1
|
Wan M, Yu H, Zhai H. Suppression of JAK2/STAT3 Pathway by Notoginsenoside R1 Reduces Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01136-3. [PMID: 38565774 DOI: 10.1007/s12033-024-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
It has bene reported that a novel saponin-notoginsenoside R1 (NGR1) possesses strong anti-tumor activities. This study aimed to investigate the role and mechanism of NGR1 in non-small cell lung cancer (NSCLC). NSCLC cell viability, proliferation, migration, and invasiveness were assessed using the ex vivo assays. NSCLC xenograft mouse models were constructed to confirm the role of NGR1 in vivo. Epithelial-mesenchymal transition (EMT)-related proteins and key markers in the JAK2/STAT3 pathway were examined using immunoblotting and immunohistochemistry analyses. NGR1 treatment suppressed NSCLC cell growth ex vivo and in vivo. It also decreased the migratory and invasive capacities of NSCLC cells. Additionally, NGR1 increased E-cadherin expression and reduced N-cadherin, vimentin, and snail expression in TGF-β1-treated NSCLC cells and xenograft tumors. JAK2/STAT3 pathway was inhibited by NGR1. Moreover, a specific inhibitor of JAK2, AG490, or STAT3 silencing significantly enhanced the effects of NGR1 against the EMT process in NSCLC cells. NGR1 restrains EMT process in NSCLC by inactivating JAK2/STAT3 signaling, suggesting the potential of NGR1 in anti-NSCLC therapy.
Collapse
Affiliation(s)
- Min Wan
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Hong Yu
- Department of Medical Laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Haoqing Zhai
- Department of Oncology Hematology, Qianjiang Central Hospital, No.22 Zhanghua Road, Qianjiang, 433100, Hubei, China.
| |
Collapse
|
2
|
Xu J, Chen C, Sun K, Shi Q, Wang B, Huang Y, Ren T, Tang X. Tocilizumab (monoclonal anti-IL-6R antibody) reverses anlotinib resistance in osteosarcoma. Front Oncol 2023; 13:1192472. [PMID: 37404767 PMCID: PMC10315670 DOI: 10.3389/fonc.2023.1192472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Anlotinib, a tyrosine kinase inhibitor (TKI) has been in clinical application to inhibit malignant cell growth and lung metastasis in osteosarcoma (OS). However, a variety of drug resistance phenomena have been observed in the treatment. We aim to explore the new target to reverse anlotinib resistance in OS. Materials and Methods In this study, we established four OS anlotinib-resistant cell lines, and RNA-sequence was performed to evaluate differentially expressed genes. We verified the results of RNA-sequence by PCR, western blot and ELISA assay. We further explored the effects of tocilizumab (anti- IL-6 receptor), either alone or in combined with anlotinib, on the inhibition of anlotinib-resistant OS cells malignant viability by CCK8, EDU, colony formation, apoptosis, transwell, wound healing, Cytoskeletal stain assays, and xenograft nude mouse model. The expression of IL-6 in 104 osteosarcoma samples was tested by IHC. Results We found IL-6 and its downstream pathway STAT3 were activated in anlotinib-resistant osteosarcoma. Tocilizumab impaired the tumor progression of anlotinib-resistant OS cells, and combined treatment with anlotinib augmented these effects by inhibiting STAT3 expressions. IL-6 was highly expressed in patients with OS and correlated with poor prognosis. Conclusion Tocilizumab could reverse anlotinib resistance in OS by IL-6/STAT3 pathway and the combination treatment with anlotinib rationalized further studies and clinical treatment of OS.
Collapse
Affiliation(s)
- Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Chenglong Chen
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
3
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
4
|
de Groot J, Ott M, Wei J, Kassab C, Fang D, Najem H, O'Brien B, Weathers SP, Matsouka CK, Majd NK, Harrison RA, Fuller GN, Huse JT, Long JP, Sawaya R, Rao G, MacDonald TJ, Priebe W, DeCuypere M, Heimberger AB. A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncol 2022; 11:CNS87. [PMID: 35575067 PMCID: PMC9134932 DOI: 10.2217/cns-2022-0005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Aim: To ascertain the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066 and p-STAT3 target engagement within recurrent glioblastoma (GBM) patients. Patients & methods: In a first-in-human open-label, single-center, single-arm 3 + 3 design Phase I clinical trial, eight patients were treated with WP1066 until disease progression or unacceptable toxicities. Results: In the absence of significant toxicity, the MFD was identified to be 8 mg/kg. The most common adverse event was grade 1 nausea and diarrhea in 50% of patients. No treatment-related deaths occurred; 6 of 8 patients died from disease progression and one was lost to follow-up. Of 8 patients with radiographic follow-up, all had progressive disease. The longest response duration exceeded 3.25 months. The median progression-free survival (PFS) time was 2.3 months (95% CI: 1.7 months-NA months), and 6-month PFS (PFS6) rate was 0%. The median overall survival (OS) rate was 25 months (95% CI: 22.5 months-NA months), with an estimated 1-year OS rate of 100%. Pharmacokinetic (PK) data demonstrated that at 8 mg/kg, the T1/2 was 2-3 h with a dose dependent increase in the Cmax. Immune monitoring of the peripheral blood demonstrated that there was p-STAT3 suppression starting at a dose of 1 mg/kg. Conclusion: Immune analyses indicated that WP1066 inhibited systemic immune p-STAT3. WP1066 had an MFD identified at 8 mg/kg which is the target allometric dose based on prior preclinical modeling in combination with radiation therapy and a Phase II study is being planned for newly diagnosed MGMT promoter unmethylated glioblastoma patients.
