1
|
Lei J, Zheng F, Chen L, Zhang R, Yang Y, Yin Z, Luo L. Gstp1 negatively regulates blood pressure in hypertensive rat via promoting APLNR ubiquitination degradation mediated by Nedd4. Clin Sci (Lond) 2024; 138:883-900. [PMID: 38959295 DOI: 10.1042/cs20241113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.
Collapse
Affiliation(s)
- Jianzhen Lei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fen Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luyao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Li N, Deng L, Zhang Y, Tang X, Lei B, Zhang Q. IGF2BP2 modulates autophagy and serves as a prognostic marker in glioma. IBRAIN 2024; 10:19-33. [PMID: 38682020 PMCID: PMC11045200 DOI: 10.1002/ibra.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
Glioma, a malignant brain tumor originating from neural glial cells, presents significant treatment challenges. However, the underlying mechanisms of glioma development are not fully understood, and effective targets are lacking. This study provides insights into the role of insulin-like growth factor 2 messenger RNA-binding protein 2 (IGF2BP2) in glioma progression and its therapeutic potential. Our analysis illustrated that elevated IGF2BP2 expression associated with significantly shorter survival among patients with low-grade glioma (LGG) in The Cancer Genome Atlas (TCGA) database. IGF2BP2 depletion led to compromised cell viability, G0/G1 phase arrest, and reduced colony-formation ability. Furthermore, ultrastructural analysis and mCherry-GFP-LC3 reporter assay revealed an increased abundance of autophagosomes upon IGF2BP2 knockdown. Western blot analysis corroborated these findings by showing reduced p62 levels coupled with increased LC3-ІІ/LC3-I ratio upon IGF2BP2 knockdown. A multicolor immunohistochemistry assay demonstrated the positive correlation between IGF2BP2 and p62 expression in glioma patient samples. Additionally, our analysis suggested a link between IGF2BP2 expression and drug-resistant markers in TCGA-LGG samples, and Cell Counting Kit-8 cell viability assay revealed that knockdown of IGF2BP2 sensitized cells to temozolomide treatment. This comprehensive exploration unveils the role of IGF2BP2 in glioma progression, shedding light on autophagy modulation and chemosensitization strategies for glioma therapy.
Collapse
Affiliation(s)
- Ning Li
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Limei Deng
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Department of Obstetrics and GynecologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Yuming Zhang
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Xilian Tang
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Qingyu Zhang
- Department of Obstetrics and GynecologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
3
|
Meng X, Guan D, Zhang N, Jiang H, Jiang C, Ge H, Wei J, Wang J, Qian K. Comparative phosphoproteomics analysis provides insights into the responses of Chilo suppressalis to sublethal chlorantraniliprole exposure. PEST MANAGEMENT SCIENCE 2023; 79:2338-2352. [PMID: 36797212 DOI: 10.1002/ps.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Sublethal exposure to insecticides causes changes in insect behaviors and physiologies including feeding, mobility, communication, hormone homeostasis, development and fecundity, however, the underlying molecular mechanisms were largely unclear. Our previous studies revealed that sublethal chlorantraniliprole exposure disturbed the hormone homeostasis, reduced the weight and longevity and prolonged the developmental duration of Chilo suppressalis. In the present study, the potential phosphorylation modification regulation mechanisms in C. suppressalis in response to sublethal chlorantraniliprole exposure were explored using comparative and quantitative phosphoproteomics. RESULTS A total of 2640 phosphopeptides belonging to 1144 phosphoproteins were identified, among which 446 phosphopeptides derived from 303 unique phosphoproteins were differentially phosphorylated between the chlorantraniliprole-treated and control larvae. The phosphorylation levels of differentially phosphorylated phosphopeptides were further validated using parallel reaction monitoring (PRM). Functional classification and protein-protein interaction of the differentially phosphorylated proteins (DPPs) were analyzed. Generalized analysis of the DPPs and the differentially expressed genes (DEGs) identified in our previous study showed that sublethal chlorantraniliprole exposure significantly changed the transcription and phosphorylation levels of genes/proteins associated with carbohydrate and lipid metabolism, cytoskeleton, signal transduction, transcription, translation and post-translational modification, leading to the dysfunctions of energy metabolism, transcription regulation, protein synthesis and modification, and signal transduction in C. suppressalis. Further analysis of the phosphorylation motifs in DPPs revealed that the MAPKs, CDKs, CaMK II, PKA, PKC and CK II protein kinases might be directly responsible for the phosphoproteomics response of C. suppressalis to chlorantraniliprole treatment. CONCLUSION Our results provide abundant phosphorylation information for characterizing the protein modification in insects, and also provide valuable insights into the molecular mechanisms of insect post-translational modifications in response to sublethal insecticide exposure. