS mutant cells and to activate immunogenic cell death appears helpful to explain in part its clinical behavior. The continuous investigation of the molecular pharmacology of oxaliplatin is expected to provide clues to the definitions of predictors of drug activity and toxicity to translate to the clinical setting.
Collapse
Affiliation(s)
- Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Jacques Robert
- INSERM U916, Institut Bergonié, University of Bordeaux, 229 Cours de l'Argonne, 33000, Bordeaux, France
| |
Collapse
|
29
|
Trumpi K, Emmink BL, Prins AM, van Oijen MGH, van Diest PJ, Punt CJA, Koopman M, Kranenburg O, Rinkes IHMB. ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer. J Cancer 2015; 6:1079-86. [PMID: 26516354 PMCID: PMC4615342 DOI: 10.7150/jca.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Active efflux of irinotecan by ATP-binding cassette (ABC)-transporters, in particular ABCB1 and ABCG2, is a well-established drug resistance mechanism in vitro and in pre-clinical mouse models, but its relevance in colorectal cancer (CRC) patients is unknown. Therefore, we assessed the association between ABC-transporter expression and tumour response to irinotecan in patients with metastatic CRC. METHODS Tissue microarrays of a large cohort of metastatic CRC patients treated with irinotecan in a prospective study (CAIRO study; n=566) were analysed for expression of ABCB1 and ABCG2 by immunohistochemistry. Kaplan-Meier and Cox proportional hazard regression analyses were performed to assess the association of ABC transporter expression with irinotecan response. Gene expression profiles of 17 paired tumours were used to assess the concordance of ABCB1/ABCG2 expression in primary CRC and corresponding metastases. RESULTS The response to irinotecan was not significantly different between primary tumours with positive versus negative expression of ABCB1 (5.8 vs 5.7 months, p=0.696) or ABCG2 (5.7 vs 6.1 months, p=0.811). Multivariate analysis showed neither ABCB1 nor ABCG2 were independent predictors for progression free survival. There was a mediocre to poor concordance between ABC-transporter expression in paired tumours. CONCLUSION In metastatic CRC, ABC-transporter expression in the primary tumour does not predict irinotecan response.
Collapse
Affiliation(s)
- K Trumpi
- 1. Department of Surgery, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - B L Emmink
- 1. Department of Surgery, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - A M Prins
- 1. Department of Surgery, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - M G H van Oijen
- 2. Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands ; 4. Department of Medical Oncology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - P J van Diest
- 3. Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - C J A Punt
- 4. Department of Medical Oncology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - M Koopman
- 2. Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - O Kranenburg
- 1. Department of Surgery, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - I H M Borel Rinkes
- 1. Department of Surgery, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
30
|
Kjersem JB, Thomsen M, Guren T, Hamfjord J, Carlsson G, Gustavsson B, Ikdahl T, Indrebø G, Pfeiffer P, Lingjærde O, Tveit KM, Wettergren Y, Kure EH. AGXT and ERCC2 polymorphisms are associated with clinical outcome in metastatic colorectal cancer patients treated with 5-FU/oxaliplatin. THE PHARMACOGENOMICS JOURNAL 2015; 16:272-9. [DOI: 10.1038/tpj.2015.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/09/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
|
31
|
Myint K, Li Y, Paxton J, McKeage M. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles. PLoS One 2015; 10:e0130727. [PMID: 26131551 PMCID: PMC4488857 DOI: 10.1371/journal.pone.0130727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2015] [Indexed: 12/15/2022] Open
Abstract
The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In conclusion, MRP2 mediates the ATP-dependent active membrane transport of oxaliplatin-derived platinum. Intact oxaliplatin and its anionic monochloro oxalate ring-opened intermediate appear likely candidates as substrates for MRP2-mediated transport.
