1
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
2
|
Kishimoto Y, Fujii A, Nakagawa O, Obika S. Enhanced duplex- and triplex-forming ability and enzymatic resistance of oligodeoxynucleotides modified by a tricyclic thymine derivative. Org Biomol Chem 2021; 19:8063-8074. [PMID: 34494641 DOI: 10.1039/d1ob01462e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized an artificial nucleic acid, [3-(1,2-dihydro-2-oxobenzo[b][1,8]naphthyridine)]-2'-deoxy-D-ribofuranose (OBN), with a tricyclic structure in a nucleobase as a thymidine analog. Oligodeoxynucleotides (ODNs) containing consecutive OBN displayed improved duplex-forming ability with complementary single-stranded (ss) RNA and triplex-forming ability with double-stranded DNA in comparison with ODNs composed of natural thymidine. OBN-modified ODNs also displayed enhanced enzymatic resistance compared with ODNs with natural thymidine and phosphorothioate modification, respectively, due to the structural steric hindrance of the nucleobase. The fluorescence spectra of OBN-modified ODNs showed sufficient fluorescence intensity with ssDNA and ssRNA, which is an advantageous feature for fluorescence imaging techniques of nucleic acids with longer emission wavelengths than bicyclic thymine (bT).
Collapse
Affiliation(s)
- Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
4
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
5
|
Patel R, Sarma S, Shukla A, Parmar P, Goswami D, Saraf M. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep 2020; 47:8113-8131. [PMID: 32990905 DOI: 10.1007/s11033-020-05819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Sameera Sarma
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Arpit Shukla
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Paritosh Parmar
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Gasparello J, Papi C, Zurlo M, Corradini R, Gambari R, Finotti A. Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS One 2019; 14:e0221923. [PMID: 31509554 PMCID: PMC6738603 DOI: 10.1371/journal.pone.0221923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Practical laboratory classes teaching molecular pharmacology approaches employed in the development of therapeutic strategies are of great interest for students of courses in Biotechnology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational Oncology. Unfortunately, in most cases the technology to be transferred to learning students is complex and requires multi-step approaches. In this respect, simple and straightforward experimental protocols might be of great interest. This study was aimed at presenting a laboratory exercise focusing (a) on a very challenging therapeutic strategy, i.e. microRNA therapeutics, and (b) on the employment of biomolecules of great interest in applied biology and pharmacology, i.e. peptide nucleic acids (PNAs). The aims of the practical laboratory were to determine: (a) the possible PNA-mediated arrest in RT-qPCR, to be eventually used to demonstrate PNA targeting of selected miRNAs; (b) the possible lack of activity on mutated PNA sequences; (c) the effects (if any) on the amplification of other unrelated miRNA sequences. The results which can be obtained support the following conclusions: PNA-mediated arrest in RT-qPCR can be analyzed in a easy way; mutated PNA sequences are completely inactive; the effects of the employed PNAs are specific and no inhibitory effect occurs on other unrelated miRNA sequences. This activity is simple (cell culture, RNA extraction, RT-qPCR are all well-established technologies), fast (starting from isolated and characterized RNA, few hours are just necessary), highly reproducible (therefore easily employed by even untrained students). On the other hand, these laboratory lessons require some facilities, the most critical being the availability of instruments for PCR. While this might be a problem in the case these instruments are not available, we would like to underline that determination of the presence or of a lack of amplified product can be also obtained using standard analytical approaches based on agarose gel electrophoresis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy
- * E-mail:
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Milani R, Brognara E, Fabbri E, Manicardi A, Corradini R, Finotti A, Gasparello J, Borgatti M, Cosenza LC, Lampronti I, Dechecchi MC, Cabrini G, Gambari R. Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apoptosis in temozolomide‑resistant T98G glioma cells. Int J Oncol 2019; 55:59-68. [PMID: 31180529 PMCID: PMC6561624 DOI: 10.3892/ijo.2019.4810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the effects of the combined treatment of two peptide nucleic acids (PNAs), directed against microRNAs involved in caspase‑3 mRNA regulation (miR‑155‑5p and miR‑221‑3p) in the temozolomide (TMZ)‑resistant T98G glioma cell line. These PNAs were conjugated with an octaarginine tail in order to obtain an efficient delivery to treated cells. The effects of singularly administered PNAs or a combined treatment with both PNAs were examined on apoptosis, with the aim to determine whether reversion of the drug‑resistance phenotype was obtained. Specificity of the PNA‑mediated effects was analyzed by reverse transcription‑quantitative polymerase‑chain reaction, which demonstrated that the effects of R8‑PNA‑a155 and R8-PNA-a221 anti‑miR PNAs were specific. Furthermore, the results obtained confirmed that both PNAs induced apoptosis when used on the temozolomide‑resistant T98G glioma cell line. Notably, co‑administration of both anti‑miR‑155 and anti‑miR‑221 PNAs was associated with an increased proapoptotic activity. In addition, TMZ further increased the induction of apoptosis in T98G cells co‑treated with anti‑miR‑155 and anti‑miR‑221 PNAs.