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Sha H, Zou R, Lu Y, Gan Y, Ma R, Feng J, Chen D. NBDHEX re-sensitizes adriamycin-resistant breast cancer by inhibiting glutathione S-transferase pi. Cancer Med 2023; 12:5833-5845. [PMID: 36266920 PMCID: PMC10028113 DOI: 10.1002/cam4.5370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Adriamycin is a novel chemotherapeutic agent of great benefit for treating breast cancer. However, adriamycin -resistance remains a major obstacle. The vital Glutathione transferase P1 (GSTPi) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX) has recently shown antitumor activity in various cancers. In this study, we analyzed the effect of NBDHEX and adriamycin combination against breast cancer in vitro and in vivo. METHODS CCK-8 assay was performed to test cell viability. The location and expression level of GSTpi was determined by immunofluorescence and Western blot in cells and immunohistochemistry staining in tissues. The enzyme activity test was applied to detect the effect of NBDHEX on the activity of GSTpi. The apoptosis related proteins' expression was tested using Western blot. The phosphorylation sites of GSTpi were detected by mass spectrometry. Antitumor effects of single treatment or co-administration of adriamycin and NBDHEX were evaluated in nude mice. RESULTS NBDHEX treatment inhibited GSTpi enzyme activity and co-administration of adriamycin and NBDHEX promoted apoptosis of adriamycin-resistance breast cancer cell. Moreover, drug combination of NBDHEX and adriamycin significantly enhanced tumor growth inhibition compared with single agent. CONCLUSION NBDHEX serves as a good candidate for combination with adriamycin, offering new insights for breast cancer treatment.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of ChemotherapyJiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Renrui Zou
- The Fourth Clinical School of The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Ya Lu
- The Fourth Clinical School of The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Yujie Gan
- The Fourth Clinical School of The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Rong Ma
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Jifeng Feng
- The Fourth Clinical School of The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| | - Dan Chen
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer ResearchNanjingJiangsuChina
| |
Collapse
|
5
|
Hypoxia-Induced GST1 Exerts Protective Effects on Trophoblasts via Inhibiting Reactive Oxygen Species (ROS) Accumulation. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/9391252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hypoxic conditions are a typical extrinsic factor for the modification of trophoblast biological functions, including cell proliferation, migration, and invasion. Hypoxia-induced reactive oxygen species (ROS) accumulation causes chronic trophoblast injury and contributes to preeclampsia (PE). Glutathione-S-transferase P (GSTP1) is a main regulator of ROS. However, it is still unknown whether GSTP1 is involved in ROS regulation under hypoxic conditions. Here, we investigated the expression level of GSTP1 in first-trimester villi placentas compared with full-term placentas and the effect of hypoxic conditions on GSTP1. GSTP1 expression in first-trimester villi placentas was much higher than that in full-term placentas. After hypoxia exposure, GSTP1 was significantly upregulated in JEG3 cells, a trophoblast-like cell line. Hypoxic-induced GSTP1 scavenged ROS accumulated by hypoxia exposure, potentially by promoting GST activity. The inhibitory effects of hypoxia exposure on cell proliferation, migration, and invasion induced by hypoxia exposure were obviously reversed by overexpression of GSTP1. Hypoxia-induced cell apoptosis was also reversed by GSTP1 overexpression, indicating the protective effects of GSTP1 against ROS-induced cell injury. Moreover, overexpressed GSTP1 markedly promoted the cell proliferation, migration, invasion, and colony formation abilities in JEG3 cells, demonstrating that GSP1 also exerts promoting effects under normoxic conditions. These data show that hypoxia-induced GSTP1 expression facilitates trophoblast cell proliferation, migration, and invasion and exerts protective effects under hypoxic conditions, which may play an important role during the increase in PE.
Collapse
|
6
|
Li Y, Fan K, Shen J, Wang Y, Jeyaraj A, Hu S, Chen X, Ding Z, Li X. Glycine-Induced Phosphorylation Plays a Pivotal Role in Energy Metabolism in Roots and Amino Acid Metabolism in Leaves of Tea Plant. Foods 2023; 12:foods12020334. [PMID: 36673426 PMCID: PMC9858451 DOI: 10.3390/foods12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Phosphorylation is the most extensive post-translational modification of proteins and thus regulates plant growth. However, the regulatory mechanism of phosphorylation modification on the growth of tea plants caused by organic nitrogen is still unclear. In order to explore the phosphorylation modification mechanism of tea plants in response to organic nitrogen, we used glycine as the only nitrogen source and determined and analyzed the phosphorylated proteins in tea plants by phosphoproteomic analysis. The results showed that the phosphorylation modification induced by glycine-supply played important roles in the regulation of energy metabolism in tea roots and amino acid metabolism in tea leaves. In roots, glycine-supply induced dephosphorylation of proteins, such as fructose-bisphosphate aldolase cytoplasmic isozyme, glyceraldehyde-3-phosphate dehydrogenase, and phosphoenolpyruvate carboxylase, resulted in increased intensity of glycolysis and decreased intensity of tricarboxylic acid cycle. In leaves, the glycine-supply changed the phosphorylation levels of glycine dehydrogenase, aminomethyltransferase, glutamine synthetase, and ferredoxin-dependent glutamate synthase, which accelerated the decomposition of glycine and enhanced the ability of ammonia assimilation. In addition, glycine-supply could improve the tea quality by increasing the intensity of amino acids, such as theanine and alanine. This research clarified the important regulatory mechanism of amino acid nitrogen on tea plant growth and development through protein phosphorylation.