Collapse
Affiliation(s)
- Khine Myint
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Yan Li
- School of Applied Sciences, Auckland University of Technology, Auckland, New Zealand
| | - James Paxton
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Mark McKeage
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
32
|
Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R. Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2015; 11:1253-67. [PMID: 26037261 DOI: 10.1517/17425255.2015.1053460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Molecular and genetic analysis of tumors and individuals has led to patient-centered therapies, through the discovery and identification of genetic markers predictive of drug efficacy and tolerability. Present therapies often include a combination of synergic drugs, each of them directed against different targets. Therefore, the pharmacogenetic profiling of tumor masses and patients is becoming a challenge, and several questions may arise when planning a translational study. AREAS COVERED The review presents the different techniques used to stratify oncology patients and to tailor antineoplastic treatments according to individual pharmacogenetic profiling. The advantages of these methodologies are discussed as well as current limits. EXPERT OPINION Facing the rapid technological evolution for genetic analyses, the most pressing issues are the choice of appropriate strategies (i.e., from gene candidate up to next-generation sequencing) and the possibility to replicate study results for their final validation. It is likely that the latter will be the major obstacle in the future. However, the present landscape is opening up new possibilities, overcoming those hurdles that have limited result translation into clinical settings for years.
Collapse
Affiliation(s)
- Antonello Di Paolo
- University of Pisa, Department of Clinical and Experimental Medicine, Via Roma 55, 56126 Pisa , Italy +39 050 2218755 ; +39 050 2218758 ;
| | | | | | | | | | | |
Collapse
|
33
|
Genetic variants in DNA repair genes as potential predictive markers for oxaliplatin chemotherapy in colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2015; 15:505-12. [PMID: 25778469 DOI: 10.1038/tpj.2015.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Oxaliplatin-based chemotherapy exerts its effects through generating DNA damage. Hence, genetic variants in DNA repair pathways could modulate treatment response. We used a prospective cohort of 623 colorectal cancer patients with stage II-IV disease treated with adjuvant/palliative chemotherapy to comprehensively investigate 1727 genetic variants in the DNA repair pathways as potential predictive markers for oxaliplatin treatment. Single nucleotide polymorphisms (SNP) associations with overall survival and recurrence-free survival were assessed using a Cox regression model. Pathway analysis was performed using the gamma method. Patients carrying variant alleles of rs3783819 (MNAT1) and rs1043953 (XPC) experienced a longer overall survival after treatment with oxaliplatin than patients who did not carry the variant allele, while the opposite association was found in patients who were not treated with oxaliplatin (false discovery rate-adjusted P-values for heterogeneity 0.0047 and 0.0237, respectively). The nucleotide excision repair (NER) pathway was found to be most likely associated with overall survival in patients who received oxaliplatin (P-value=0.002). Our data show that genetic variants in the NER pathway are potentially predictive of treatment response to oxaliplatin.
Collapse
|
34
|
Abstract
Since over 50 years, 5-fluorouracil (5-FU) is in use as backbone of chemotherapy treatment regimens for a wide range of cancers including colon, breast, and head and neck carcinomas. However, drug resistance and severe toxicities such as mucositis, diarrhea, neutropenia, and vomiting in up to 40% of treated patients often lead to dose limitation or treatment discontinuation. Because the oral bioavailability of 5-FU is unpredictable and highly variable, 5-FU is commonly administered intravenously. To overcome medical complications and inconvenience associated with intravenous administration, the oral prodrugs capecitabine and tegafur have been developed. Both fluoropyrimidines are metabolically converted intracellularly to 5-FU, which then needs metabolic activation to exert its damaging activity on RNA and DNA. The low response rates of 10-15% of 5-FU monotherapy can be improved by combination regimens of infusional 5-FU and leucovorin together with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI), thereby increasing response rates to 30-40%. The impact of metabolizing enzymes in the development of fluoropyrimidine toxicity and resistance has been studied in great detail. In addition, membrane drug transporters, which are critical determinants of intracellular drug concentrations, may play a role in occurrence of toxicity and development of resistance against fluoropyrimidine-based therapy as well. This review therefore summarizes current knowledge on the role of drug transporters with particular focus on ATP-binding cassette transporters in fluoropyrimidine-based chemotherapy response.
