1
|
Canfora I, Pierno S. Hypertriglyceridemia Therapy: Past, Present and Future Perspectives. Int J Mol Sci 2024; 25:9727. [PMID: 39273674 PMCID: PMC11395432 DOI: 10.3390/ijms25179727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Hypertriglyceridemia therapy is essential for preventing cardiovascular diseases. Fibrates belong to an important class of lipid-lowering drugs useful for the management of dyslipidaemia. By acting on the peroxisome proliferator-activated receptor (PPAR)-α, these drugs lower serum triglyceride levels and raise high-density lipoprotein cholesterol. Fibrate monotherapy is associated with a risk of myopathy and this risk is enhanced when these agents are administered together with statins. However, whereas gemfibrozil can increase plasma concentrations of statins, fenofibrate has less influence on the pharmacokinetics of statins. Pemafibrate is a new PPAR-α-selective drug considered for therapy, and clinical trials are ongoing. Apart from this class of drugs, new therapies have emerged with different mechanisms of action to reduce triglycerides and the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
2
|
Schattenberg JM, Pares A, Kowdley KV, Heneghan MA, Caldwell S, Pratt D, Bonder A, Hirschfield GM, Levy C, Vierling J, Jones D, Tailleux A, Staels B, Megnien S, Hanf R, Magrez D, Birman P, Luketic V. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J Hepatol 2021; 74:1344-1354. [PMID: 33484775 DOI: 10.1016/j.jhep.2021.01.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Patients with primary biliary cholangitis (PBC) who have an incomplete response to ursodeoxycholic acid remain at risk of disease progression. We investigated the safety and efficacy of elafibranor, a dual PPARα/δ agonist, in patients with PBC. METHODS This 12-week, double-blind phase II trial enrolled 45 adults with PBC who had incomplete response to ursodeoxycholic acid (alkaline phosphatase levels ≥1.67-fold the upper limit of normal (ULN). Patients were randomly assigned to elafibranor 80 mg, elafibranor 120 mg or placebo. The primary endpoint was the relative change of ALP at 12 weeks (NCT03124108). RESULTS At 12 weeks, ALP was reduced by -48.3±14.8% in the elafibranor 80 mg group (p <0.001 vs. placebo) and by -40.6±17.4% in the elafibranor 120 mg group (p <0.001) compared to a +3.2±14.8% increase in the placebo group. The composite endpoint of ALP ≤1.67-fold the ULN, decrease of ALP >15% and total bilirubin below the ULN was achieved in 67% patients in the elafibranor 80 mg group and 79% patients in the elafibranor 120 mg group, vs. 6.7% patients in the placebo group. Levels of gamma-glutamyltransferase decreased by 37.0±25.5% in the elafibranor 80 mg group (p <0.001) and 40.0±24.1% in the elafibranor 120 mg group (p <0.01) compared to no change (+0.2±26.0%) in the placebo group. Levels of disease markers such as IgM, 5'-nucleotidase or high-sensitivity C-reactive protein were likewise reduced by elafibranor. Pruritus was not induced or exacerbated by elafibranor and patients with pruritus at baseline reported less pruritic symptoms at the end of treatment. All possibly drug-related non-serious adverse events were mild to moderate. CONCLUSION In this randomized phase II trial, elafibranor was generally safe and well tolerated and significantly reduced levels of ALP, composite endpoints of bilirubin and ALP, as well as other markers of disease activity in patients with PBC and an incomplete response to ursodeoxycholic acid. LAY SUMMARY Patients with primary biliary cholangitis (a rare chronic liver disease) that do not respond to standard therapy remain at risk of disease progression toward cirrhosis and impaired quality of life. Elafibranor is a nuclear receptor agonist that we tested in a randomized clinical trial over 12 weeks. It successfully decreased levels of disease activity markers, including alkaline phosphatase. Thus, this study is the foundation for a larger prospective study that will determine the efficacy and safety of this drug as a second-line therapy. CLINICAL TRIAL REGISTRATION NUMBER Clinical Trials.gov NCT03124108.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Germany.