Collapse
Affiliation(s)
- Yuchen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaotang Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| |
Collapse
|
7
|
Lu E, Gareev I, Yuan C, Liang Y, Sun J, Chen X, Beylerli O, Sufianov A, Zhao S, Yang G. The Mechanisms of Current Platinum Anticancer Drug Resistance in the Glioma. Curr Pharm Des 2022; 28:1863-1869. [PMID: 35674307 PMCID: PMC10556399 DOI: 10.2174/1381612828666220607105746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Gliomas are the most common and malignant primary tumors of the central nervous system (CNS). Glioblastomas are the most malignant and aggressive form of primary brain tumors and account for the majority of brain tumor-related deaths. The current standard treatment for gliomas is surgical resection supplemented by postoperative chemotherapy. Platinum drugs are a class of chemotherapeutic drugs that affect the cell cycle, and the main site of action is the DNA of cells, which are common chemotherapeutic drugs in clinical practice. Chemotherapy with platinum drugs such as cisplatin, carboplatin, oxaliplatin, or a combination thereof is used to treat a variety of tumors. However, the results of gliomas chemotherapy are unsatisfactory, and resistance to platinum drugs is one of the important reasons. The resistance of gliomas to platinum drugs is the result of a combination of influencing factors. Decreased intracellular drug concentration, enhanced function of cell processing active products, enhanced repair ability of cellular DNA damage, and blockage of related apoptosis pathways play an important role in it. It is known that the pathogenic properties of glioma cells and the response of glioma towards platinum-based drugs are strongly influenced by non-coding RNAs, particularly, by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs and lncRNAs control drug sensitivity and the development of tumor resistance towards platinum drugs. This mini-review summarizes the resistance mechanisms of gliomas to platinum drugs, as well as molecules and therapies that can improve the sensitivity of gliomas to platinum drugs.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
8
|
Lin H, Sun W, Zeng T, Li H, Xu C, Chen Y, Yin W. Identification of fosaprepitant as a novel GSTP1 inhibitor through structure-based virtual screening, molecular dynamics simulation, and biological evaluation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04597k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The workflow of virtual screening for the discovery of GSTP1 inhibitors.
Collapse
Affiliation(s)
- Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenxiu Sun
- Department of pharmacy, Lingbi people's Hospital, Suzhou, Anhui, China
| | - Tao Zeng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Hengda Li
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Chenming Xu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Chen
- The Affiliated cancer hospital of Nanjing Medical University, Jiangsu cancer hospital, Nanjing, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Zhou J, Gu L, Shi Y, Huang T, Fan X, Bi X, Lu S, Liang J, Luo L, Cao P, Yin Z. GSTpi reduces DNA damage and cell death by regulating the ubiquitination and nuclear translocation of NBS1. Cell Mol Life Sci 2021; 79:54. [PMID: 34936032 PMCID: PMC11072236 DOI: 10.1007/s00018-021-04057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Glutathione S-transferase pi (GSTpi) is an important phase II detoxifying enzyme that participates in various physiological processes, such as antioxidant, detoxification, and signal transduction. The high expression level of GSTpi has been reported to be related to drug-resistant and anti-inflammatory and it functioned via its non-catalytic ligandin. However, the previous protection mechanism of GSTpi in DNA damage has not been addressed so far. Nijmegen breakage syndrome 1 (NBS1) is one of the most important sensor proteins to detect damaged DNA. Here, we investigated the interaction between GSTpi and NBS1 in HEK-293 T cells and human breast adenocarcinoma cells during DNA damage. Our results showed that overexpression of GSTpi in cells by transfecting DNA vector decreased the DNA damage level after methyl methanesulfonate (MMS) or adriamycin (ADR) treatment. We found that cytosolic GSTpi could increase NBS1 ubiquitin-mediated degradation in unstimulated cells, which suggested that GSTpi could maintain the basal level of NBS1 during normal conditions. In response to DNA damage, GSTpi can be phosphorylated in Ser184 and inhibit the ubiquitination degradation of NBS1 mediated by Skp2 to recover NBS1 protein level. Phosphorylated GSTpi can further enhance NBS1 nuclear translocation to activate the ATM-Chk2-p53 signaling pathway. Finally, GSTpi blocked the cell cycle in the G2/M phase to allow more time for DNA damage repair. Thus, our finding revealed the novel mechanism of GSTpi via its Ser184 phosphorylation to protect cells from cell death during DNA damage and it enriches the function of GSTpi in drug resistance.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lili Gu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Ting Huang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
10
|
Jeon J, Lee S, Kim H, Kang H, Youn H, Jo S, Youn B, Kim HY. Revisiting Platinum-Based Anticancer Drugs to Overcome Gliomas. Int J Mol Sci 2021; 22:ijms22105111. [PMID: 34065991 PMCID: PMC8151298 DOI: 10.3390/ijms22105111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Jaewan Jeon
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea; (J.J.); (S.J.)
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea; (J.J.); (S.J.)
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: (B.Y.); (H.Y.K.); Tel.: +82-51-510-2264 (B.Y.); +82-51-797-3923 (H.Y.K.)
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea
- Correspondence: (B.Y.); (H.Y.K.); Tel.: +82-51-510-2264 (B.Y.); +82-51-797-3923 (H.Y.K.)
| |
Collapse
|
11
|
Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther 2020; 28:471-485. [PMID: 33199829 DOI: 10.1038/s41417-020-00232-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Esophageal cancer (EC) is a serious digestive malignancy which remains the sixth leading cause of cancer-related deaths worldwide. Emerging evidence suggests the involvement of long non-coding RNAs (lncRNAs) in the tumorigenesis of EC and thus, in this study we explored the potential effects of lncRNA LINC01270 on EC cell proliferation, migration, invasion and, drug resistance via regulation of glutathione S-transferase P1 (GSTP1) methylation. First, we screened out the EC-related differentially expressed lncRNAs, and the expression of our top candidate LINC01270 was quantified in EC tissues and cells. To define the role of LINC01270 in EC progression, we evaluated the proliferation, migration and invasion of EC cells when the LINC01270 was overexpressed or knocked down, in the presence of the GSTP1 methylation inhibitor SGI-1027 and 5-fluorouracil (5-FU). In addition, interaction between LINC01270 and methylation of the GSTP1 promoter was identified. Finally, we assessed transplantable tumor growth in nude mice. LINC01270 was up-regulated and GSTP1 was down-regulated in EC tissues and cells. Silencing of LINC01270 inhibited migration and invasion, and enhanced the sensitivity of 5-FU in EC cells. We found that LINC01270 recruited the DNA methyltransferases DNMT1, DNMT3A and DNMT3B initiating GSTP1 promoter methylation, thereby leading to the proliferation, migration, invasion and drug resistance of EC cells. Moreover, GSTP1 overexpression was observed to reverse the effects of LINC01270 overexpression on EC cells and their response to 5-FU. Taken together, this study shows that inhibition of LINC01270 can lead to suppression of EC progression via demethylation of GSTP1, highlighting this lncRNA as a potential target for EC treatment.