Collapse
|
35
|
Warta R, Theile D, Mogler C, Herpel E, Grabe N, Lahrmann B, Plinkert PK, Herold-Mende C, Weiss J, Dyckhoff G. Association of drug transporter expression with mortality and progression-free survival in stage IV head and neck squamous cell carcinoma. PLoS One 2014; 9:e108908. [PMID: 25275603 PMCID: PMC4183512 DOI: 10.1371/journal.pone.0108908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022] Open
Abstract
Drug transporters such as P-glycoprotein (ABCB1) have been associated with chemotherapy resistance and are considered unfavorable prognostic factors for survival of cancer patients. Analyzing mRNA expression levels of a subset of drug transporters by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or protein expression by tissue microarray (TMA) in tumor samples of therapy naïve stage IV head and neck squamous cell carcinoma (HNSCC) (qRT-PCR, n = 40; TMA, n = 61), this in situ study re-examined the significance of transporter expression for progression-free survival (PFS) and overall survival (OS). Data from The Cancer Genome Atlas database was used to externally validate the respective findings (n = 317). In general, HNSCC tended to lower expression of drug transporters compared to normal epithelium. High ABCB1 mRNA tumor expression was associated with both favorable progression-free survival (PFS, p = 0.0357) and overall survival (OS, p = 0.0535). Similar results were obtained for the mRNA of ABCC1 (MRP1, multidrug resistance-associated protein 1; PFS, p = 0.0183; OS, p = 0.038). In contrast, protein expression of ATP7b (copper transporter ATP7b), mRNA expression of ABCG2 (BCRP, breast cancer resistance protein), ABCC2 (MRP2), and SLC31A1 (hCTR1, human copper transporter 1) did not correlate with survival. Cluster analysis however revealed that simultaneous high expression of SLC31A1, ABCC2, and ABCG2 indicates poor survival of HNSCC patients. In conclusion, this study militates against the intuitive dogma where high expression of drug efflux transporters indicates poor survival, but demonstrates that expression of single drug transporters might indicate even improved survival. Prospectively, combined analysis of the ‘transportome’ should rather be performed as it likely unravels meaningful data on the impact of drug transporters on survival of patients with HNSCC.
Collapse
Affiliation(s)
- Rolf Warta
- Experimental Neurosurgery Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Carolin Mogler
- Tissue Bank of the National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Tissue Bank of the National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Bernd Lahrmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Peter K. Plinkert
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Gerhard Dyckhoff
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Yu Z, Zhang C, Wang H, Xing J, Gong H, Yu E, Zhang W, Zhang X, Cao G, Fu C. Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway. Cancer Lett 2014; 353:182-93. [DOI: 10.1016/j.canlet.2014.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/15/2014] [Accepted: 07/13/2014] [Indexed: 01/13/2023]
|
37
|
Mohelnikova-Duchonova B, Melichar B, Soucek P. FOLFOX/FOLFIRI pharmacogenetics: The call for a personalized approach in colorectal cancer therapy. World J Gastroenterol 2014; 20:10316-10330. [PMID: 25132748 PMCID: PMC4130839 DOI: 10.3748/wjg.v20.i30.10316] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
While 5-fluorouracil used as single agent in patients with metastatic colorectal cancer has an objective response rate around 20%, the administration of combinations of irinotecan with 5-fluorouracil/folinic acid or oxaliplatin with 5-fluorouracil/folinic acid results in significantly increased response rates and improved survival. However, the side effects of systemic therapy such as myelotoxicity, neurotoxicity or gastrointestinal toxicity may lead to life-threatening complications and have a major impact on the quality of life of the patients. Therefore, biomarkers that would be instrumental in the choice of optimal type, combination and dose of drugs for an individual patient are urgently needed. The efficacy and toxicity of anticancer drugs in tumor cells is determined by the effective concentration in tumor cells, healthy tissues and by the presence and quantity of the drug targets. Enzymes active in drug metabolism and transport represent important determinants of the therapeutic outcome. The aim of this review was to summarize published data on associations of gene and protein expression, and genetic variability of putative biomarkers with response to therapy of colorectal cancer to 5-fluorouracil/leucovorin/oxaliplatin and 5-fluorouracil/leukovorin/irinotecan regimens. Gaps in the knowledge identified by this review may aid the design of future research and clinical trials.