| | - Albert Pares
- Hospital Clinic, University of Barcelona, CIBERehd, IDIBAPS, Barcelona, Spain
| | | | - Michael A Heneghan
- Institute of Liver Studies, Kings College Hospital, London, United Kingdom
| | | | - Daniel Pratt
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alan Bonder
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Cynthia Levy
- Division of Hepatology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - David Jones
- Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Anne Tailleux
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Remy Hanf
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - David Magrez
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - Pascal Birman
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - Velimir Luketic
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
3
|
Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021; 22:5654. [PMID: 34073503 PMCID: PMC8198905 DOI: 10.3390/ijms22115654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| |
Collapse
|
4
|
Camerino GM, Tarantino N, Canfora I, De Bellis M, Musumeci O, Pierno S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int J Mol Sci 2021; 22:ijms22042070. [PMID: 33669797 PMCID: PMC7921957 DOI: 10.3390/ijms22042070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Nancy Tarantino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
- Correspondence:
| |
Collapse
|
5
|
The association of GATM polymorphism with statin-induced myopathy: a systematic review and meta-analysis. Eur J Clin Pharmacol 2020; 77:349-357. [PMID: 33051696 PMCID: PMC7867530 DOI: 10.1007/s00228-020-03019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 10/27/2022]
Abstract
PURPOSE Statin-induced myopathy (SIM) is the commonest reason for discontinuation of statin therapy. The aim of this present meta-analysis is to assess the relationship between glycine amidinotransferase gene (GATM) polymorphism and risk of SIM. METHODS MEDLINE, EMBASE, Web of Science, and Cochrane Library databases were searched systematically for case-control studies investigating the relationship between GATM polymorphism and SIM. Retrieved articles were carefully reviewed and assessed according to the inclusion criteria. Associations were assessed in pooled data by calculating odds ratio with 95% confidence intervals. Subgroup analysis was performed according to comedications and severity of SIM. RESULTS Six studies with 707 cases and 2321 controls were included in this meta-analysis. GATM rs9806699 G>A was associated with decreased risk of SIM (OR = 0.80, 95% CI 0.68-0.94, P = 0.006). This association remained significant in the subgroup with fibrates or niacin excluded. However, the association of rs9806699 G>A with severe SIM was not significant. In addition, another two variations at GATM, rs1719247 C>T, and rs1346268 T>C were also associated with declined risk of SIM. CONCLUSIONS GATM polymorphism including rs9806699 G>A, rs1719247 C>T, and rs1346268 T>C may be protective factors of SIM. GATM rs9806699 G>A may only exert protective effect on mild SIM cases. Our meta-analysis indicates that GATM polymorphism may represent a pharmacogenomics biomarker for predicting incidence of SIM, which contributes to risk stratification and optimizing statin adherence.