Collapse
|
12
|
Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020; 13:141. [PMID: 33087132 PMCID: PMC7579906 DOI: 10.1186/s13045-020-00979-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. METHODS High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. RESULTS We identified a small molecular inhibitor, "MNPC," that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. CONCLUSIONS Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Alvaro G Alvarado
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Dong X, Yang Y, Zhou Y, Bi X, Zhao N, Zhang Z, Li L, Hang Q, Zhang R, Chen D, Cao P, Yin Z, Luo L. Glutathione S-transferases P1 protects breast cancer cell from adriamycin-induced cell death through promoting autophagy. Cell Death Differ 2019; 26:2086-2099. [PMID: 30683915 DOI: 10.1038/s41418-019-0276-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Glutathione S-transferases P1 (GSTP1) is a phase II detoxifying enzyme and increased expression of GSTP1 has been linked with acquired resistance to anti-cancer drugs. However, most anticancer drugs are not good substrates for GSTP1, suggesting that the contribution of GSTP1 to drug resistances might not be dependent on its capacity to detoxify chemicals or drugs. In the current study, we found a novel mechanism by which GSTP1 protects human breast cancer cells from adriamycin (ADR)-induced cell death and contributes to the drug resistance. GSTP1 protein level is very low in human breast cancer cell line MCF-7 but is high in ADR-resistant MCF-7/ADR cells. Under ADR treatment, MCF-7/ADR cells showed a higher autophagy level than MCF-7 cells. Overexpression of GSTP1 in MCF-7 cells by using the DNA transfection vector enhanced autophagy and down-regulation of GSTP1 through RNA interference in MCF-7/ADR cells decreased autophagy. When autophagy was prevented, GSTP1-induced ADR resistance reduced. We found that GSTP1 enhanced autophagy level in MCF-7 cells through interacting with p110α subunit of phosphatidylinositol-3-kinase (PI3K) and then inhibited PI3K/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) activity. Proline123, leucine160, and glutamine163, which located in C terminal of GSTP1, are essential for GSTP1 to interact with p110α, and the following autophagy and drug resistance regulation. Taken together, our findings demonstrate that high level of GSTP1 maintains resistance of breast cancer cells to ADR through promoting autophagy. These new molecular insights provide an important contribution to our better understanding the effect of GSTP1 on the resistance of tumors to chemotherapy.
Collapse
Affiliation(s)
- Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Ningwei Zhao
- Shimadzu Biomedical Research Laboratory, Shanghai, 200233, China.,Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhengping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Jiangsu Simovay Pharmaceutical Co., Ltd., Nanjing, 210042, China
| | - Ling Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiyun Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ruhui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Yoshihama T, Fukunaga K, Hirasawa A, Nomura H, Akahane T, Kataoka F, Yamagami W, Aoki D, Mushiroda T. GSTP1 rs1695 is associated with both hematological toxicity and prognosis of ovarian cancer treated with paclitaxel plus carboplatin combination chemotherapy: a comprehensive analysis using targeted resequencing of 100 pharmacogenes. Oncotarget 2018; 9:29789-29800. [PMID: 30038720 PMCID: PMC6049855 DOI: 10.18632/oncotarget.25712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose To find genetic variants that predicted toxicity and/or efficacy of paclitaxel plus carboplatin combination therapy (TC therapy). Patients and methods In a retrospective case-control study, we analyzed 320 patients who had received TC therapy for gynecological cancers (ovarian, fallopian tube, peritoneal, uterine, and cervical cancers) and collected their germline DNA. We performed a comprehensive pharmacogenomic analysis using a targeted resequencing panel of 100 pharmacogenes. For 1,013 variants passing QC, case-control association studies and survival analyses were conducted. Results GSTP1 rs1695 showed the smallest p value for hematotoxicity association, and the 105Ile wild type allele had a significantly higher risk of severe hematotoxicity (neutropenia G4, thrombocytopenia ≥ G3 and anemia ≥ G3) than the 105Val allele (p=0.00034, odds ratio=5.71 (95% confidence interval:1.77-18.44)). Next, we assessed 5-year progression-free survival (PFS) and overall survival (OS) in 56 advanced ovarian cancer patients who received tri-weekly TC as a first-line chemotherapy. Patients with the 105Ile/105Ile genotype showed significantly better PFS (p=0.00070) and OS (p=0.0012) than those with the 105Ile/105Val or 105Val/105Val genotype. Conclusion Our study indicates that the GSTP1 rs1695 105Ile/105Ile genotype is associated with both severe hematotoxicity and high efficacy of TC therapy, identifying a possible prognostic indicator for patients with TC therapy.