Collapse
|
38
|
Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20:9775-827. [PMID: 25110414 PMCID: PMC4123365 DOI: 10.3748/wjg.v20.i29.9775] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
During the past two decades the first sequencing of the human genome was performed showing its high degree of inter-individual differentiation, as a result of large international research projects (Human Genome Project, the 1000 Genomes Project International HapMap Project, and Programs for Genomic Applications NHLBI-PGA). This period was also a time of intensive development of molecular biology techniques and enormous knowledge growth in the biology of cancer. For clinical use in the treatment of patients with colorectal cancer (CRC), in addition to fluoropyrimidines, another two new cytostatic drugs were allowed: irinotecan and oxaliplatin. Intensive research into new treatment regimens and a new generation of drugs used in targeted therapy has also been conducted. The last 20 years was a time of numerous in vitro and in vivo studies on the molecular basis of drug resistance. One of the most important factors limiting the effectiveness of chemotherapy is the primary and secondary resistance of cancer cells. Understanding the genetic factors and mechanisms that contribute to the lack of or low sensitivity of tumour tissue to cytostatics is a key element in the currently developing trend of personalized medicine. Scientists hope to increase the percentage of positive treatment response in CRC patients due to practical applications of pharmacogenetics/pharmacogenomics. Over the past 20 years the clinical usability of different predictive markers has been tested among which only a few have been confirmed to have high application potential. This review is a synthetic presentation of drug resistance in the context of CRC patient chemotherapy. The multifactorial nature and volume of the issues involved do not allow the author to present a comprehensive study on this subject in one review.
Collapse
|
39
|
Theile D, Mikus G. Deceptive argumentation against diagnostic microdosing of anticancer drugs. Int J Cancer 2014; 135:1753-4. [PMID: 24615734 DOI: 10.1002/ijc.28806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, D-69120, Heidelberg, Germany
| | | |
Collapse
|
40
|
Custodio A, Moreno-Rubio J, Aparicio J, Gallego-Plazas J, Yaya R, Maurel J, Higuera O, Burgos E, Ramos D, Calatrava A, Andrada E, López R, Moreno V, Madero R, Cejas P, Feliu J. Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: a GEMCAD group study. Ann Oncol 2014; 25:398-403. [DOI: 10.1093/annonc/mdt546] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci U S A 2013; 110:11199-204. [PMID: 23776246 DOI: 10.1073/pnas.1305321110] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxaliplatin is an integral component of colorectal cancer therapy, but its clinical use is associated with a dose-limiting peripheral neurotoxicity. We found that the organic cation transporter 2 (OCT2) is expressed on dorsal root ganglia cells within the nervous system where oxaliplatin is known to accumulate. Cellular uptake of oxaliplatin was increased by 16- to 35-fold in cells overexpressing mouse Oct2 or human OCT2, and this process was associated with increased DNA platination and oxaliplatin-induced cytotoxicity. Furthermore, genetic or pharmacologic knockout of Oct2 protected mice from hypersensitivity to cold or mechanical-induced allodynia, which are established tests to assess acute oxaliplatin-induced neurotoxicity. These findings provide a rationale for the development of targeted approaches to mitigate this debilitating toxicity.