Collapse
|
6
|
Leo TK, Garba S, Abubakar D, Sazili AQ, Candyrine SCL, Jahromi MF, Goh YM, Ronimus R, Muetzel S, Liang JB. Naturally Produced Lovastatin Modifies the Histology and Proteome Profile of Goat Skeletal Muscle. Animals (Basel) 2019; 10:ani10010072. [PMID: 31906061 PMCID: PMC7022420 DOI: 10.3390/ani10010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Enteric methane formation in ruminants is one of the major contributors to climate change. Among the potential strategies, the supplementation of naturally produced lovastatin has been reported as one of the promising approaches for the mitigation of methane emissions. Nevertheless, statins have been associated with the development of muscle-related adverse effects which could affect the health and wellbeing of the animals. We have reported previously that supplementation of naturally produced lovastatin at 2 and 4 mg/kg body weight (BW), reduced methane emissions in goats without adversely affecting rumen fermentation and animal performance, except at higher level of lovastatin (6 mg/kg BW). However, the effects of lovastatin on the skeletal muscle in goats and the associated mechanisms have not been studied. Hence, the present study aimed to examine the effects of lovastatin on the histology of the goat skeletal muscle from the above study and to further elucidate the related underlying biochemistry processes. Histology analysis observed marked degeneration in the longissimus thoracis et lumborum muscle of goats supplemented with 6 mg lovastatin/kg BW. Our preliminary label-free proteomics analysis identified approximately 400 proteins in total, a number of which were differentially expressed, which are involved in energy metabolism and may have contributed to the observed skeletal muscle damage above 4 mg/kg BW. Abstract This study was conducted to examine the effects of different levels of lovastatin on the histological and sarcoplasmic proteome profile of goat skeletal muscle. A total of 20 intact male Saanen goats were randomly assigned in equal numbers to four groups and fed a total mixed ration containing 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated palm kernel cake (PKC) to achieve the target daily intake levels of 0 (Control), 2 (Low), 4 (Medium) or 6 (High) mg lovastatin/kg BW. A histological examination discovered that the longissimus thoracis et lumborum muscle of animals from the Medium and High treatment groups showed abnormalities in terms of necrosis, degeneration, interstitial space and vacuolization. Our preliminary label-free proteomics analysis demonstrates that lovastatin supplementation induced complex modifications to the protein expression patterns of the skeletal muscle of the goat which were associated with the metabolism of carbohydrate and creatine, cell growth and development processes and other metabolic processes. The changes in these biochemical processes indicate perturbations in energy metabolism, which could play a major role in the development of myopathy. In conclusion, the present study suggests that supplementation of naturally produced lovastatin above 4 mg/kg BW could adversely affecting the health and wellbeing of treated animals.
Collapse
Affiliation(s)
- Teik Kee Leo
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.K.L.); (S.G.); (A.Q.S.); (Y.M.G.)
| | - Sani Garba
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.K.L.); (S.G.); (A.Q.S.); (Y.M.G.)
| | - Danmaigoro Abubakar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.K.L.); (S.G.); (A.Q.S.); (Y.M.G.)
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Su Chui Len Candyrine
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90000, Malaysia;
| | | | - Yong Meng Goh
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.K.L.); (S.G.); (A.Q.S.); (Y.M.G.)
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ron Ronimus
- Rumen Microbiology, AgResearch, Palmerston North 4442, New Zealand; (R.R.); (S.M.)
| | - Stefan Muetzel
- Rumen Microbiology, AgResearch, Palmerston North 4442, New Zealand; (R.R.); (S.M.)
| | - Juan Boo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.K.L.); (S.G.); (A.Q.S.); (Y.M.G.)
- Correspondence:
| |
Collapse
|
7
|
Effects of naturally-produced lovastatin on carcass characteristics, muscle physico-chemical properties and lipid oxidation and cholesterol content in goats. Meat Sci 2019; 154:61-68. [PMID: 31004941 DOI: 10.1016/j.meatsci.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/01/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
This study investigated the carcass characteristics, physico-chemical properties, storage stability and cholesterol content of meat from goats fed with different levels of naturally-produced lovastatin used to mitigate enteric methane production. Twenty intact Saanen male goats of 5-6 months old with initial live weight of 25.8 ± 4.0 kg were randomly allotted into four dietary treatments containing 0 (Control), 2 (Low), 4 (Medium) and 6 mg (High) per kg live weight (LW) of naturally-produced lovastatin for 12 consecutive weeks. No differences were found in all the parameters measured except for full LW, hot and cold carcass weight, shear force, color and cholesterol content among the treatment groups. Aging had significant effects on all the parameters measured in this study except a* (redness) of meat. Meat samples in the Medium and High treatments were of higher lightness and yellowness, more tender and lower cholesterol levels. We conclude that, in addition to mitigate enteric methane emissions, dietary supplementation of naturally-produced lovastatin at 4 mg/kg LW could be a feasible feeding strategy to produce tender meat containing lower cholesterol.