Collapse
Affiliation(s)
- Tomoko Yoshihama
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akira Hirasawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Akahane
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Fumio Kataoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
15
|
Zhou Y, Cao X, Yang Y, Wang J, Yang W, Ben P, Shen L, Cao P, Luo L, Yin Z. Glutathione S-Transferase Pi Prevents Sepsis-Related High Mobility Group Box-1 Protein Translocation and Release. Front Immunol 2018. [PMID: 29520271 PMCID: PMC5827551 DOI: 10.3389/fimmu.2018.00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glutathione S-transferase Pi (GSTP) was originally identified as one of cytosolic phase II detoxification enzymes and also was considered to function via its non-catalytic, ligand-binding activity. We have reported that GSTP played an anti-inflammatory role in macrophages, suggesting that GSTP may have a protective role in inflammation. In this study, we deleted the murine Gstp gene cluster and found that GSTP significantly decreased the mortality of experimental sepsis and reduced related serum level of high mobility group box-1 protein (HMGB1). As HMGB1 is the key cytokine involved in septic death, we further studied the effect of GSTP on HMGB1 release. The results demonstrated that a classic protein kinase C (cPKC) dependent phosphorylation of cytoplasmic GSTP at Ser184 occurred in macrophages in response to lipopolysaccharide (LPS) stimulation. Phosphorylated GSTP was then translocated to the nucleus. In the nucleus, GSTP bound to HMGB1 and suppressed LPS-triggered and cPKC-mediated HMGB1 phosphorylation. Consequently, GSTP prevented the translocation of HMGB1 to cytoplasm and release. Our findings provide the new evidence that GSTP inhibited HMGB1 release via binding to HMGB1 in the nucleus independent of its transferase activity. cPKC-mediated GSTP phosphorylation was essential for GSTP to translocate from cytoplasm to nucleus. To our knowledge, we are the first to report that nuclear GSTP functions as a negative regulator to control HMGB1 release from macrophages and decreases the mortality of sepsis.
Collapse
Affiliation(s)
- Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Jing Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Weidong Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Peiling Ben
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lei Shen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
17
|
Araujo TDO, Costa LT, Fernandes J, Aucélio RQ, de Campos RC. Biomarkers to assess the efficiency of treatment with platinum-based drugs: what can metallomics add? Metallomics 2014; 6:2176-88. [PMID: 25387565 DOI: 10.1039/c4mt00192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the approval of cisplatin as an antineoplastic drug, the medical and the scientific communities have been concerned about the side effects of platinum-based drugs, and this has been the dose-limiting factor that leads to reduced treatment efficiency. Another important issue is the intrinsic or acquired resistance of some patients to treatment. Identifying proper biomarkers is crucial in evaluating the efficiency of a treatment, assisting physicians in determining, at early stages, whether or not the patient presents resistance to the drug, minimizing severe side effects, and allowing them to redirect the established course of chemotherapy. A great effort is being made to identify biomarkers that can be used to predict the outcome of the treatment of cancer patients with platinum-based drugs. In this context, the metallomic approach has not yet been used to its full potential. Since the basis of these drugs is platinum, the monitoring of biomarkers containing this metal should be the natural approach to evaluate treatment progress. This review intends to show where the research in this field stands and points out some gaps that can be filled by metallomics.
Collapse
|
18
|
Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 2014; 75:1-15. [PMID: 25143300 DOI: 10.1007/s00280-014-2566-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Glutathione S-transferases (GSTs) family of enzymes is best known for their cytoprotective role and their involvement in the development of anticancer drug resistance. Recently, emergence of non-detoxifying properties of GSTs has provided them with significant biological importance. Addressing the complex interactions of GSTs with regulatory kinases will help in understanding its precise role in tumor pathophysiology and in designing GST-centered anticancer strategies. METHODS We reviewed all published literature addressing the detoxification and regulatory roles of GSTs in the altered biology of cancer and evaluating novel agents targeting GSTs for cancer therapy. RESULTS The role of GSTs, especially glutathione S-transferase P1 isoform in tumoral drug resistance, has been the cause of intense debate. GSTs have been demonstrated to interact with different protein partners and modulate signaling pathways that control cell proliferation, differentiation and apoptosis. These specific functions of GSTs could lead to the development of new therapeutic approaches and to the identification of some interesting candidates for preclinical and clinical development. This review focuses on the crucial role played by GSTs in the development of resistance to anticancer agents and the major findings regarding the different modes of action of GSTs to regulate cell signaling.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Gautam Buddha Nagar, Greater Noida, UP, India,
| |
Collapse
|
19
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
20
|
Yaku K, Matsui-Yuasa I, Konishi Y, Kojima-Yuasa A. AMPK synergizes with the combined treatment of 1'-acetoxychavicol acetate and sodium butyrate to upregulate phase II detoxifying enzyme activities. Mol Nutr Food Res 2013; 57:1198-208. [PMID: 23559539 DOI: 10.1002/mnfr.201200809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