Collapse
Affiliation(s)
- John de Groot
- Departments of Neurology & Neurosurgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cynthia Kassab
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Carlos Kamiya Matsouka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jason T Huse
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA 30322, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Michael DeCuypere
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
- Department of Neurological Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Zhang Y, Ma P, Duan Z, Liu Y, Mi Y, Fan D. Ginsenoside Rh4 Suppressed Metastasis of Lung Adenocarcinoma via Inhibiting JAK2/STAT3 Signaling. Int J Mol Sci 2022; 23:ijms23042018. [PMID: 35216134 PMCID: PMC8879721 DOI: 10.3390/ijms23042018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Lung adenocarcinoma (LAC) is a common lung cancer with a high malignancy that urgently needs to be treated with effective drugs. Ginsenoside Rh4 exhibits outstanding antitumor activities. However, few studies reported its effects on growth, metastasis and molecular mechanisms in LAC. Here, Rh4 is certified to show a strong anti-LAC efficiency in vitro and in vivo. Results of flow cytometry and Western blot are obtained to exhibited that Rh4 markedly restrained cellular proliferation and colony formation by arresting the cell cycle in the G1 phase. Results from a wound healing assay and transwell assays demonstrated that Rh4 is active in the antimigration and anti-invasion of LAC. The analysis of Western blot, immunofluorescence and RT-qPCR confirmed that Rh4 reverses the epithelial–mesenchymal transition (EMT) through upregulating the gene expression of E-cadherin and downregulating that of snail, N-cadherin and vimentin. In vivo results from immunohistochemistry show consistent trends with cellular studies. Furthermore, Rh4 suppresses the Janus kinases2/signal transducer and activator of the transcription3 (JAK2/STAT3) signaling pathway stimulated by TGF-β1. Silencing the STAT3 signal or co-treating with AG490 both enhanced the EMT attenuation caused by Rh4, which revealed that Rh4 suppressed EMT via inhibiting the JAK2/STAT3 signaling pathway. These findings explore the capacity and mechanism of Rh4 on the antimetastasis of LAC, providing evidence for Rh4 to LAC therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-8830-5118 (D.F.)
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (Y.Z.); (P.M.); (Z.D.); (Y.L.)
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-8830-5118 (D.F.)
| |
Collapse
|
6
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
7
|
Wang Q, Lu B, Zhang Y, Yu J, Guo J, Zhou Q, Lv H, Sun Y. STAT3 inhibitor BBI608 enhances the antitumor effect of gefitinib on EGFR-mutated non-small cell lung cancer cells. Hum Cell 2021; 34:1855-1865. [PMID: 34370268 DOI: 10.1007/s13577-021-00582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Gefitinib is known as epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) while an increasing number of patients with non-small cell lung cancer (NSCLC) are becoming resistant to EGFR-TKI. Therefore, innovative methods are urgently needed to overcome primary and acquired resistance to EGFR-TKIs in NSCLC patients. The viability of HCC827 cells and HCC827 Ge-resistant (Ge-r) cells treated with gefitinib and/or STAT3 inhibitor and/or Overexpression (Oe)-ROR1 was detected by CCK-8 assay. The colony formation, invasion, migration and apoptosis of HCC827 Ge-r cells treated with gefitinib and/or STAT3 inhibitor and/or Oe-ROR1 transfection were, respectively, detected by clone formation assay, transwell assay, wound healing assay and flow cytometry analysis. The protein expressions of EGFR, STAT3, invasion and migration-related proteins, ROR1/ABCB1/P53 pathway and apoptosis-related proteins were analyzed by Western blot analysis. The transfection effect of Oe-ROR1 in HCC827 Ge-r cells was confirmed by qRT-PCR and Western blot analysis. In vivo animal experiment was used to confirm the role of STAT3 in improving the sensitivity of HCC827 Ge-r cells to gefitinib. As a result, after treatment of gefitinib, the viability of HCC827 cells was lower than that of HCC827 Ge-r cells and the expression of p/t-EGFR and p/t-STAT3 was decreased in HCC827 cells and HCC827 Ge-r cells after treatment of gefitinib. STAT3 inhibitor BBI608 enhanced the ability of gefitinib to inhibit viability, invasion and migration while promoting apoptosis of HCC827 Ge-r cells treated with gefitinib, which was partially reversed by ROR1 overexpression. STAT3 inhibitor further down-regulated the expression of MMP2, MMP9, ROR1, ABCB1 and BCl2, while up-regulated the expression of p53, bax and cleaved caspase3 in HCC827 Ge-r cells treated with gefitinib, which was partially reversed by ROR1 overexpression. In vivo experiment, STAT3 inhibitor further suppressed the size of NSCLC tissues, and further down-regulated the expression of ROR1 and ABCB1 while up-regulated the expression of p53 in NSCLC tissues. In conclusion, STAT3 inhibitor enhanced the antitumor effect of gefitinib on EGFR-mutated NSCLC cells through regulating ROR1/ABCB1/P53 pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Bing Lu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, No. 140, Renmin South Road, Chengxiang Town, Taicang, 215000, Jiangsu, China
| | - Yi Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jing Yu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, No. 140, Renmin South Road, Chengxiang Town, Taicang, 215000, Jiangsu, China
| | - Jie Guo
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Qianchi Zhou
- Department of Health Management, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hong Lv
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, No. 140, Renmin South Road, Chengxiang Town, Taicang, 215000, Jiangsu, China.