Collapse
|
42
|
Sampurno S, Bijenhof A, Cheasley D, Xu H, Robine S, Hilton D, Alexander WS, Pereira L, Mantamadiotis T, Malaterre J, Ramsay RG. The Myb-p300-CREB axis modulates intestine homeostasis, radiosensitivity and tumorigenesis. Cell Death Dis 2013; 4:e605. [PMID: 23618903 PMCID: PMC3641342 DOI: 10.1038/cddis.2013.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gastrointestinal (GI) epithelium is constantly renewing, depending upon the intestinal stem cells (ISC) regulated by a spectrum of transcription factors (TFs), including Myb. We noted previously in mice with a p300 mutation (plt6) within the Myb-interaction-domain phenocopied Myb hypomorphic mutant mice with regard to thrombopoiesis, and here, changes in GI homeostasis. p300 is a transcriptional coactivator for many TFs, most prominently cyclic-AMP response element-binding protein (CREB), and also Myb. Studies have highlighted the importance of CREB in proliferation and radiosensitivity, but not in the GI. This prompted us to directly investigate the p300–Myb–CREB axis in the GI. Here, the role of CREB has been defined by generating GI-specific inducible creb knockout (KO) mice. KO mice show efficient and specific deletion of CREB, with no evident compensation by CREM and ATF1. Despite complete KO, only modest effects on proliferation, radiosensitivity and differentiation in the GI under homeostatic or stress conditions were evident, even though CREB target gene pcna (proliferating cell nuclear antigen) was downregulated. creb and p300 mutant lines show increased goblet cells, whereas a reduction in enteroendocrine cells was apparent only in the p300 line, further resembling the Myb hypomorphs. When propagated in vitro, crebKO ISC were defective in organoid formation, suggesting that the GI stroma compensates for CREB loss in vivo, unlike in MybKO studies. Thus, it appears that p300 regulates GI differentiation primarily through Myb, rather than CREB. Finally, active pCREB is elevated in colorectal cancer (CRC) cells and adenomas, and is required for the expression of drug transporter, MRP2, associated with resistance to Oxaliplatin as well as several chromatin cohesion protein that are relevant to CRC therapy. These data raise the prospect that CREB may have a role in GI malignancy as it does in other cancer types, but unlike Myb, is not critical for GI homeostasis.
Collapse
Affiliation(s)
- S Sampurno
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Center,East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Minor role of pregnane-x-receptor for acquired multidrug resistance in head and neck squamous cell carcinoma in vitro. Cancer Chemother Pharmacol 2013; 71:1335-43. [DOI: 10.1007/s00280-013-2133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 11/26/2022]
|
44
|
Mirakhorli M, Rahman SA, Abdullah S, Vakili M, Rozafzon R, Khoshzaban A. Multidrug resistance protein 2 genetic polymorphism and colorectal cancer recurrence in patients receiving adjuvant FOLFOX-4 chemotherapy. Mol Med Rep 2012; 7:613-7. [PMID: 23232902 DOI: 10.3892/mmr.2012.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/25/2012] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 2 (MRP2), encoded by the ATP-binding cassette C2 (ABCC2) gene, is an efflux pump located on the apical membrane of many polarized cells, which transports conjugate compounds by an ATP-dependent mechanism. The correlation of G1249A ABCC2 polymorphism with the development of colorectal cancer (CRC) and poor prognosis was evaluated in patients who were treated with fluorouracil/-leucovorin (FL) plus oxaliplatin (FOLFOX-4). A total of 50 paraffin‑embedded tissue samples collected from CRC patients were analyzed to identify the polymorphism. Patients were in stage II/III and received postoperative FOLFOX-4 chemotherapy. As a control group, an equal number of unrelated healthy subjects were enrolled in the study. The polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, and results were compared with clinicopathological markers, early relapse and survival rates. During the 12 months of follow-up, local and distant recurrences were observed in 15 (30%) patients. No significant difference in the distribution of wild-type and polymorphic genotypes was observed between the patient and control groups and between the patients who experienced recurrence within 1 year and those who did not (all P>0.05). In conclusion, the G1249A polymorphism is not associated with CRC risk and early recurrence. However, significant correlation was observed between G1249A polymorphism and the overall survival and disease-free survival of the patients.