Collapse
|
8
|
Validation of a clinically-relevant rodent model of statin-associated muscle symptoms for use in pharmacological studies. Toxicol Appl Pharmacol 2018; 360:78-87. [PMID: 30268577 DOI: 10.1016/j.taap.2018.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/08/2018] [Accepted: 09/26/2018] [Indexed: 12/28/2022]
Abstract
Various rodent models of statin-associated muscle symptoms (SAMS) have been used to investigate the aetiology of statin myotoxicity. Variability between these models, however, may be contributing to the ambiguity currently surrounding the pathogenesis of SAMS. Furthermore, few studies have assessed the reproducibility of these models. The aim of this study was to compare two established rodent models of statin myotoxicity, differing in treatment duration and dose, to determine which reproducibly caused changes characteristic of SAMS. Isolated skeletal muscle organ bath experiments, biochemical analyses, real-time quantitative-PCR and biometric assessments were used to compare changes in skeletal muscle and renal integrity in statin-treated animals and time-matched control groups. The SIM80 model (80 mg kg-1 day-1 simvastatin for 14 days) produced fibre-selective skeletal muscle damage characteristic of SAMS. Indeed, fast-twitch gastrocnemius muscles showed increased Atrogin-1 expression, reduced peak force of contraction and decreased Myh2 expression while slow-twitch soleus muscles were unaffected. Contrastingly, the SIM50 model (50 mg kg-1 day-1 simvastatin for 30 days) produced little evidence of significant skeletal muscle damage. Neither statin treatment protocol caused significant pathological changes to the kidney. The results of this study indicate that the SIM80 model induces a type of SAMS in rodents that resembles the presentation of statin-induced myalgia in humans. The findings support that the SIM80 model is reproducible and can thus be reliably used as a platform to assess the aetiology and treatment of this condition.
Collapse
|
9
|
Camerino GM, Musumeci O, Conte E, Musaraj K, Fonzino A, Barca E, Marino M, Rodolico C, Tricarico D, Camerino C, Carratù MR, Desaphy JF, De Luca A, Toscano A, Pierno S. Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Front Pharmacol 2017; 8:500. [PMID: 28798690 PMCID: PMC5529355 DOI: 10.3389/fphar.2017.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
Statin therapy may induce skeletal muscle damage ranging from myalgia to severe rhabdomyolysis. Our previous preclinical studies showed that statin treatment in rats involves the reduction of skeletal muscle ClC-1 chloride channel expression and related chloride conductance (gCl). An increase of the activity of protein kinase C theta (PKC theta) isoform, able to inactivate ClC-1, may contribute to destabilize sarcolemma excitability. These effects can be detrimental for muscle function leading to drug-induced myopathy. Our goal is to study the causes of statin-induced muscle side effects in patients at the aim to identify biological markers useful to prevent and counteract statin-induced muscle damage. We examined 10 patients, who experienced myalgia and hyper-CK-emia after starting statin therapy compared to 9 non-myopathic subjects not using lipid-lowering drugs. Western Blot (WB) analysis showed a 40% reduction of ClC-1 protein and increased expression of phosphorylated PKC in muscle biopsies of statin-treated patients with respect to untreated subjects, independently from their age and statin type. Real-time PCR analysis showed that despite reduction of the protein, the ClC-1 mRNA was not significantly changed, suggesting post-transcriptional modification. The mRNA expression of a series of genes was also evaluated. MuRF-1 was increased in accord with muscle atrophy, MEF-2, calcineurin (CN) and GLUT-4 transporter were reduced, suggesting altered transcription, alteration of glucose homeostasis and energy deficit. Accordingly, the phosphorylated form of AMPK, measured by WB, was increased, suggesting cytoprotective process activation. In parallel, mRNA expression of Notch-1, involved in muscle cell proliferation, was highly expressed in statin-treated patients, indicating active regeneration. Also, PGC-1-alpha and isocitrate-dehydrogenase increased expression together with increased activity of mitochondrial citrate-synthase, measured by spectrophotometric assay, suggests mitochondrial biogenesis. Thus, the reduction of ClC-1 protein and consequent sarcolemma hyperexcitability together with energy deficiency appear to be among the most important alterations to be associated with statin-related risk of myopathy in humans. Thus, it may be important to avoid statin treatment in pathologies characterized by energy deficit and chloride channel malfunction. This study validates the measure of ClC-1 expression as a reliable clinical test for assessing statin-dependent risk of myopathy.