| | - Yifeng Sun
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, No. 140, Renmin South Road, Chengxiang Town, Taicang, 215000, Jiangsu, China.
| |
Collapse
|
8
|
A facile one-pot, three component synthesis of a new series of 1,3,4-thiadiazines: Anticancer evaluation and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021; 26:2601. [PMID: 33946916 PMCID: PMC8124695 DOI: 10.3390/molecules26092601] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite enormous progress in the treatment of many malignancies, the development of cancer resistance is still an important reason for cancer chemotherapy failure. Increasing knowledge of cancers' molecular complexity and mechanisms of their resistance to anticancer drugs, as well as extensive clinical experience, indicate that an effective fight against cancer requires a multidimensional approach. Multi-target chemotherapy may be achieved using drugs combination, co-delivery of medicines, or designing hybrid drugs. Hybrid drugs simultaneously targeting many points of signaling networks and various structures within a cancer cell have been extensively explored in recent years. The single hybrid agent can modulate multiple targets involved in cancer cell proliferation, possesses a simpler pharmacokinetic profile to reduce the possibility of drug interactions occurrence, and facilitates the process of drug development. Moreover, a single medication is expected to enhance patient compliance due to a less complicated treatment regimen, as well as a diminished number of adverse reactions and toxicity in comparison to a combination of drugs. As a consequence, many efforts have been made to design hybrid molecules of different chemical structures and functions as a means to circumvent drug resistance. The enormous number of studies in this field encouraged us to review the available literature and present selected research results highlighting the possible role of hybrid drugs in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Andrzej Stanczak
- Department of Community Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland;
| |
Collapse
|
10
|
Tao J, Sun D, Hou H. Role of YES1 amplification in EGFR mutation-positive non-small cell lung cancer: Primary resistance to afatinib in a patient. Thorac Cancer 2020; 11:2736-2739. [PMID: 32744377 PMCID: PMC7471017 DOI: 10.1111/1759-7714.13583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) patients benefit from EGFR tyrosine kinase inhibitors (TKIs), while some patients demonstrate a resistance to EGFR-TKIs. In the case reported here, the NSCLC patient harboring an EGFR-sensitive mutation and YES1 amplification was treated with afatinib as first-line therapy, but was found to have progressive disease four weeks later. During subsequent chemotherapy, this patient's disease progressed rapidly. Mechanisms of primary resistance to EGFR-TKIs remain unclear. This case suggested that YES1 amplification might be associated with primary resistance to EGFR-TKIs and YES1 amplification might be a negative predictor of EGFR-TKI treatment in NSCLC patients harboring EGFR sensitive mutations.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dantong Sun
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Ott M, Kassab C, Marisetty A, Hashimoto Y, Wei J, Zamler D, Leu JS, Tomaszowski KH, Sabbagh A, Fang D, Gupta P, Priebe W, Zielinski RJ, Burks JK, Long JP, Kong LY, Fuller GN, DeGroot J, Sulman EP, Heimberger AB. Radiation with STAT3 Blockade Triggers Dendritic Cell-T cell Interactions in the Glioma Microenvironment and Therapeutic Efficacy. Clin Cancer Res 2020; 26:4983-4994. [PMID: 32605912 DOI: 10.1158/1078-0432.ccr-19-4092] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma. EXPERIMENTAL DESIGN C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination. The role of the immune system was evaluated using tumor rechallenge strategies, immune-incompetent backgrounds, immunofluorescence, immune phenotyping of tumor-infiltrating immune cells (via flow cytometry), and NanoString gene expression analysis of 770 immune-related genes from immune cells, including those directly isolated from the tumor microenvironment. RESULTS The combination of WP1066 and WBRT resulted in long-term survivors and enhanced median survival time relative to monotherapy in the GL261 glioma model (combination vs. control P < 0.0001). Immunologic memory appeared to be induced, because mice were protected during subsequent tumor rechallenge. The therapeutic effect of the combination was completely lost in immune-incompetent animals. NanoString analysis and immunofluorescence revealed immunologic reprograming in the CNS tumor microenvironment specifically affecting dendritic cell antigen presentation and T-cell effector functions. CONCLUSIONS This study indicates that the combination of STAT3 inhibition and WBRT enhances the therapeutic effect against gliomas in the CNS by inducing dendritic cell and T-cell interactions in the CNS tumor.