Collapse
Affiliation(s)
- Roberta Milani
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Eleonora Brognara
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I‑143214 Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I‑143214 Parma, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | | | - Giulio Cabrini
- Laboratory of Molecular Pathology, University‑Hospital of Verona, I‑37126 Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| |
Collapse
|
8
|
Design, synthesis and biological evaluation of novel trimethylangelicin analogues targeting nuclear factor kB (NF-kB). Eur J Med Chem 2018; 151:285-293. [DOI: 10.1016/j.ejmech.2018.03.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
|
9
|
Wang Z, Potoyan DA, Wolynes PG. Molecular stripping, targets and decoys as modulators of oscillations in the NF-κB/IκBα/DNA genetic network. J R Soc Interface 2016; 13:rsif.2016.0606. [PMID: 27683001 PMCID: PMC5046959 DOI: 10.1098/rsif.2016.0606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic transcription factors in the NF-κB family are central components of an extensive genetic network that activates cellular responses to inflammation and to a host of other external stressors. This network consists of feedback loops that involve the inhibitor IκBα, numerous downstream functional targets, and still more numerous binding sites that do not appear to be directly functional. Under steady stimulation, the regulatory network of NF-κB becomes oscillatory, and temporal patterns of NF-κB pulses appear to govern the patterns of downstream gene expression needed for immune response. Understanding how the information from external stress passes to oscillatory signals and is then ultimately relayed to gene expression is a general issue in systems biology. Recently, in vitro kinetic experiments as well as molecular simulations suggest that active stripping of NF-κB by IκBα from its binding sites can modify the traditional systems biology view of NF-κB/IκBα gene circuits. In this work, we revise the commonly adopted minimal model of the NF-κB regulatory network to account for the presence of the large number of binding sites for NF-κB along with dissociation from these sites that may proceed either by passive unbinding or by active molecular stripping. We identify regimes where the kinetics of target and decoy unbinding and molecular stripping enter a dynamic tug of war that may either compensate each other or amplify nuclear NF-κB activity, leading to distinct oscillatory patterns. Our finding that decoys and stripping play a key role in shaping the NF-κB oscillations suggests strategies to control NF-κB responses by introducing artificial decoys therapeutically.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
10
|
Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, Corradini R, Bianchi N, Finotti A, Breveglieri G, Borgatti M, Lampronti I, Milani R, Dechecchi MC, Cabrini G, Gambari R. High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol 2015; 48:1029-38. [PMID: 26708164 DOI: 10.3892/ijo.2015.3308] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
The biological activity of a combined treatment of U251, U373 and T98G glioma cell lines with two anti-miR PNAs, directed against miR‑221 and miR‑222 and conjugated with an ocataarginine tail (R8-PNA-a221 and R8-PNA-a222) for efficient cellular delivery, was determined. Apoptosis was analyzed, and the effect of the combined treatment of glioma cells with either or both PNAs on the reversion of drug-resistance phenotype was assessed in the temozolomide-resistant T98G glioma cell line. Selectivity of PNA/miRNA interactions was studied by surface plasmon resonance (SPR)-based Biacore analysis. Specificity of the PNA effects at the cellular level was analyzed by RT-qPCR. These experiments support the concept that the effects of R8-PNA-a221 and R8-PNA-a222 are specific. The studies on apoptosis confirmed that the R8-PNA-a221 induces apoptosis and demonstrated the pro-apoptotic effects of R8-PNA-a222. Remarkably, increased pro-apoptotic effects were obtained with the co-administration of both anti-miR‑221 and anti-miR‑222 PNAs. In addition, co-administration of R8-PNA-a221 and R8-PNA-a222 induced apoptosis of TMZ-treated T98G cells at a level higher than that obtained following singular administration of R8-PNA-a221 or R8-PNA-a222.
Collapse
Affiliation(s)
- Eleonora Brognara
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, University of Parma, Parma, Italy
| | | | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberta Milani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Giulio Cabrini
- Laboratory of Molecular Pathology, University-Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Jia D, Zhang YQ, Wu JF. Decoy oligonucleotide technology in fibrosis: Application and delivery strategy. Shijie Huaren Xiaohua Zazhi 2015; 23:4931-4938. [DOI: 10.11569/wcjd.v23.i31.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological condition caused by a variety of etiologies, which is characterized by an increase in the fibrous connective tissue and a reduction in the parenchymal cells of several organs and can result in structural damage and functional impairment of organs. With the development of molecular biology and cellular biology technology in recent years, gene therapy methods for fibrosis are drawing attention, including antisense oligonucleotides, RNA interference, Decoy oligonucleotide (ODN) technology and so on. Among them, Decoy ODN technology can block the target gene expression by capturing specific transcription factors, having the potential to interfere with the expression of the fibrosis related genes. This paper will review the application of Decoy ODN technology in fibrosis as well as the delivery strategy in vivo.
Collapse
|
12
|
Iverson D, Serrano C, Brahan AM, Shams A, Totsingan F, Bell AJ. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions. Arch Biochem Biophys 2015; 587:1-11. [PMID: 26348651 DOI: 10.1016/j.abb.2015.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.