SCOPE Phase II enzymes play important roles in detoxifying xenobiotics. We previously reported that both 1'-acetoxychavicol acetate (ACA) and sodium butyrate individually increased phase II enzyme activities. Here, we determined the combined action of ACA and sodium butyrate on phase II enzyme activities in intestinal epithelial cells (IEC 6). METHODS AND RESULTS ACA and sodium butyrate synergistically increased phase II enzyme activities. Protein levels of intranuclear transcription factor NF-E2-related factor 2 (Nrf2) were increased by ACA or sodium butyrate treatment, but treatment with both did not produce a synergistic effect. Intranuclear p53 protein levels were increased by ACA but decreased by sodium butyrate alone or combined treatment with ACA and sodium butyrate. In contrast, p53 acetylation was promoted by sodium butyrate and the ACA and sodium butyrate combination. Inhibition of AMPK activity decreased phase II enzyme activities that were upregulated by treatment with ACA plus sodium butyrate or other phytochemicals, including kaempferol, quercetin, and epigallocatechin-3-gallate. Combined treatment with ACA and sodium butyrate increased phosphorylated AMPK levels. CONCLUSION These results suggest that ACA and sodium butyrate synergistically contribute to xenobiotics metabolism. The combined ACA and sodium butyrate treatment synergistically upregulated phase II enzyme activities through AMPK activation and p53 acetylation.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | | |
Collapse
|
21
|
Mohammed AES, Eguchi H, Wada S, Koyama N, Shimizu M, Otani K, Ohtaki M, Tanimoto K, Hiyama K, Gaber MS, Nishiyama M. TMEM158 and FBLP1 as novel marker genes of cisplatin sensitivity in non-small cell lung cancer cells. Exp Lung Res 2013; 38:463-74. [PMID: 23098063 DOI: 10.3109/01902148.2012.731625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Even after development of molecular targeting therapies, platinum-based chemotherapy is still a standard care for treatment of locally advanced non-small cell lung cancer (NSCLC). So far, critical molecular markers capable to predict the therapeutic response in NSCLC patients remain undetermined. We here attempted to identify novel biomarker genes for cisplatin (CDDP) for a tailored therapy. Initial screening to explorer association of IC(50) values of CDDP obtained by MTT assay and gene expression levels measured with oligonucleotide microarray and real-time RT-PCR provided 6 candidate genes, namely, NUBPL, C9orf30, ZNF12, TMEM158, GSK3B, and FBLP1 using 9 lung cancer cells consisting of 3 small and 6 NSCLC cells. These 6 genes together with 5 reported biomarkers, i.e., GSTP1, ERCC1, BRCA1, FRAP1, and RRM1, were subjected to a linear regression analysis using 12 NSCLC cell lines including 6 additional NSCLC cells: only FBLP1 and TMEM158 genes showed positive associations with statistical significances (P = .016 and .026, respectively). The biological significance of these genes was explored by in vitro experiments: Knockdown experiments in PC-9/CDDP cells revealed that the reduced expression of TMEM158 significantly decreased the chemo-resistance against CDDP (P <.0001), while 2 transformants of PC-6 cells stably over-expressing FBLP1 resulted in an enhanced resistance to CDDP (P = .004 and P = .001). Furthermore, a stepwise multiple regression analysis demonstrated the best prediction formula could be fixed when we used expression data of TMEM158 and FBLP1 (R(2) = 0.755, P = .0018). TMEM158 and FBLP1 may be powerful predictive biomarkers for CDDP therapy in NSCLC.
Collapse
Affiliation(s)
- Ahmed El Sayed Mohammed
- Translational Research Center, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The diagnosis of parathyroid carcinoma can be challenging, and adjuvant therapies such as radiotherapy and chemotherapy are not particularly beneficial in the management of this disease, creating a challenge when dealing with unresectable recurrent and metastatic malignancy. We investigated the expression profile of biomarkers that represent potential markers of malignancy or targets for novel therapies in this disease. We constructed a tissue microarray of parathyroid carcinomas from 10 patients as well as parathyroid adenomas from 25 patients and stained the slides for 34 proteins involved in angiogenesis (platelet-derived growth factor receptor (PDGFR)-α, PDGFR-β, vascular endothelial growth factor receptor-2 (VEGFR-2), and epidermal growth factor receptor (EGFR)), inflammation (cyclooxygenase (COX)-1 and COX-2), cell adhesion (matrix metalloproteinase (MMP)-1, CD9, and keratin 7), cell cycle (Cdc2p34, cyclin D1, retinoblastoma (Rb), p27, p21, parafibromin, Bmi-1, 14-3-3σ, and p53), and apoptosis (Bcl-2a, Mcl-1, Bcl-xL, and glutathione-S-transferase-isoenzyme π (Gst-π)) along with some markers of the sonic hedgehog (Smo, SHH, Gli-1, Gli-2, Gli-3, and patched), mTOR (AKT, mammalian target of rapamycin (mTOR), and Forkhead box O (FoxO)-1), and WNT (Wisp-1, Wisp-2, and β-catenin) signal transduction pathways. Protein expression was determined using computerized image analysis software (Spectrum Plus©, Aperio). Bcl-2a, parafibromin, Rb, and p27 were significantly decreased to variable degrees in all parathyroid carcinomas. COX-1/2, CD9, MMP-1, FoxO-1, VEGFR-2, PDGFR-α/β, Gst-π, Gli-1, Gli-2, Gli-3, and patched were expressed in the majority of benign and malignant tumor cells. These results indicate that the use of a panel that includes Bcl-2a, parafibromin, Rb, and p27 may be helpful in the assessment of atypical parathyroid neoplasms. Although the majority of other markers studied are also expressed in both benign and malignant parathyroid neoplasms, we have identified several potentially important target proteins related to angiogenesis and cell proliferation along with COX-1/2, Gst-π and members of sonic hedgehog pathway that may be therapeutic targets in parathyroid carcinoma. While these results are preliminary, a successful outcome of a clinical trial directed against these novel targets would provide much needed systemic adjuvant treatment for patients with metastatic parathyroid carcinoma.