Collapse
Affiliation(s)
- Mojgan Mirakhorli
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | | | | | | | | | | |
Collapse
|
45
|
Cecchin E, D'Andrea M, Lonardi S, Zanusso C, Pella N, Errante D, De Mattia E, Polesel J, Innocenti F, Toffoli G. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. THE PHARMACOGENOMICS JOURNAL 2012; 13:403-9. [PMID: 22868256 DOI: 10.1038/tpj.2012.31] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/23/2012] [Accepted: 07/09/2012] [Indexed: 01/02/2023]
Abstract
The discovery of pharmacogenomic markers in colorectal cancer (CRC) could be setting-specific. FOLFOX4 is employed in the adjuvant and metastatic setting in CRC. This prospective study is aimed to validate in the adjuvant setting the pharmacogenomic markers of toxicity reported in the metastatic setting (that is, GSTP1-rs947894, and -rs1138272; GSTM1-null genotype; AGXT-rs4426527, -rs34116584 and del-74 bp), and to discover additional markers. CRC patients (n=144) treated with adjuvant FOLFOX4 were genotyped for 57 polymorphisms in 29 genes. Grade ≥ 2 neurotoxicity was associated (false discovery rate-adjusted q-value <0.1) with single-nucleotide polymorphisms in ABCC1 (rs2074087: odds ratio=0.43(0.22-0.86)), and ABCC2 (rs3740066: 2.99(1.16-7.70); rs1885301: 3.06(1.35-6.92); rs4148396: 4.69(1.60-13.74); rs717620: 14.39(1.63-127.02)). hMSH6-rs3136228 was associated with grade 3-4 neutropenia (3.23(1.38-7.57), q-value=0.0937). XRCC3-rs1799794 was associated with grade 3-4 non-hematological toxicity (8.90(2.48-31.97), q-value=0.0150). The markers previously identified in metastatic CRC were not validated. We have identified new markers of toxicity in genes of transport and DNA repair. If validated in other studies, they could help to identify patients at risk of toxicity.
Collapse
Affiliation(s)
- E Cecchin
- Experimental and Clinical Pharmacology Unit, 'Centro di Riferimento Oncologico'- National Cancer Institute, Aviano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, Liska V, Pitule P, Novak P, Bruha J, Vycital O, Holubec L, Treska V, Vodicka P, Soucek P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012; 27:187-96. [PMID: 22294766 DOI: 10.1093/mutage/ger075] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) is the third most common cancer, with the highest mortality rates occurring in Central Europe. The use of chemotherapy to treat CRC is limited by the inter-individual variability in drug response and the development of cancer cell resistance. ATP-binding cassette (ABC) transporters play a crucial role in the development of resistance by the efflux of anticancer agents outside of cancer cells. The aim of this study was to explore transcript levels of all human ABCs in tumours and non-neoplastic control tissues from CRC patients collected before the first line of treatment by 5-fluorouracil (5-FU)-containing regimen. The prognostic potential of ABCs was evaluated by the correlation of transcript levels with clinical factors. Relations between transcript levels of ABCs in tumours and chemotherapy efficacy were also addressed. The transcript profile of all known human ABCs was assessed using real-time polymerase chain reaction with a relative standard curve. The majority of the studied ABCs were down-regulated or unchanged between tumours and control tissues. ABCA12, ABCA13, ABCB6, ABCC1, ABCC2 and ABCE1 were up-regulated in tumours versus control tissues. Transcript levels of ABCA12, ABCC7 and ABCC8 increased in direction from colon to rectum. Additionally, transcript levels of ABCB9, ABCB11, ABCG5 and ABCG8 followed the reverse significant trend, i.e. a decrease in direction from colon to rectum. The transcript level of ABCC10 in tumours correlated with the grade (P = 0.01). Transcript levels of ABCC6, ABCC11, ABCF1 and ABCF2 were significantly lower in non-responders to palliative chemotherapy in comparison with responders. The disease-free interval of patients treated by adjuvant chemotherapy was significantly shorter in patients with low transcript levels of ABCA7, ABCA13, ABCB4, ABCC11 and ABCD4. In conclusion, ABCC11 may be a promising candidate marker for a validation study on 5-FU therapy outcome.
Collapse
Affiliation(s)
- I Hlavata
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, Prague 10, 100 42 Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Skrypek N, Duchêne B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene 2012; 32:1714-23. [PMID: 22580602 DOI: 10.1038/onc.2012.179] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar), is the main chemotherapeutic drug in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer (PC) cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-Resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells, but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells, in which the NF-κB pathway was found to have an important role in both sensitivity to gemcitabine and hCNT1 regulation. Finally, and in accordance with our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of PC cell resistance to gemcitabine, in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment.