Collapse
Affiliation(s)
- Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Kejla Musaraj
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Emanuele Barca
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Marco Marino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Maria R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical SchoolBari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy
| |
Collapse
|
10
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|
11
|
Oliveira LP, Vieira CP, Marques PP, Pimentel ER. Do different tendons exhibit the same response following chronic exposure to statins? Can J Physiol Pharmacol 2017; 95:333-339. [PMID: 28112540 DOI: 10.1139/cjpp-2016-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past few years, a number of cases of tendon injuries associated with statin therapy have been reported. In this study, we assessed whether statins can affect the extracellular matrix (ECM) of the deep digital flexor tendon (DDFT) and patellar tendon (PT). Wistar rats were assigned to groups treated with atorvastatin (A20, A80), treated with simvastatin (S20, S80), and control. Zymography, Western blotting for collagen I, non-collagenous proteins (NCP), glycosaminoglycans (GAGs), and hydroxyproline quantifications were performed. DDFT findings: NCP were increased in A20 and A80; higher concentration of hydroxyproline was found in S80; levels of GAGs was increased in all statin-treated groups; collagen I was increased in S80 and pro-MMP-2 activity was reduced in A80, S20, and S80. PT findings: NCP were reduced in A20, A80, and S80; GAGs was reduced in A80 and S20; collagen I was increased in A20 and pro-MMP-2 activity was reduced in the S20. Both the statins provoked marked changes in both tendons. All these changes may make the tendons more prone to microdamage and ruptures. Therefore, a better understanding of the behavior of the tendon ECM components under statin therapy may provide important insights into the mechanisms behind statin-induced tendon injuries.
Collapse
Affiliation(s)
- L P Oliveira
- a Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - C P Vieira
- b Department of Pharmacology, Medical Sciences College, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - P P Marques
- c Department of Biochemistry, Federal University of Alfenas - Unifal, Alfenas, MG, Brazil
| | - E R Pimentel
- a Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
12
|
Zhu J, Xu K, Zhang X, Cao J, Jia Z, Yang R, Ma C, Chen C, Zhang T, Yan Z. Studies on the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in Valeriana jatamansi Jones. Biomed Pharmacother 2016; 84:1891-1898. [PMID: 27832992 DOI: 10.1016/j.biopha.2016.10.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/27/2022] Open
Abstract
Valeriana jatamansi Jones, a plant with heart-shaped leaves in the Valeriana genus of Valerianaceae, is widely used in Chinese folk medicine. Iridoid is an important constituent of V. jatamansi that contributes to the pharmacological efficacy of the herb. This study aims to investigate the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in V. jatamansi (IRFV). A high fat diet was used to establish the hyperlipidemia rat model, with 2mg/kg/d of simvastatin as a positive control, fed with 7.5, 15, and 30mg/kg/d of IRFV for 20days to investigate the lipid regulation activity and mechanism of IRFV. Body weight, liver index, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and liver, as well as total bile acid (TBA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were measured. The lipoprotein lipase (LPL) and hepatic lipase (HL) activities and the apoprotein A5 (ApoA5), peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding proteins (SREBP-1c), and liver X receptor α (LXR-α) protein expressions were observed. Liver pathology was described through hematoxylin-eosin (HE) staining. Compared with the model group, three different IRFV dosages can slow down the weight gain of rats, reduce the contents of TG, and increase the contents of HDL-C in serum. Low IRFV dosage can significantly reduce the AST and ALT contents in serum, liver index, and the TG contents in liver, enhance LPL activity. Medium IRFV dosage can significantly decrease the TG and LDL-C contents in liver. High IRFV dosage can significantly reduce LDL-C, TBA, AST, and ALT contents in serum, and enhance HL activity. Three different IRFV dosages can significantly increase the ApoA5 and PPAR-α protein expression and decrease the SREBP-1c protein expression. Furthermore, the LXR-α protein expression decreased in low- and high-dose groups. Liver tissue pathological observation showed that IRFV can improve cell degeneration to a certain extent. These results strongly suggest that IRFV play significant roles in regulating lipid metabolism, the mechanism may be related to the increased ApoA5 protein expression.