Collapse
Affiliation(s)
- Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia Kassab
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jia-Shiun Leu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karl-Heinz Tomaszowski
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rafal J Zielinski
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone Health Perlmutter Cancer Center, New York, New York
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
12
|
Yokota H, Sato K, Sakamoto S, Okuda Y, Asano M, Takeda M, Nakayama K, Miura M. Effects of STAT3 polymorphisms and pharmacokinetics on the clinical outcomes of gefitinib treatment in patients with EGFR-mutation positive non-small cell lung cancer. J Clin Pharm Ther 2020; 45:652-659. [PMID: 32402096 DOI: 10.1111/jcpt.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE We investigated the correlations among signal transducer and activator of transcription 3 (STAT3) rs4796793C >G polymorphism, gefitinib pharmacokinetics and clinical responses in Japanese patients with non-small cell lung cancer receiving gefitinib therapy. METHODS Forty-five patients were enrolled in this study. Plasma trough concentrations (C0 ) of gefitinib at the steady-state were measured by high-performance liquid chromatography. RESULTS AND DISCUSSION Patients having a gefitinib C0 of at least ≥200 ng/mL had significantly longer PFS than patients having a C0 of <200 ng/mL (median [95% confidence interval (CI)] PFS: 11.0 [8.2-13.7] and 5.3 [0.0-12.0] months, respectively, P = .042). There were no significant differences in PFS between patients with STAT3 rs4796793C/C and G alleles; however, patients with STAT3 rs4796793C/C having a gefitinib C0 of ≥ 200 ng/mL had significantly longer progression-free survival (PFS) and overall survival (OS) than those with a C0 of <200 ng/mL (median [95% CI] PFS: 11.4 [4.1-18.6] and 3.0 [0.0-7.0] months, respectively, P = .008; median [95% CI] OS: 20.6 [7.4-33.7] and 12.6 [10.1-15.1] months, respectively, P = .042). In patients with the STAT3 rs4796793G allele, there were no significant differences in PFS and OS between the two gefitinib C0 groups. In addition, there were no significant differences in PFS or OS according to smoking, presence of proton pump inhibitor combination, or onset of side effects. WHAT IS NEW AND CONCLUSION Clinical outcomes of gefitinib in patients with the STAT3 rs4796793C/C genotype depended on plasma concentrations of gefitinib. In addition to information regarding EGFR mutations, the STAT3 rs4796793C >G polymorphism and gefitinib C0 may be potential predictors of clinical outcomes after beginning of gefitinib therapy.
Collapse
Affiliation(s)
- Hayato Yokota
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuhiro Sato
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Sho Sakamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Yuji Okuda
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Mariko Asano
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Masahide Takeda
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| |
Collapse
|
13
|
Identifying Therapies to Combat Epithelial Mesenchymal Plasticity-Associated Chemoresistance to Conventional Breast Cancer Therapies Using An shRNA Library Screen. Cancers (Basel) 2020; 12:cancers12051123. [PMID: 32365878 PMCID: PMC7281530 DOI: 10.3390/cancers12051123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous disease for which the commonly used chemotherapeutic agents primarily include the anthracyclines (doxorubicin, epirubicin), microtubule inhibitors (paclitaxel, docetaxel, eribulin), and alkylating agents (cyclophosphamide). While these drugs can be highly effective, metastatic tumours are frequently refractory to treatment or become resistant upon tumour relapse. METHODS We undertook a cell polarity/epithelial mesenchymal plasticity (EMP)-enriched short hairpin RNA (shRNA) screen in MDA-MB-468 breast cancer cells to identify factors underpinning heterogeneous responses to three chemotherapeutic agents used clinically in breast cancer: Doxorubicin, docetaxel, and eribulin. shRNA-transduced cells were treated for 6 weeks with the EC10 of each drug, and shRNA representation assessed by deep sequencing. We first identified candidate genes with depleted shRNA, implying that their silencing could promote a response. Using the Broad Institute's Connectivity Map (CMap), we identified partner inhibitors targeting the identified gene families that may induce cell death in combination with doxorubicin, and tested them with all three drug treatments. RESULTS In total, 259 shRNAs were depleted with doxorubicin treatment (at p < 0.01), 66 with docetaxel, and 25 with eribulin. Twenty-four depleted hairpins overlapped between doxorubicin and docetaxel, and shRNAs for TGFB2, RUNX1, CCDC80, and HYOU1 were depleted across all the three drug treatments. Inhibitors of MDM/TP53, TGFBR, and FGFR were identified by CMap as the top pharmaceutical perturbagens and we validated the combinatorial benefits of the TGFBR inhibitor (SB525334) and MDM inhibitor (RITA) with doxorubicin treatment, and also observed synergy between the inhibitor SB525334 and eribulin in MDA-MB-468 cells. CONCLUSIONS Taken together, a cell polarity/EMP-enriched shRNA library screen identified relevant gene products that could be targeted alongside current chemotherapeutic agents for the treatment of invasive BC.