Collapse
Affiliation(s)
- N Skrypek
- Inserm, UMR837, Jean-Pierre Aubert Research Center, Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Duldulao MP, Lee W, Le M, Chen Z, Li W, Wang J, Gao H, Li H, Kim J, Garcia-Aguilar J. Gene expression variations in microsatellite stable and unstable colon cancer cells. J Surg Res 2012; 174:1-6. [PMID: 21816436 PMCID: PMC3210903 DOI: 10.1016/j.jss.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/19/2011] [Accepted: 06/07/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is a marker of chemoresistance, but it is associated with improved survival compared with microsatellite-stable (MSS) colon cancers. We hypothesized that MSI tumors overexpress chemoresistance-associated genes and underexpress DNA damage/repair genes. We used ultra high-throughput sequencing (UHTS) to assess the expression of representative genes in MSI and MSS colon cancer cell lines. METHODS Solexa UHTS was used to examine gene expression in HCT116 (MSI) and HT29 (MSS) cells, and normal colonic mucosa (NCM). We compared expression of 40 genes involved in chemoresistance, DNA repair, DNA damage, and drug metabolism pathways. RESULTS We observed gene expression differences between MSI and MSS cell lines in 8 out of 40 genes involved in mismatch repair (MMR), DNA repair, drug metabolism, and chemoresistance. MMR gene expression was lower in MSI cells, which is consistent with the MSI phenotype, whereas DNA repair genes were highly expressed in these cells. Genes associated with chemoresistance and drug metabolism also had increased expression in MSI cells. No difference in expression of DNA damage genes was observed between MSI and MSS cell lines. CONCLUSION Using UHTS gene expression analysis, we identified differential expression of genes between MSI and MSS cell lines which may account for resistance to chemotherapy in MSI tumors. UHTS expression analysis has the potential to identify genome-wide predictors of response or resistance to chemotherapy.
Collapse
Affiliation(s)
- Marjun P. Duldulao
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Wendy Lee
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Maithao Le
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Zhenbin Chen
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Wenyan Li
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Jinhui Wang
- DNA Sequencing Core Facility, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Harry Gao
- DNA Sequencing Core Facility, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Haiquing Li
- Department of Bioinformatics, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Joseph Kim
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Julio Garcia-Aguilar
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| |
Collapse
|
49
|
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83:1084-103. [PMID: 22248732 PMCID: PMC3307098 DOI: 10.1016/j.bcp.2012.01.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/16/2023]
Abstract
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed "side population cells," which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the "side population" phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured.
Collapse
Affiliation(s)
| | - Yi Xie
- University of Maryland Greenebaum Cancer Center
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
| | - Douglas D. Ross
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
- Departments of Pathology, and Pharmacology & Experimental Therapeutics, University of Maryland, School of Medicine
- Staff Physician, Baltimore VA Medical Center
| |
Collapse
|
50
|
Heise M, Lautem A, Knapstein J, Schattenberg JM, Hoppe-Lotichius M, Foltys D, Weiler N, Zimmermann A, Schad A, Gründemann D, Otto G, Galle PR, Schuchmann M, Zimmermann T. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer 2012; 12:109. [PMID: 22439694 PMCID: PMC3323414 DOI: 10.1186/1471-2407-12-109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/22/2012] [Indexed: 12/20/2022] Open
Abstract
Background Organic cation transporters (OCT) are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC). Methods OCT1 (SLC22A1) and OCT3 (SLC22A3) mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST) by real time PCR (n = 53). Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs. Results Real time PCR showed a downregulation of SLC22A1 and SLC22A3 in HCC compared to TST (p ≤ 0.001). A low SLC22A1 expression was associated with a worse patient survival (p < 0.05). Downregulation was significantly associated with advanced HCC stages, indicated by a higher number of T3 tumors (p = 0.025) with a larger tumor diameter (p = 0.035), a worse differentiation (p = 0.001) and higher AFP-levels (p = 0.019). In accordance, SLC22A1 was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p < 0.001) and liver transplantation (p = 0.001). Tumors with a low SLC22A1 expression (< median) showed a higher SLC22A3 expression compared to HCC with high SLC22A1 expression (p < 0.001). However, there was no significant difference in tumor characteristics according to the level of the SLC22A3 expression. In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC. Conclusion The downregulation of OCT1 is associated with tumor progression and a worse patient survival.
Collapse
Affiliation(s)
- Michael Heise
- 1st Department of Internal Medicine, Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|