Collapse
Affiliation(s)
- Douglas Iverson
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Crystal Serrano
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ann Marie Brahan
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Arik Shams
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Anthony J Bell
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
13
|
Phloridzin derivatives inhibiting pro-inflammatory cytokine expression in human cystic fibrosis IB3-1 cells. Eur J Pharm Sci 2015. [PMID: 26209880 DOI: 10.1016/j.ejps.2015.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic Fibrosis (CF) is the most diffuse autosomal recessive genetic disease affecting Caucasians. A persistent recruitment of neutrophils in the bronchi of CF patients contributes to exacerbate the airway tissue damage, suggesting that modulation of chemokine expression may be an important target for the patient's well being thus the identification of innovative anti-inflammatory drugs is considered a longterm goal to prevent progressive tissue deterioration. Phloridzin, isolated from Malus domestica by a selective molecular imprinting extraction, and its structural analogues, Phloridzin heptapropionate (F1) and Phloridzin tetrapropionate (F2), were initially investigated because of their ability to reduce IL-6 and IL-8 expression in human CF bronchial epithelial cells (IB3-1) stimulated with TNF-α. Release of these cytokines by CF cells was shown to be controlled by the Transcription Factor (TF) NF-kB. The results of the present investigation show that of all the derivatives tested, Phloridzin tetrapropionate (F2) is the most interesting and has greatest potential as it demonstrates inhibitory effects on the expression and production of different cytokines involved in CF inflammation processes, including RANTES, VEGF, GM-CSF, IL-12, G-CSF, MIP-1b, IL-17, IL-10 and IP-10, without any correlated anti-proliferative and pro-apoptotic effects.
Collapse
|
14
|
Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, McNally P, McElvaney NG, Mall MA, Greene CM. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015; 46:1350-60. [PMID: 26160865 DOI: 10.1183/09031936.00163414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Irene K Oglesby
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Sebastian F Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Kevin Gaughan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Kevin Molloy
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Gerard Higgins
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Paul McNally
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Jang SW, Lim SG, Suk K, Lee WH. Activation of lymphotoxin-beta receptor enhances the LPS-induced expression of IL-8 through NF-κB and IRF-1. Immunol Lett 2015; 165:63-9. [PMID: 25887375 DOI: 10.1016/j.imlet.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Lymphotoxin-beta receptor (LTβR), a receptor for LIGHT and LTα1β2, is expressed on the epithelial, stromal, and myeloid cells. LTβR is known to affect the lymphoid organ development and immune homeostasis. However, its role in macrophage function has not been sufficiently elucidated. The effect of LTβR stimulation in the inflammatory activation of macrophages was investigated by treating the human macrophage-like cell line THP-1 with LTβR-specific monoclonal antibody. Interestingly, combined treatment with anti-LTβR antibody and LPS caused the synergistic induction of IL-8 expression at the transcriptional level. Analysis indicated that nuclear factor (NF)-κB activity was enhanced via the mitogen-activated protein kinase (MAPK) and glycogen synthase kinase (GSK)-3β/cAMP response element binding protein (CREB) pathways. In addition, LTβR stimulation induced the expression of interferon regulatory factor (IRF)-1, one of the major transcription factors of IL-8 gene. Down-regulation of IRF-1 expression reduced the enhancing effect caused by LTβR stimulation. This indicates that the LTβR stimulation enhances the LPS-induced expression of IL-8 via the combined action of NF-κB and IRF-1.
Collapse
Affiliation(s)
- Seok-Won Jang
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
16
|
Marzaro G, Lampronti I, Borgatti M, Manzini P, Gambari R, Chilin A. Psoralen derivatives as inhibitors of NF-κB interaction: the critical role of the furan ring. Mol Divers 2015; 19:551-61. [PMID: 25869956 DOI: 10.1007/s11030-015-9586-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/21/2015] [Indexed: 12/26/2022]
Abstract
Simplified analogues of previously reported NF-κB interaction inhibitors, lacking the furan moiety, were synthesized and evaluated by performing experiments based on electrophoretic mobility shift assay (EMSA). The synthetic modifications led to simpler coumarin derivatives with lower activity allowing to better understand the minimal structural requirement for the binding to NF-κB.
Collapse
Affiliation(s)
- Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
18
|
Wardwell PR, Bader RA. Immunomodulation of cystic fibrosis epithelial cells via NF-κB decoy oligonucleotide-coated polysaccharide nanoparticles. J Biomed Mater Res A 2014; 103:1622-31. [PMID: 25087735 DOI: 10.1002/jbm.a.35296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability. Nano-sized carrier systems have been suggested as a means of improving the effectiveness of nucleic acid-based treatments. In this study, we successfully coated polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles with NF-κΒ decoy oligonucleotides (ODNs). To demonstrate anti-inflammatory activity, the decoy ODN-coated PSA-TMC nanoparticles were administered to an in vitro model of CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled ODNs did not have substantial impacts on the inflammatory response, the decoy ODN-coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, pro-inflammatory mediators of CF, by the epithelial cells, particularly at longer time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA nanoparticles may serve as an effective method of altering the pro-inflammatory environment associated with CF.