Collapse
Affiliation(s)
- Boban M Erovic
- Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, Wharton Head and Neck Program, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang W, Wang L, Roehn G, Pearlstein RD, Ali-Osman F, Pan H, Goldbrunner R, Krantz M, Harms C, Paschen W. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Sci 2012; 104:70-7. [PMID: 23078246 DOI: 10.1111/cas.12047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/03/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO1-3) constitutes a group of proteins that conjugate to lysine residues of target proteins thereby modifying their activity, stability, and subcellular localization. A large number of SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression. Furthermore, SUMO conjugation plays key roles in genome stability, quality control of newly synthesized proteins, proteasomal degradation of proteins, and DNA damage repair. Any marked increase in levels of SUMO-conjugated proteins is therefore expected to have a major impact on the fate of cells. We show here that SUMO conjugation is activated in human astrocytic brain tumors. Levels of both SUMO1- and SUMO2/3-conjugated proteins were markedly increased in tumor samples. The effect was least pronounced in low-grade astrocytoma (WHO Grade II) and most pronounced in glioblastoma multiforme (WHO Grade IV). We also found a marked rise in levels of Ubc9, the only SUMO conjugation enzyme identified so far. Blocking SUMO1-3 conjugation in glioblastoma cells by silencing their expression blocked DNA synthesis, cell growth, and clonogenic survival of cells. It also resulted in DNA-dependent protein kinase-induced phosphorylation of H2AX, indicative of DNA double-strand damage, and G(2) /M cell cycle arrest. Collectively, these findings highlight the pivotal role of SUMO conjugation in DNA damage repair processes and imply that the SUMO conjugation pathway could be a new target of therapeutic intervention aimed at increasing the sensitivity of glioblastomas to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ozawa K, Tsumoto H, Wei W, Tang CH, Komatsubara AT, Kawafune H, Shimizu K, Liu L, Tsujimoto G. Proteomic analysis of the role of S-nitrosoglutathione reductase in lipopolysaccharide-challenged mice. Proteomics 2012; 12:2024-35. [PMID: 22623366 DOI: 10.1002/pmic.201100666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
S-Nitrosoglutathione reductase (GSNOR) is a key regulator of protein S-nitrosylation, the covalent modification of cysteine residues by nitric oxide that can affect activities of many proteins. We recently discovered that excessive S-nitrosylation from GSNOR deficiency in mice under inflammation inactivates the key DNA repair protein O(6) -alkylguanine-DNA alkyltransferase and promotes both spontaneous and carcinogen-induced hepatocellular carcinoma. To explore further the mechanism of tumorigenesis due to GSNOR deficiency, we compared the protein expression profiles in the livers of wild-type and GSNOR-deficient (GSNOR(-/-) ) mice that were challenged with lipopolysaccharide to induce inflammation and expression of inducible nitric oxide synthase (iNOS). Two-dimensional difference gel electrophoresis analysis identified 38 protein spots of significantly increased intensity and 31 protein spots of significantly decreased intensity in the GSNOR(-/-) mice compared to those in the wild-type mice. We subsequently identified 19 upregulated and 19 downregulated proteins in GSNOR(-/-) mice using mass spectrometry. Immunoblot analysis confirmed in GSNOR(-/-) mice a large increase in the expression of the pro-inflammatory mediator S100A9, a protein previously implicated in human liver carcinogenesis. We also found a decrease in the expression of multiple members of the protein disulfide-isomerase (PDI) family and an alteration in the expression pattern of the endoplasmic reticulum (ER) chaperones in GSNOR(-/-) mice. Furthermore, altered expression of these proteins from GSNOR deficiency was prevented in mice lacking both GSNOR and iNOS. In addition, we detected S-nitrosylation of two members of the PDI protein family. These results suggest that S-nitrosylation resulting from GSNOR deficiency may promote carcinogenesis under inflammatory conditions in part through the disruption of inflammatory and ER stress responses.
Collapse
Affiliation(s)
- Kentaro Ozawa
- World-Leading Drug Discovery Research Center, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Keskin T, Isgor BS, Isgor YG, Yukruk F. Evaluation of Perylenediimide Derivatives for Potential Therapeutic Benefits on Cancer Chemotherapy. Chem Biol Drug Des 2012; 80:675-81. [DOI: 10.1111/cbdd.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Abstract
Nowadays, gold compounds occupy a relevant position constituting a promising class of experimental anticancer metallodrugs. Several research efforts have been devoted to the investigations of the pharmacological properties of gold(I) complexes bearing phosphine ligands, such as the antiarthritic drug auranofin, that has also been shown to produce anticancer effects in vitro. In spite of the numerous studies that appeared in the literature the biological mechanisms of action of auranofin and analogues are still controversial. Here, we report on the inhibition effects of glutathione S-transferase P1-1 (GST P1-1) exerted by auranofin. The compound was able to inhibit GST P1-1 with a calculated IC(50) of 32.9±0.5μM. Interestingly, the inhibition of GST P1-1 and its cysteine mutants by the gold(I) compound is essentially the same, suggesting that probably the cysteine residues are not so essential for enzyme inactivation in contrast to other reported inhibitors. High-resolution electrospray ionisation Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR MS) studies allowed characterising the binding of the compound with GST enzymes at a molecular level, confirming that similar gold binding sites may be present in the wild-type protein and its Cys mutants.