Collapse
Affiliation(s)
- Jiali Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Keke Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xuemei Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiahong Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanrong Jia
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ruocong Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chaoying Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Tiane Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine,Chengdu 611137, PR China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
13
|
Camerino GM, De Bellis M, Conte E, Liantonio A, Musaraj K, Cannone M, Fonzino A, Giustino A, De Luca A, Romano R, Camerino C, Laghezza A, Loiodice F, Desaphy JF, Conte Camerino D, Pierno S. Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin. Toxicol Appl Pharmacol 2016; 306:36-46. [PMID: 27377005 DOI: 10.1016/j.taap.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023]
Abstract
Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Kejla Musaraj
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari - Aldo Moro, Medical School, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Rossella Romano
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Claudia Camerino
- Department of Medical Sciences, Neurosciences and Sense Organs, University of Bari - Aldo Moro, Bari, Italy
| | - Antonio Laghezza
- Section of Medicinal Chemistry, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Fulvio Loiodice
- Section of Medicinal Chemistry, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari - Aldo Moro, Medical School, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy.
| |
Collapse
|
14
|
Statin therapy and plasma coenzyme Q10 concentrations--A systematic review and meta-analysis of placebo-controlled trials. Pharmacol Res 2015; 99:329-36. [PMID: 26192349 DOI: 10.1016/j.phrs.2015.07.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Statin therapy may lower plasma coenzyme Q10 (CoQ10) concentrations, but the evidence as to the significance of this effect is unclear. We assessed the impact of statin therapy on plasma CoQ10 concentrations through the meta-analysis of available RCTs. The literature search included selected databases up to April 30, 2015. The meta-analysis was performed using either a fixed-effects or random-effect model according to I(2) statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The data from 8 placebo-controlled treatment arms suggested a significant reduction in plasma CoQ10 concentrations following treatment with statins (WMD: -0.44 μmol/L, 95%CI: -0.52, -0.37, p<0.001). The pooled effect size was robust and remained significant in the leave-one-out sensitivity analysis. Subgroup analysis suggested that the impact of statins on plasma CoQ10 concentrations is significant for all 4 types of statins studied i.e. atorvastatin (WMD: -0.41 μmol/L, 95%CI: -0.53, -0.29, p<0.001), simvastatin (WMD: -0.47 μmol/L, 95% CI: -0.61, -0.33, p<0.001), rosuvastatin (WMD: -0.49 μmol/L, 95%CI: -0.67, -0.31, p<0.001) and pravastatin (WMD: -0.43 μmol/L, 95%CI: -0.69, -0.16, p=0.001). Likewise, there was no differential effect of lipophilic (WMD: -0.43 μmol/L, 95%CI: -0.53, -0.34, p<0.001) and hydrophilic statins (WMD: -0.47 μmol/L, 95%CI: -0.62, -0.32, p<0.001). With respect to treatment duration, a significant effect was observed in both subsets of trials lasting <12 weeks (WMD: -0.51 μmol/L, 95%CI: -0.64, -0.39, p<0.001) and ≥12 weeks (WMD: -0.40 μmol/L, 95%CI: -0.50, -0.30, p<0.001). The meta-analysis showed a significant reduction in plasma CoQ10 concentrations following treatment with statins. Further well-designed trials are required to confirm our findings and elucidate their clinical relevance.