Collapse
Affiliation(s)
- Patricia R Wardwell
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244; Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, Syracuse, New York, 13244
| | | |
Collapse
|
19
|
Bezzerri V, Avitabile C, Dechecchi MC, Lampronti I, Borgatti M, Montagner G, Cabrini G, Gambari R, Romanelli A. Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an in vitro model of cystic fibrosis. J Pept Sci 2014; 20:822-30. [PMID: 25201563 DOI: 10.1002/psc.2674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/11/2022]
Abstract
Natural peptides with antimicrobial properties are deeply investigated as tools to fight bacteria resistant to common antibiotics. Small peptides, as those belonging to the temporin family, are very attractive because their activity can easily be tuned after small modification to their primary sequence. Structure-activity studies previously reported by us allowed the identification of one peptide, analogue of temporin B, TB_KKG6A, showing, unlike temporin B, antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this paper, we investigated the antimicrobial and anti-inflammatory activity of the peptide TB_KKG6A against Pseudomonas aeruginosa. Interestingly, we found that the peptide exhibits antimicrobial activity at low concentrations, being able to downregulate the pro-inflammatory chemokines and cytokines interleukin (IL)-8, IL-1β, IL-6 and tumor necrosis factor-α produced downstream infected human bronchial epithelial cells. Experiments were carried out also with temporin B, which was found to show pro-inflammatory activity. Details on the interaction between TB_KKG6A and the P. aeruginosa LPS were obtained by circular dichroism and fluorescence studies.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Dipartimento di Patologia e Diagnostica, Università di Verona, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, Bezzerri V, Dechecchi MC, Cabrini G, Gambari R. Expression of microRNA-93 and Interleukin-8 duringPseudomonas aeruginosa–Mediated Induction of Proinflammatory Responses. Am J Respir Cell Mol Biol 2014; 50:1144-55. [DOI: 10.1165/rcmb.2013-0160oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol 2014; 118:19-28. [PMID: 24595467 DOI: 10.1007/s11060-014-1405-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs are a family of small noncoding RNAs regulating gene expression by sequence-selective mRNA targeting, leading to a translational repression or mRNA degradation. The oncomiR miR-221 is highly expressed in human gliomas, as confirmed in this study in samples of low and high grade gliomas, as well in the cell lines U251, U373 and T98G. In order to alter the biological functions of miR-221, a peptide nucleic acid targeting miR-221 (R8-PNA-a221) was produced, bearing a oligoarginine peptide (R8) to facilitate uptake by glioma cells. The effects of R8-PNA-a221 were analyzed in U251, U373 and T98G glioma cells and found to strongly inhibit miR-221. In addition, the effects of R8-PNA-a221 on p27(Kip1) (a target of miR-221) were analyzed in U251 and T98G cells by RT-qPCR and by Western blotting. No change of p27(Kip1) mRNA content occurs in U251 cells in the presence of PNA-a221 (lacking the R8 peptide), whereas significant increase of p27(Kip1) mRNA was observed with the R8-PNA-a221. These data were confirmed by Western blot assay. A clear increment of p27(Kip1) protein expression in the samples treated with R8-PNA-a221 was detected. In addition, R8-PNA-a221 was found able to increase TIMP3 expression (another target of miR-221) in T98G cells. These results suggest that PNAs against oncomiRNA miR-221 might be proposed for experimental treatment of human gliomas.
Collapse
|
22
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
23
|
De Stefano D, Coletta C, Bianca RDDV, Falcone L, d'Angelo I, Ungaro F, Quaglia F, Carnuccio R, Sorrentino R. A decoy oligonucleotide to NF-κB delivered through inhalable particles prevents LPS-induced rat airway inflammation. Am J Respir Cell Mol Biol 2013; 49:288-95. [PMID: 23590300 DOI: 10.1165/rcmb.2012-0473oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The inflammatory process plays a crucial role in the onset and progression of several lung pathologies, including cystic fibrosis (CF), and the involvement of NF-κB is widely recognized. The specific inhibition of NF-κB by decoy oligonucleotides delivered within the lung may be beneficial, although rationally designed systems are needed to optimize their pharmacological response. Prompted by this need, we have developed and tested in vivo an inhalable dry powder for the prolonged delivery of a decoy oligodeoxynucleotide to NF-κB (dec-ODN), consisting of large porous particles (LPPs) based on poly(lactic-co-glycolic) acid. First, LPPs containing dec-ODN (dec-ODN LPPs) were engineered to meet the aerodynamic criteria crucial for pulmonary delivery, to gain an effective loading of dec-ODN, to sustain its release, and to preserve its structural integrity in lung lining fluids. We then investigated the effects of dec-ODN LPPs in a rat model of lung inflammation induced by the intratracheal aerosolization of LPS from Pseudomonas aeruginosa. The results show that a single intratracheal insufflation of dec-ODN LPPs reduced the bronchoalveolar neutrophil infiltration induced by LPS for up to 72 hours, whereas naked dec-ODN was able to inhibit it only at 6 hours. The persistent inhibition of neutrophil infiltrate was associated with reduced NF-κB/DNA binding activity, as well as reduced IL-6, IL-8, and mucin-2 mRNA expression in lung homogenates. We consider it noteworthy that the developed LPPs, preventing the accumulation of neutrophils and NF-κB-related gene expression, may provide a new therapeutic option for the local treatment of inflammation associated with lung disease.