Collapse
|
27
|
Erovic BM, Al Habeeb A, Harris L, Goldstein DP, Kim D, Ghazarian D, Irish JC. Identification of novel target proteins in sebaceous gland carcinoma. Head Neck 2012; 35:642-8. [PMID: 22715107 DOI: 10.1002/hed.23021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The aim of this study was to identify new target proteins in sebaceous gland carcinoma. METHODS A tissue microarray containing 115 core biopsies was constructed and stained for proteins involved in carcinogenesis, angiogenesis, inflammation, and cell-to-cell contact. Two investigators independently determined protein expression of all antibodies. RESULTS Vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor alpha and beta (PDGFR-α/-β), epidermal growth factor receptor (EGFR), cyclooxygenase 1 and 2 (Cox-1/-2), myeloid cell leukemia sequence 1 (Mcl-1), matrix metalloproteinase 1 (MMP-1), CD9, Bmi-1, 14-3-3σ, glutathione S-transferase pi (Gstπ), and members of the sonic hedgehog (SHH), AKT, and WNT pathways were significantly overexpressed in sebaceous gland carcinomas. CONCLUSIONS We have demonstrated for the first time that proteins related to angiogenesis, inflammation, and cell proliferation are overexpressed in sebaceous gland carcinomas. These proteins may hold promise as novel therapeutic targets for the treatment of sebaceous gland carcinoma.
Collapse
Affiliation(s)
- Boban M Erovic
- Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 2011; 83:1005-12. [PMID: 22138445 DOI: 10.1016/j.bcp.2011.11.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/24/2022]
Abstract
Chemotherapy is central to the current treatment modality for primary human brain tumors, but despite high-dose and intensive treatment regimens there has been little improvement in patient outcome. The development of tumor chemoresistance has been proposed as a major contributor to this lack of response. While there have been some improvements in our understanding of the molecular mechanisms underlying brain tumor drug resistance over the past decade, the contribution of glutathione (GSH) and the GSH-related enzymes to drug resistance in brain tumors have been largely overlooked. GSH constitutes a major antioxidant defense system in the brain and together with the GSH-related enzymes plays an important role in protecting cells against free radical damage and dictating tumor cell response to adjuvant cancer therapies, including irradiation and chemotherapy. Glutamate cysteine ligase (GCL), glutathione synthetase (GS), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferases (GST), and GSH complex export transporters (GS-X pumps) are major components of the GSH-dependent enzyme system that function in a dynamic cascade to maintain redox homeostasis. In many tumors, the GSH system is often dysregulated, resulting in a more drug resistant phenotype. This is commonly associated with GST-mediated GSH conjugation of various anticancer agents leading to the formation of less toxic GSH-drug complexes, which can be readily exported from the cell. Advances in our understanding of the mechanisms of drug resistance and patient selection based on biomarker profiles will be crucial to adapt therapeutic strategies and improve outcomes for patients with primary malignant brain tumors.
Collapse
Affiliation(s)
- Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, 80045, United States
| | | | | |
Collapse
|
29
|
Pazmiño DM, Rodríguez-Serrano M, Romero-Puertas MC, Archilla-Ruiz A, Del Río LA, Sandalio LM. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. PLANT, CELL & ENVIRONMENT 2011; 34:1874-89. [PMID: 21707656 DOI: 10.1111/j.1365-3040.2011.02383.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work the differential response of adult and young leaves from pea (Pisum sativum L.) plants to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) (23 mm) applied by foliar spraying was investigated. The concentration of 2,4-D (23 mm) and the time of treatment (72 h) were previously optimized in order to visualize its toxic effects on pea plants. Under these conditions, the herbicide induced severe disturbances in mesophyll cells structure and proliferation of vascular tissue in young leaves and increased acyl-CoA oxidase (ACX), xanthine oxidase (XOD) and lipoxygenase (LOX) activities in young leaves, and only ACX and LOX in adult leaves. This situation produced reactive oxygen species (ROS) over-accumulation favoured by the absence of significant changes in the enzymatic antioxidants, giving rise to oxidative damages to proteins and membrane lipids. An increase of ethylene took place in both young and adult leaves and the induction of genes encoding the stress proteins, PRP4A and HSP 71,2, was observed mainly in young leaves. These results suggest that ROS overproduction is a key factor in the effect of high concentrations of 2,4-D, and ROS can trigger a differential response in young and adult leaves, either epinasty development in young leaves or senescence processes in adult tissues.
Collapse
Affiliation(s)
- Diana M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Tew KD, Townsend DM. Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 2011; 43:179-93. [PMID: 21351850 DOI: 10.3109/03602532.2011.552912] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glutathione S-transferase P1-1 (GSTP) is one member of the family of GSTs and is ubiquitously expressed in human tissues. The literature is replete with reports of high levels of GSTP linked either with cancer incidence or drug resistance, and yet no entirely cogent explanation for these correlations exists. The catalytic detoxification properties of the GST isozyme family have been a primary research focus for the last four decades. However, it has become apparent that they have undergone structural and functional convergence where evolutionary selective pressures have favored the emergence of noncatalytic properties of GSTP that has imbued this isozyme with expanded biological importance. For example, GSTP has now been linked with two cell-signaling functions that are critical to survival. Through protein:protein interactions, GSTP can sequester c-jun N-terminal kinase (JNK) and act as a negative regulator of this stress kinase. Pharmacologically, this activity has been linked with the activity of GSTP inhibitors in stimulating myeloproliferation. In addition, GSTP is linked with the forward S-glutathionylation reaction, a post-translational modification that impacts the function/activity of a number of proteins. Catalytic reversal of S-glutathionylation is well characterized, but the role of GSTP in catalyzing the forward reaction contributes to the "glutathionylation cycle." Moreover, GSTP is itself susceptible to S-glutathionylation, providing an autoregulatory loop for the cycle. Because oxidative stress regulates both S-glutathionylation and JNK-signaling pathways, such links may help to explain the aberrant patterns of GSTP expression in the cancer phenotype. As such, there is an ongoing preclinical and clinical platform of drug discovery and development around GSTP.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-5050, USA.
| | | |
Collapse
|