Collapse
|
14
|
Jensen KV, Hao X, Aman A, Luchman HA, Weiss S. EGFR blockade in GBM brain tumor stem cells synergizes with JAK2/STAT3 pathway inhibition to abrogate compensatory mechanisms in vitro and in vivo. Neurooncol Adv 2020; 2:vdaa020. [PMID: 32226941 PMCID: PMC7086303 DOI: 10.1093/noajnl/vdaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background The EGFR pathway is frequently mutated in glioblastoma (GBM). However, to date, EGFR therapies have not demonstrated efficacy in clinical trials. Poor brain penetration of conventional inhibitors, lack of patient stratification for EGFR status, and mechanisms of resistance are likely responsible for the failure of EGFR-targeted therapy. We aimed to address these elements in a large panel of molecularly diverse patient-derived GBM brain tumor stem cells (BTSCs). Methods In vitro growth inhibition and on-target efficacy of afatinib, pacritinib, or a combination were assessed by cell viability, neurosphere formation, cytotoxicity, limiting dilution assays, and western blotting. In vivo efficacy was assessed with mass spectrometry, immunohistochemistry, magnetic resonance imaging, and intracranial xenograft models. Results We show that afatinib and pacritinib decreased BTSC growth and sphere-forming capacity in vitro. Combinations of the 2 drugs were synergistic and abrogated the activation of STAT3 signaling observed upon EGFR inhibition in vitro and in vivo. We further demonstrate that the brain-penetrant EGFR inhibitor, afatinib, improved survival in EGFRvIII mt orthotopic xenograft models. However, upregulation of the oncogenic STAT3 signaling pathway was observed following afatinib treatment. Combined inhibition with 2 clinically relevant drugs, afatinib and pacritinib, synergistically decreased BTSC viability and abrogated this compensatory mechanism of resistance to EGFR inhibition. A significant decrease in tumor burden in vivo was observed with the combinatorial treatment. Conclusions These data demonstrate that brain-penetrant combinatorial therapies targeting the EGFR and STAT3 signaling pathways hold therapeutic promise for GBM.
Collapse
Affiliation(s)
- Katharine V Jensen
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoguang Hao
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Yang X, Tang Z, Zhang P, Zhang L. [Research Advances of JAK/STAT Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:45-51. [PMID: 30674393 PMCID: PMC6348154 DOI: 10.3779/j.issn.1009-3419.2019.01.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus激酶(Janus kinase, JAK)/信号转导子和转录活化子(signal transducer and activator of transcription, STAT)信号通路是细胞因子信号传导的下游通路,调控细胞的发育、分化、增殖、凋亡等,不仅参与调节正常的生理过程,在肿瘤的发生发展中也起着重要作用,尤其是在血液系统肿瘤中意义重大。近年来,随着对JAK/STAT信号通路研究的深入,人们发现该通路在实体肿瘤的发生发展中也扮演关键角色。本文就近年来JAK/STAT信号通路参与肺癌发生发展、肺癌转移、肺癌耐药机制形成以及靶向该通路的抑制剂在肺癌治疗中的应用现状进行综述。
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Lee LYW, Mohammad S, Starkey T, Lee SM. STAT3 cyclic oligonucleotide decoy-a new therapeutic avenue for NSCLC? Transl Lung Cancer Res 2018; 7:S381-S384. [PMID: 30705862 DOI: 10.21037/tlcr.2018.09.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lennard Y W Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Summaya Mohammad
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Starkey
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Siow-Ming Lee
- Department of Oncology, University College London Hospitals, London, UK.,Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
17
|
Wang HY, Chang YL, Cheng CC, Chao MW, Lin SI, Pan SL, Hsu CC, Liu TW, Cheng HC, Tseng CP, Liu SJ, Tsai HJ, Chang HY, Hsu JTA. Glucocorticoids may compromise the effect of gefitinib in non-small cell lung cancer. Oncotarget 2018; 7:85917-85928. [PMID: 27835586 PMCID: PMC5349885 DOI: 10.18632/oncotarget.13185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown remarkable benefits in non-small cell lung cancer (NSCLC) patients with drug-sensitive mutations in the EGFR gene. Responsive patients are usually continuously prescribed with TKIs until disease progression. Glucocorticoids (GCs) are potent homeostasis maintaining drugs and are frequently used in cancer patients to alleviate discomforts caused by anti-cancer therapies. Several previous studies reported that concomitant use of GCs may compromise the efficacy of chemo-therapeutics in patients with solid tumors. Little is known in the concomitant use of target therapy with GCs in treating NSCLC. In this study, we hypothesized that concomitant use of GCs in EGFR-TKI therapy may be detrimental and addressed this issue using cell cultures and xenograft studies followed by a retrospective population study based on data from the Taiwan national health insurance system. In cell cultures and xenograft studies, GCs were shown to unequally compromise the anti-cancer efficacy of TKIs in both PC9 and NCI-H1975 NSCLC cells models. In the retrospective population study, patients with similar disease status that were co-medicated with GCs had a significantly higher risk of disease progression.