Collapse
Affiliation(s)
- Daniela De Stefano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Modulation of the expression of the proinflammatory IL-8 gene in cystic fibrosis cells by extracts deriving from olive mill waste water. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:960603. [PMID: 23935691 PMCID: PMC3723063 DOI: 10.1155/2013/960603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
A persistent recruitment of neutrophils in the bronchi of cystic fibrosis (CF) patients contributes to aggravate the airway tissue damage, suggesting the importance of modulating the expression of chemokines, including IL-8 during the management of the CF patients. Polyphenols rich extracts derived from waste water from olive mill, obtained by a molecular imprinting approach, have been investigated in order to discover compounds able to reduce IL-8 expression in human bronchial epithelial cells (IB3-1 cells), derived from a CF patient with a ΔF508/W1282X mutant genotype and stimulated with TNF-alpha. Initially, electrophoretic mobility shift assays (EMSAs) were performed to determine whether the different active principles were able to inhibit the binding between transcription factor (TF) NF-kappaB and DNA consensus sequences. Among different representative active principles present in the extract, three compounds were selected, apigenin, oleuropein, and cyanidin chloride, which displayed remarkable activity in inhibiting NF-kappaB/DNA complexes. Utilizing TNF-alpha-treated IB3-1 cells as experimental model system, we demonstrated that apigenin and cyanidin chloride are able to modulate the expression of the NF-kappaB-regulated IL-8 gene, while oleuropein showed no effect in regulating the expression of the gene IL-8.
Collapse
|
25
|
Greene CM. MicroRNA Expression in Cystic Fibrosis Airway Epithelium. Biomolecules 2013; 3:157-67. [PMID: 24970162 PMCID: PMC4030891 DOI: 10.3390/biom3010157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRs) have emerged as major regulators of the protein content of a cell. In the most part, miRs negatively regulate target mRNA expression, with sets of miRs predicted to regulate certain signaling pathways. The miR expression profile of endobronchial brushings is altered in people with cystic fibrosis (CF) compared to those without CF. How this impacts on CF has important implications for our growing understanding of the pathophysiology of CF lung disease and the development of new therapeutics to treat its pulmonary manifestations. Herein we discuss the potential consequences of altered miR expression in CF airway epithelium particularly with respect to cystic fibrosis transmembrane conductance regulator (CFTR) expression, innate immunity and toll-like receptor signalling and explore how best to exploit these changes for therapeutic benefit.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
26
|
Ungaro F, De Stefano D, Giovino C, Masuccio A, Miro A, Sorrentino R, Carnuccio R, Quaglia F. PEI-engineered respirable particles delivering a decoy oligonucleotide to NF-κB: inhibiting MUC2 expression in LPS-stimulated airway epithelial cells. PLoS One 2012; 7:e46457. [PMID: 23056313 PMCID: PMC3463602 DOI: 10.1371/journal.pone.0046457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 11/24/2022] Open
Abstract
A specific and promising approach to limit inflammation and mucin iperproduction in chronic lung diseases relies on specific inhibition of nuclear Factor-κB (NF-κB) by a decoy oligonucleotide (dec-ODN). To fulfill the requirements dictated by translation of dec-ODN therapy in humans, inhalable dry powders were designed on a rational basis to provide drug protection, sustained release and to optimize pharmacological response. To this end, large porous particles (LPP) for dec-ODN delivery made of a sustained release biomaterial (poly(lactic-co-glycolic) acid, PLGA) and an “adjuvant” hydrophilic polymer (polyethylenimine, PEI) were developed and their effects on LPS-stimulated human airway epithelial cells evaluated. The composite PLGA/PEI particles containing dec-ODN (i.e., LPPPEI) were successfully engineered for widespread deposition in the lung and prolonged release of intact dec-ODN in vitro. LPPPEI caused a prolonged inhibition of IL-8 and MUC2 expression in CF human bronchial epithelial cells and human epithelial pulmonary NCI-H292 cells, respectively, as compared to naked dec-ODN. Nonetheless, as compared to previously developed LPP, the presence of PEI was essential to construct a dec-ODN delivery system able to act in mucoepidermoid lung epithelial cells. In perspective, engineering LPP with PEI may become a key factor for tuning carrier properties, controlling lung inflammation and mucin production which, in turn, can foster in vivo translation of dec-ODN therapy.
Collapse
Affiliation(s)
- Francesca Ungaro
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ermini ML, Mariani S, Scarano S, Campa D, Barale R, Minunni M. Single nucleotide polymorphism detection by optical DNA-based sensing coupled with whole genomic amplification. Anal Bioanal Chem 2012; 405:985-93. [PMID: 22955671 DOI: 10.1007/s00216-012-6345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
The work presented here deals with the optimization of a strategy for detection of single nucleotide polymorphisms based on surface plasmon resonance imaging. First, a sandwich-like assay was designed, and oligonucleotide sequences were computationally selected in order to study optimized conditions for the detection of the rs1045642 single nucleotide polymorphism in the gene ABCB1. Then the strategy was optimized on a surface plasmon resonance imaging biosensor using synthetic DNA sequences in order to evaluate the best conditions for the detection of a single mismatching base. Finally, the assay was tested on DNA extracted from human blood which was subsequently amplified using a whole genome amplification kit. The direct detection of the polymorphism was successfully achieved. The biochip was highly regenerable and reusable for up to 20 measurements. Furthermore, coupling these promising results with the multiarray assay, we can foresee applying this biosensor in clinical research extended to concurrent analysis of different polymorphisms.