Collapse
|
15
|
Camerino GM, Desaphy JF, De Bellis M, Capogrosso RF, Cozzoli A, Dinardo MM, Caloiero R, Musaraj K, Fonzino A, Conte E, Jagerschmidt C, Namour F, Liantonio A, De Luca A, Conte Camerino D, Pierno S. Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation. PLoS One 2015; 10:e0129686. [PMID: 26066046 PMCID: PMC4466268 DOI: 10.1371/journal.pone.0129686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 11/29/2022] Open
Abstract
Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Maria Maddalena Dinardo
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Caloiero
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Kejla Musaraj
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | | | - Antonella Liantonio
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Dept. of Pharmacy & Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
- * E-mail:
| |
Collapse
|
16
|
Bonfim MR, Oliveira ASB, do Amaral SL, Monteiro HL. Treatment of dyslipidemia with statins and physical exercises: recent findings of skeletal muscle responses. Arq Bras Cardiol 2015; 104:324-31. [PMID: 25993596 PMCID: PMC4415869 DOI: 10.5935/abc.20150005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords "statin" AND "exercise" AND "muscle", restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.
Collapse
Affiliation(s)
- Mariana Rotta Bonfim
- Programa de Pós-Graduação em Ciências da
Motricidade, Instituto de Biociências, Universidade Estadual Paulista
“Júlio de Mesquita Filho” (UNESP), Rio Claro, SP – Brazil
| | - Acary Souza Bulle Oliveira
- Setor de Doenças Neuromusculares, Escola Paulista de Medicina,
Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brazil
| | - Sandra Lia do Amaral
- Departamento de Educação Física, Faculdade de
Ciências, UNESP, Bauru, SP – Brazil
| | | |
Collapse
|
17
|
Simsek Ozek N, Bal IB, Sara Y, Onur R, Severcan F. Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles. Biochim Biophys Acta Gen Subj 2014; 1840:406-15. [DOI: 10.1016/j.bbagen.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/20/2013] [Accepted: 09/06/2013] [Indexed: 01/05/2023]
|
18
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
19
|
de Oliveira LP, Vieira CP, Da Ré Guerra F, de Almeida MDS, Pimentel ER. Statins induce biochemical changes in the Achilles tendon after chronic treatment. Toxicology 2013; 311:162-8. [PMID: 23831763 DOI: 10.1016/j.tox.2013.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Statins have been widely prescribed as lipid-lowering drugs and are associated with tendon rupture. Therefore, this study aimed to evaluate the possible biochemical changes in the Achilles tendon of rats after chronic treatment with statins. Dosages of statins were calculated using allometric scaling with reference to the 80mg/day and 20mg/day, doses recommended for humans. The rats were divided into the following groups: treated with simvastatin (S-20 and S-80), treated with atorvastatin (A-20 and A-80), and the control group that received no treatment (C). Measurements of low-density lipoprotein (LDL) in the plasma were performed. The levels of non-collagenous proteins, glycosaminoglycans (GAGs) and hydroxyproline were quantified. Western blotting for collagen I was performed, and the presence of metalloproteinases (MMPs)-2 and -9 was investigated through zymography. The concentration of non-collagenous proteins in S-20 was less than the C group. There was a significant increase in pro-MMP-2 activity in A-80 group and in active MMP-2 in S-20 group compared to the C group. A significant increase in latent MMP-9 activity was observed in both the A-80 and S-20 groups when compared to C group. In the A-20 group, there was a lower amount of collagen I in relation to C group. In addition, a higher concentration of hydroxyproline was found in the S-20 group than the C group. The analysis of GAGs showed a significant increase in the A-20 group when compared to C group. The treatment induced remarkable alterations in the Achilles tendon and the response of the tissue seems to depend of the used statin dosage. The presence of MMP-2 and MMP-9 is evidence of the degradation and remodeling processes in the extracellular matrix of the tendons. Our results show that statins induce imbalance of extracellular matrix components and possibly induce microdamage in tendons.