Collapse
Affiliation(s)
- Hsian-Yu Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City, Taiwan
| | - Yu-Ling Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chun-Chun Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Min-Wu Chao
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Su-I Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Tsang-Wu Liu
- Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Han-Chin Cheng
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City, Taiwan.,Miaoli General Hospital, Ministry of Health and Welfare, Miaoli County, Taiwan
| | - Ching-Ping Tseng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung City, Taiwan
| | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan, Taichung City, Taiwan.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hsing-Yi Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Public Health, National Yang-Ming University, Taipei City, Taiwan
| | - John T-A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City, Taiwan
| |
Collapse
|
18
|
Development of Erasin: a chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Sci Rep 2017; 7:17390. [PMID: 29234062 PMCID: PMC5727211 DOI: 10.1038/s41598-017-17600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Inhibition of protein-protein interactions by small molecules offers tremendous opportunities for basic research and drug development. One of the fundamental challenges of this research field is the broad lack of available lead structures from nature. Here, we demonstrate that modifications of a chromone-based inhibitor of the Src homology 2 (SH2) domain of the transcription factor STAT5 confer inhibitory activity against STAT3. The binding mode of the most potent STAT3 inhibitor Erasin was analyzed by the investigation of structure-activity relationships, which was facilitated by chemical synthesis and biochemical activity analysis, in combination with molecular docking studies. Erasin inhibits tyrosine phosphorylation of STAT3 with selectivity over STAT5 and STAT1 in cell-based assays, and increases the apoptotic rate of cultured NSCLC cells in a STAT3-dependent manner. This ability of Erasin also extends to HCC-827 cells with acquired resistance against Erlotinib, a clinically used inhibitor of the EGF receptor. Our work validates chromone-based acylhydrazones as privileged structures for antagonizing STAT SH2 domains, and demonstrates that apoptosis can be induced in NSCLC cells with acquired Erlotinib resistance by direct inhibition of STAT3.
Collapse
|
19
|
Liu Z, Gao W. Leptomycin B reduces primary and acquired resistance of gefitinib in lung cancer cells. Toxicol Appl Pharmacol 2017; 335:16-27. [PMID: 28942004 PMCID: PMC5643250 DOI: 10.1016/j.taap.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib has demonstrated dramatic clinical efficacy in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is ultimately limited by the development of acquired drug resistance. The aim of this study was to explore the potential utility of chromosome region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) in combination with gefitinib to overcome primary and acquired gefitinib resistance in NSCLC cells. The combinative effects of gefitinib and LMB were evaluated by MTT and its underlining mechanism was assessed by flow cytometry and Western blot. LMB displayed a synergistic effect on gefitinib-induced cytotoxicity in A549 (IC50: 25.0±2.1μM of gefitinib+LMB vs. 32.0±2.5μM of gefitinib alone, p<0.05). Gefitinib+LMB caused a significantly different cell cycle distribution and signaling pathways involved in EGFR/survivin/p21 compared with gefitinib. A549 cells then were treated with progressively increased concentrations of gefitinib (A549GR) or in combination with LMB (A549GLR) over 10months to generate gefitinib resistance. IC50 of gefitinib in A549GLR (37.0±2.8μM) was significantly lower than that in A549GR (53.0±3.0μM, p<0.05), which indicates that LMB could reverse gefitinib-induced resistance in A549. Further mechanism investigation revealed that the expression patterns of EGFR pathway and epithelial-mesenchymal transition (EMT) markers in A549, A549GR, and A549GLR were significantly different. In conclusion, LMB at a very low concentration (0.5nM) combined with gefitinib showed synergistic therapeutic effects and ameliorated the development of gefitinib-induced resistance in lung cancer cells.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
20
|
Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci Rep 2017; 7:46352. [PMID: 28397855 PMCID: PMC5387716 DOI: 10.1038/srep46352] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a well-known antitumor target. Exogenous ROS insult can lead to selective cytotoxicity against cancer cells. A combination of STAT3 inhibition and “oxidation therapy” may be a new strategy to address the multidrug-resistance issue due to their important roles in the survival and drug resistance of cancer cells. Here, a series of novel curcumin-BTP hybrids were designed and evaluated as STAT3 inhibitors with ROS production activity. Compound 6b exerted the best antitumor activity and selectivity for MCF-7 and MCF-7/DOX cells (IC50 = 0.52 μM and 0.40 μM, respectively), while its IC50 value for MCF-10A breast epithelial cells was 7.72 μM. Furthermore, compound 6b suppressed STAT3 phosphorylation, nuclear translocation and DNA-binding activity and the expression of STAT3 specific oncogenes. Increases in the level of IL-6-induced p-STAT3 were also inhibited by 6b without influencing IFN-γ-induced p-STAT1 expression. Additionally, 6b effectively promoted intracellular ROS accumulation, induced cancer cell apoptosis and cell cycle arrest, abolished the colony formation ability of breast cancer cells, and inhibited P-gp expression in MCF-7/DOX cells. Finally, 6b suppressed the growth of implanted human breast cancer in vivo. Our findings highlight that 6b may be a promising therapeutic agent for drug-sensitive and drug-resistant breast cancers.