Collapse
Affiliation(s)
- M L Ermini
- Dipartimento di Chimica, Università di Firenze, Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. Int Immunopharmacol 2012; 13:308-15. [PMID: 22561123 DOI: 10.1016/j.intimp.2012.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 04/04/2012] [Accepted: 04/18/2012] [Indexed: 01/21/2023]
Abstract
Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), a gallotannin identified in several plants, including Phyllanthus urinaria, has been shown to exhibit versatile medicinal activities. As far as possible anti-inflammatory effects of corilagin, only few reports are available, and the potential use of corilagin as possible therapeutic molecule for cystic fibrosis has not been evaluated. In the present paper we report experiments aimed at determining the activity of corilagin on nuclear factor kappaB (NF-kappaB) binding to DNA target and on the expression of the major pro-inflammatory gene involved in cystic fibrosis, interleukin-8 (IL-8). Both IL-8 mRNA content and IL-8 protein secretion were analyzed in cystic fibrosis bronchial IB3-1 cells stimulated by tumor necrosis factor-alpha (TNF-alpha), one of the most potent pro-inflammatory agents. The data obtained demonstrate that corilagin binds to NF-kappaB, inhibits NF-kappaB/DNA interactions and affects IL-8 gene expression in TNF-alpha treated IB3-1 cells. In addition, corilagin inhibits TNF-alpha induced secretion of MCP-1 and RANTES, exhibiting low or no effect on the release of G-CSF, IL-6 and VEGF. Therefore, corilagin might be of interest for experimental anti-inflammatory therapy of cystic fibrosis.
Collapse
|
29
|
Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:690-713. [DOI: 10.1016/j.bbadis.2011.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023]
|
30
|
Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, Sforza S, Tedeschi T, Manicardi A, Marchelli R, Corradini R, Gambari R. miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics 2012; 3:733-45. [PMID: 22126292 DOI: 10.2217/epi.11.90] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are DNA/RNA mimics extensively used for pharmacological regulation of gene expression in a variety of cellular and molecular systems, and they have been described as excellent candidates for antisense and antigene therapies. At present, very few data are available on the use of PNAs as molecules targeting miRNAs. miRNAs are a family of small nc RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation to the control of highly regulated biological functions, such as differentiation, cell cycle and apoptosis. The aim of this article is to present the state-of-the-art concerning the possible use of PNAs to target miRNAs and modify their biological metabolism within the cells. The results present in the literature allow to propose PNA-based molecules as very promising reagents to modulate the biological activity of miRNAs. In consideration of the involvement of miRNAs in human pathologies, PNA-mediated targeting of miRNAs has been proposed as a potential novel therapeutic approach.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Biochemistry & Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bailey CK, Mittal MK, Misra S, Chaudhuri G. High motility of triple-negative breast cancer cells is due to repression of plakoglobin gene by metastasis modulator protein SLUG. J Biol Chem 2012; 287:19472-86. [PMID: 22496452 DOI: 10.1074/jbc.m112.345728] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of highly pathogenic breast cancer cell types are the triple negative (negative in the expression of estrogen, progesterone, and ERBB2 receptors) breast cancer cells. These cells are highly motile and metastatic and are characterized by high levels of the metastasis regulator protein SLUG. Using isogenic breast cancer cell systems we have shown here that high motility of these cells is directly correlated with the levels of the SLUG in these cells. Because epithelial/mesenchymal cell motility is known to be negatively regulated by the catenin protein plakoglobin, we postulated that the transcriptional repressor protein SLUG increases the motility of the aggressive breast cancer cells through the knockdown of the transcription of the plakoglobin gene. We found that SLUG inhibits the expression of plakoglobin gene directly in these cells. Overexpression of SLUG in the SLUG-deficient cancer cells significantly decreased the levels of mRNA and protein of plakoglobin. On the contrary, knockdown of SLUG in SLUG-high cancer cells elevated the levels of plakoglobin. Blocking of SLUG function with a double-stranded DNA decoy that competes with the E2-box binding of SLUG also increased the levels of plakoglobin mRNA, protein, and promoter activity in the SLUG-high triple negative breast cancer cells. Overexpression of SLUG in the SLUG-deficient cells elevated the motility of these cells. Knockdown of plakoglobin in these low motility non-invasive breast cancer cells rearranged the actin filaments and increased the motility of these cells. Forced expression of plakoglobin in SLUG-high cells had the reverse effects on cellular motility. This study thus implicates SLUG-induced repression of plakoglobin as a motility determinant in highly disseminating breast cancer.