Collapse
Affiliation(s)
- Letícia Prado de Oliveira
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Stringer HAJ, Sohi GK, Maguire JA, Côté HCF. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci 2013; 325:142-7. [PMID: 23312852 DOI: 10.1016/j.jns.2012.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 01/01/2023]
Abstract
Statins are widely used to treat hyperlipidemia and lower cardiovascular disease risk. While statins are generally well tolerated, some patients experience statin-induced myopathy (SIM). Statin treatment has been associated with mitochondrial dysfunction and mitochondrial DNA (mtDNA) depletion. In this retrospective study, skeletal muscle biopsies from patients diagnosed with SIM were studied. These were compared with biopsies from patients clinically assessed as having statin-unrelated myopathy but whose biopsy showed no or negligible pathology. For each biopsy sample, mtDNA was quantified relative to nuclear DNA (mtDNA content) by qPCR, mtDNA deletions were investigated by long-template PCR followed by gel densitometry, and mtDNA oxidative damage was quantified using a qPCR-based assay. For a subset of matched samples, mtDNA heteroplasmy and mutations were investigated by cloning/sequencing. Skeletal muscle mtDNA content was significantly lower in SIM patients (N=23, mean±SD, 2036±1146) than in comparators (N=24, 3220±1594), p=0.006. There was no difference in mtDNA deletion score or oxidative mtDNA damage between the two groups, and no evidence of increased mtDNA heteroplasmy or somatic mutations was detected. The significant difference in skeletal muscle mtDNA suggests that SIM or statin treatments are associated with depletion of skeletal muscle mtDNA or that patients with an underlying predisposition to SIM have lower mtDNA levels. If statins induce mtDNA depletion, this would likely reflect decreased mitochondria biogenesis and/or increased mitochondria autophagy. Further work is necessary to distinguish between the lower mtDNA as a predisposition to SIM or an effect of SIM or statin treatment.
Collapse
Affiliation(s)
- Henry A J Stringer
- University of British Columbia, Department of Pathology & Laboratory Medicine, G227-2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T2B5.
| | | | | | | |
Collapse
|
21
|
D'Antona G, Mascaro A, Monopoli A, Miglietta D, Ongini E, Bottinelli R. Nitric oxide prevents atorvastatin-induced skeletal muscle dysfunction and alterations in mice. Muscle Nerve 2012; 47:72-80. [PMID: 23042511 DOI: 10.1002/mus.23465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2012] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Myopathy is the most common side effect of statins. Because nitric oxide (NO) has a key role in regulating skeletal muscle function, we studied whether the NO-donating atorvastatin NCX 6560 could show a better profile on skeletal muscle function and structure compared with atorvastatin. METHODS C57BL/6 mice received atorvastatin 40 mg/kg/day or an equivalent dose of NCX 6560 for 2 months. Muscle function assessed by treadmill test, serum creatine kinase (CK) activity, citrate synthase (CS) activity, and muscle histology were evaluated. RESULTS Atorvastatin significantly (P < 0.001) reduced muscle endurance, increased serum CK by 6-fold, and induced muscle fiber atrophy. Conversely, NCX 6560 preserved muscle function, prevented CK increase and did not modify muscle structure. Interestingly, atorvastatin reduced CS activity, a marker for mitochondrial function, in gastrocnemius, diaphragm, and heart, whereas NCX 6560 prevented such decrease. CONCLUSIONS These findings suggest that NO may prevent statin-induced myopathy.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Strauss V, Mellert W, Wiemer J, Leibold E, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Increased toxicity when fibrates and statins are administered in combination – A metabolomics approach with rats. Toxicol Lett 2012; 211:187-200. [DOI: 10.1016/j.toxlet.2012.03.798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|