Collapse
|
21
|
He M, Yang Z, Zhang L, Song C, Li Y, Zhang X. Additive effects of cherlerythrine chloride combination with erlotinib in human non-small cell lung cancer cells. PLoS One 2017; 12:e0175466. [PMID: 28399187 PMCID: PMC5388488 DOI: 10.1371/journal.pone.0175466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Several studies implicate that lung cancer progression is governed by the interaction between epidermal growth factor receptor (EGFR) signaling and protein kinase C (PKC) pathways. Combined the targeting of EGFR and PKC may have an additive or synergistic effects in lung cancer treatment. The aim of this study is to explore the potential utility by inhibiting these two pathways with the combination of erlotinib and chelerythrine chloride in non-small cell lung cancer (NSCLC) cell lines. The erlotinib-less sensitive cell lines SK-MES-1 and A549 were treated with erlotinib or chelerythrine by themselves or in combination with each other. The cell viability, clonogenic survival, cell migration, invasion, cell apoptosis effects and immunoblotting were accessed in vitro. Tumor growth was evaluated in vivo. There were additive effects of chelerythrine combined with erlotinib treatment in all NSCLC cell lines, resulting in a significant decrease in cell viability, clonogenicity, migratory and invasive capabilities as well as in the induction of apoptosis. Concordantly, the combined treatment caused a significant delay in tumor growth. The treatment effectively blocked EGFR signaling through decreasing phosphorylation of downstream targets such as STAT3, ERK1/2, p38 MAPK and Bad proteins. Our study supports the functional interaction between the EGFR and PKC pathways in lung cancer and provides a clinically exploitable strategy for erlotinib-less sensitive non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Miao He
- Department of anesthesia, The Second Hospital of Jilin University, Changchun, China
| | - Zhaoying Yang
- Department of breast surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Zhang
- Department of breast surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changlong Song
- Department of breast surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Youjun Li
- Department of anatomy, Norman Bethune Health Science Center of Jilin University, Changchun, China
- * E-mail: (XZ); (YL)
| | - Xingyi Zhang
- Department of thorax surgery, The Second Hospital of Jilin University, Changchun, China
- * E-mail: (XZ); (YL)
| |
Collapse
|
22
|
Luo ZY, Jiang H, Xu L, Zhang XH. [Rita induce acute lymphoblostic leukemia cell apoptosis by activating P53 pathway]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:160-163. [PMID: 28279043 PMCID: PMC7354173 DOI: 10.3760/cma.j.issn.0253-2727.2017.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - H Jiang
- Department of Hematology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | | | | |
Collapse
|
23
|
Bu LL, Zhao ZL, Liu JF, Ma SR, Huang CF, Liu B, Zhang WF, Sun ZJ. STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell. Oncotarget 2016; 6:41944-58. [PMID: 26556875 PMCID: PMC4747200 DOI: 10.18632/oncotarget.5986] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Signaling transducer and activator 3 (STAT3) and cancer stem cells (CSCs) have garnered huge attention as a therapeutic focus, based on evidence that they may represent an etiologic root of tumor initiation and radio-chemoresistance. Here, we investigated the high phosphorylation status of STAT3 (p-STAT3) and its correlation with self-renewal markers in head neck squamous cell carcinoma (HNSCC). Over-expression of p-STAT3 was found to have increased in post chemotherapy HNSCC tissue. We showed that blockade of p-STAT3 eliminated both bulk tumor and side population (SP) cells with characteristics of CSCs in vitro. Inhibition of p-STAT3 using small molecule S3I-201 significantly delayed tumorigenesis of spontaneous HNSCC in mice. Combining blockade of p-STAT3 with cytotoxic drugs cisplatin, docetaxel, 5-fluorouracil (TPF) enhanced the antitumor effect in vitro and in vivo with decreased tumor sphere formation and SP cells. Taken together, our results advocate blockade of p-STAT3 in combination with conventional chemotherapeutic drugs enhance efficacy by improving CSCs eradication in HNSCC.