Collapse
Affiliation(s)
- Charvann K Bailey
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | |
Collapse
|
32
|
Gambari R. Recent patents on therapeutic applications of the transcription factor decoy approach. Expert Opin Ther Pat 2012; 21:1755-71. [PMID: 22017413 DOI: 10.1517/13543776.2011.629605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Transcription is considered as an important target of drugs employed in biomedicine. Therefore, novel strategies to inhibit the biological effects of transcription factors (TFs) are of interest, such as targeting promoters with triple-helix-forming oligonucleotides and antisense targeting of mRNAs coding for TFs. AREAS COVERED The objective of this review is to describe studies considering inhibition of TF functions with molecules mimicking TF binding sites (transcription factor decoy approach, TFD) and to summarize the patents on possible clinical applications of this approach. EXPERT OPINION Treatment of cells with TFD molecules leads to inhibition (or activation) of genes regulated by the target transcription factors. The studies and patents on this specific issue have taken in great consideration the delivery strategy, which is a very important parameter. The TFD strategy has been proven effective in vivo. The stability of the TFD molecules in vivo should be carefully considered, as well as the possible toxicity and/or possible effects on innate and adaptive immune response. In order to improve clinical parameters, many patents suggest the use of the TFD molecules in combination with drugs already employed in therapy. We are expecting in the near future relevant clinical trials based on the TFD strategy.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Interdisciplinary Center for the Study of Inflammation, ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara, Italy.
| |
Collapse
|
33
|
De Cola C, Manicardi A, Corradini R, Izzo I, De Riccardis F. Carboxyalkyl peptoid PNAs: synthesis and hybridization properties. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Bezzerri V, Borgatti M, Finotti A, Tamanini A, Gambari R, Cabrini G. Mapping the transcriptional machinery of the IL-8 gene in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:6069-81. [PMID: 22031759 DOI: 10.4049/jimmunol.1100821] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IL-8 released from bronchial epithelial cells infected with Pseudomonas aeruginosa plays a crucial role in the chronic lung pathology of patients affected by cystic fibrosis. Novel anti-inflammatory approaches will benefit from a thorough understanding of the regulatory mechanisms involved in the transcription of this chemokine to identify potential pharmacological targets. We addressed this issue by investigating the role of phosphoproteins and transcription factors (TFs) on transcription of IL-8 gene in the human bronchial epithelial IB3-1, CuFi-1, and Calu-3 cells. P. aeruginosa increased the basal phosphorylation of the ERK1/2 pathway components 90-kDa ribosomal S6 kinase (RSK)1/2 and mitogen- and stress-activated kinase-2 and of the p38 MAPK pathway components p38α/δ/γ and heat shock protein 27 (HSP27). The involvement of these kinases in the expression of IL-8 gene was confirmed with pharmacological inhibitors of ERK1/2, RSK, p38, and HSP27 both at transcription and secretion levels. Transfection of TF decoy oligodeoxynucleotides, designed to interfere with the interaction of the TFs NF-κB, NF-IL6, AP-1, CREB, and CHOP with the corresponding consensus sequences identified in the IL-8 promoter, reduced the P. aeruginosa-dependent transcription of IL-8, suggesting their participation in the transcriptional machinery. Stimulation of IB3-1 cells with IL-1β led to a similar pattern of activation, whereas the pattern of phosphoproteins and of TFs modulated by TNF-α differentiated sharply. In conclusion, the results highlight a novel role for RSK1/2 and HSP27 phosphoproteins and of the cooperative role of the TFs NF-κB, NF-IL6, AP-1, CHOP, and CREB in P. aeruginosa-dependent induction of transcription of the IL-8 gene in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126 Verona, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Borgatti M, Chilin A, Piccagli L, Lampronti I, Bianchi N, Mancini I, Marzaro G, Francesco dall’Acqua, Guiotto A, Gambari R. Development of a novel furocoumarin derivative inhibiting NF-κB dependent biological functions: Design, synthesis and biological effects. Eur J Med Chem 2011; 46:4870-7. [DOI: 10.1016/j.ejmech.2011.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022]
|
36
|
Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol 2011; 271:5-14. [PMID: 21777910 DOI: 10.1016/j.cellimm.2011.06.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023]
Abstract
As fascinating a molecule as it can potentially get, nuclear factor-κB (NF-κB), a regulatory transcription factor, is as intriguing. NF-κB is a dimeric complex that controls the transcription of essential genes. NF-κB is involved in a variety of responses that play a pivotal role in regulating the immune response to inflammation, infection, and nociception. Aberrant regulation of NF-κB has been linked to certain conditions such as cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune responses. Cellular and molecular regulatory mechanisms and pathways involving the regulation of this transcription factor are being unraveled. Therapeutic approaches have emerged underlying the regulatory impact of oligonucleotides/decoys and other non-decoy inhibitors on NF-κB modulation. In this synopsis, we emphasize the role of decoy therapy in understanding the crucial influence of this transcription factor, and further weigh not only the efficacy of this therapeutic approach but also its necessity and contraindications.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | | |
Collapse
|
37
|
Matsuda A. [Development of highly nuclease-resistant chemically-modified oligonucleotides]. YAKUGAKU ZASSHI 2011; 131:285-98. [PMID: 21297374 DOI: 10.1248/yakushi.131.285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemical modification of therapeutic oligodeoxyribonucleotides (ODNs) is necessary to avoid not only degradation by endo- and exo-nucleases but also recognition by sensors such as an innate immune system. We have been developing modified nucleosides having an aminoalky linker at the pyrimidine nucleobase or sugar moiety. ODNs containing 5-N-(6-aminohexyl)carbamoyl-2'-deoxyuridine (7) were thermally stabilized about 3°C per modification and were about 160 times more stable to hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than unmodified ODNs, but not by endonucleases. On the other hand, ODNs containing 4'-C-(aminoethyl)thymidine (14b), which was synthesized by a newly developed radical cyclization-ring-enlargement reaction by us, were 87 times more stable to hydrolysis by DNase I (an endonuclease) and 133 times more stable in 50% human serum than unmodified ODNs. The highly stereoselective synthesis of 4'-thioribonuclesides ((S)Ns) was also developed using a Pummerer reaction. Human thrombin RNA aptamer (CII-1-37) containing 4'-thiouridine and 4'-thiocytidine was obtained by SELEX with a K(d) value of 4.7 nM, while a previously known RNA aptamer (RNA-24) has a K(d) value of 85 nM. Studies of the modification pattern-RNAi activity relationships by using (S)Ns have been carried out against luciferase genes. We found that siRNAs, which have 4 residues of (S)Ns on both ends of the sense strand and 4 residues on the 3'-end of the antisense strand, were the most effective. 4'-ThioRNA is about 1100 times more stable in 50% human plasma than unmodified RNA. However, oligoribonucleotides ((SM)ONs) containing 2'-O-methyl-4'-thioribonucleosides were 9800 times more stable in 50% human plasma than unmodified RNA. Since (SM)ON duplexes were thermally more stable than unmodified ON duplexes, therefore they would be quite suitable to use for oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University.
| |
Collapse
|
38
|
Borgatti M, Mancini I, Bianchi N, Guerrini A, Lampronti I, Rossi D, Sacchetti G, Gambari R. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines. BMC BIOCHEMISTRY 2011; 12:15. [PMID: 21496221 PMCID: PMC3095539 DOI: 10.1186/1471-2091-12-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/15/2011] [Indexed: 01/01/2023]
Abstract
Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.
Collapse
Affiliation(s)
- Monica Borgatti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, Ferrara, 44121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tamanini A, Borgatti M, Finotti A, Piccagli L, Bezzerri V, Favia M, Guerra L, Lampronti I, Bianchi N, Dall'Acqua F, Vedaldi D, Salvador A, Fabbri E, Mancini I, Nicolis E, Casavola V, Cabrini G, Gambari R. Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol 2011; 300:L380-90. [DOI: 10.1152/ajplung.00129.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammatory response in the airway tract of patients affected by cystic fibrosis is characterized by an excessive recruitment of neutrophils to the bronchial lumina, driven by the chemokine interleukin (IL)-8. We previously found that 5-methoxypsoralen reduces Pseudomonas aeruginosa -dependent IL-8 transcription in bronchial epithelial cell lines, with an IC50 of 10 μM (Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bezzerri V, Bianchi N, Mazzon M, Mancini I, Giri MG, Rizzotti P, Gambari R, Cabrini G. Int Immunopharmacol 9: 1411–1422, 2009). Here, we extended the investigation to analogs of 5-methoxypsoralen, and we found that the most potent effect is obtained with 4,6,4′-trimethylangelicin (TMA), which inhibits P. aeruginosa -dependent IL-8 transcription at nanomolar concentration in IB3–1, CuFi-1, CFBE41o−, and Calu-3 bronchial epithelial cell lines. Analysis of phosphoproteins involved in proinflammatory transmembrane signaling evidenced that TMA reduces the phosphorylation of ribosomal S6 kinase-1 and AKT2/3, which we found indeed involved in P. aeruginosa -dependent activation of IL-8 gene transcription by testing the effect of pharmacological inhibitors. In addition, we found a docking site of TMA into NF-κB by in silico analysis, whereas inhibition of the NF-κB/DNA interactions in vitro by EMSA was observed at high concentrations (10 mM TMA). To further understand whether NF-κB pathway should be considered a target of TMA, chromatin immunoprecipitation was performed, and we observed that TMA (100 nM) preincubated in whole living cells reduced the interaction of NF-κB with the promoter of IL-8 gene. These results suggest that TMA could inhibit IL-8 gene transcription mainly by intervening on driving the recruitment of activated transcription factors on IL-8 gene promoter, as demonstrated here for NF-κB. Although the complete understanding of the mechanism of action of TMA deserves further investigation, an activity of TMA on phosphorylating pathways was already demonstrated by our study. Finally, since psoralens have been shown to potentiate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport, TMA was tested and found to potentiate CFTR-dependent chloride efflux. In conclusion, TMA is a dual-acting compound reducing excessive IL-8 expression and potentiating CFTR function.
Collapse
Affiliation(s)
- Anna Tamanini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Monica Borgatti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Alessia Finotti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Laura Piccagli
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Maria Favia
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Lorenzo Guerra
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Ilaria Lampronti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Nicoletta Bianchi
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | | | - Daniela Vedaldi
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Alessia Salvador
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Enrica Fabbri
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Irene Mancini
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Elena Nicolis
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Valeria Casavola
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Roberto Gambari
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|