Collapse
Affiliation(s)
- Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Lazzari C, Verlicchi A, Gkountakos A, Pilotto S, Santarpia M, Chaib I, Ramirez Serrano JL, Viteri S, Morales-Espinosa D, Dazzi C, de Marinis F, Cao P, Karachaliou N, Rosell R. Molecular Bases for Combinatorial Treatment Strategies in Patients with KRAS Mutant Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Pulm Ther 2016. [DOI: 10.1007/s41030-016-0013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 2016; 78:13-26. [PMID: 27118574 DOI: 10.1007/s00280-016-3037-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic regimens are the most common treatment to inhibit tumor growth, but there is great variability in clinical responses of cancer patients; cancer cells often develop resistance to chemotherapeutics which results in tumor recurrence and further progression. Metformin, an extensively prescribed and well-tolerated first-line therapeutic drug for type 2 diabetes mellitus, has recently been identified as a potential and attractive anticancer adjuvant drug combined with chemotherapeutic drugs to improve treatment efficacy and lower doses. In this review, we summarized the molecular mechanisms underlying anticancer effects of metformin, which included insulin- and AMPK-dependent effects, selectively targeting cancer stem cells, reversing multidrug resistance, inhibition of the tumor metastasis and described the antineoplastic effects of metformin combined with chemotherapeutic agents in digestive system cancers (colorectal, gastric, hepatic and pancreatic cancer), reproductive system cancers (ovarian and endometrial cancer), prostate cancer, breast cancer, lung cancer, etc. Moreover, the clinical trials regarding metformin in combination of chemotherapeutic drugs were presented and the clinical obstacle or limitation related to the potential role of metformin in cancer treatment was also discussed in this review.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
26
|
Gao SP, Chang Q, Mao N, Daly LA, Vogel R, Chan T, Liu SH, Bournazou E, Schori E, Zhang H, Brewer MR, Pao W, Morris L, Ladanyi M, Arcila M, Manova-Todorova K, de Stanchina E, Norton L, Levine RL, Altan-Bonnet G, Solit D, Zinda M, Huszar D, Lyden D, Bromberg JF. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. Sci Signal 2016; 9:ra33. [PMID: 27025877 DOI: 10.1126/scisignal.aac8460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC.
Collapse
Affiliation(s)
- Sizhi P Gao
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Qing Chang
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Ninghui Mao
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Laura A Daly
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Vogel
- Computational Biology Program, MSKCC, New York, NY 10065, USA
| | - Tyler Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Shu Hui Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Eirini Bournazou
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Erez Schori
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College (WCMC), New York, NY 10021, USA
| | - Monica Red Brewer
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN 37232, USA. Personalized Cancer Medicine, VICC, Nashville, TN 37232, USA
| | - William Pao
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN 37232, USA. Personalized Cancer Medicine, VICC, Nashville, TN 37232, USA
| | - Luc Morris
- Department of Surgery, MSKCC, New York, NY 10065, USA
| | - Marc Ladanyi
- Department of Pathology, MSKCC, New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA
| | - Maria Arcila
- Department of Pathology, MSKCC, New York, NY 10065, USA
| | | | | | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. WCMC, New York, NY 10021, USA
| | - Ross L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA. WCMC, New York, NY 10021, USA
| | | | - David Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA. WCMC, New York, NY 10021, USA. Metastasis Research Center, MSKCC, New York, NY 10065, USA
| | | | | | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College (WCMC), New York, NY 10021, USA. Department of Pediatrics, MSKCC, New York, NY 10065, USA. Drukier Institute for Children's Health, Meyer Cancer Center, WCMC, New York, NY 10021, USA.
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. WCMC, New York, NY 10021, USA.
| |
Collapse
|
27
|
Chang L, Gong F, Cai H, Li Z, Cui Y. Combined RNAi targeting human Stat3 and ADAM9 as gene therapy for non-small cell lung cancer. Oncol Lett 2015; 11:1242-1250. [PMID: 26893726 DOI: 10.3892/ol.2015.4018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 10/23/2015] [Indexed: 01/28/2023] Open
Abstract
Previous studies have demonstrated that human signal transducer and activator of transcription 3 (Stat3) and disintegrin and metalloproteinase 9 (ADAM9) are promising targets for RNA interference (RNAi)-based gene therapy for human non-small cell lung cancer (NSCLC). Thus, in the present study, the recombinant lentiviral (Lv) small hairpin (sh)RNA expression plasmids Lv/sh-Stat3 and Lv/sh-ADAM9, which targeted Stat3 and ADAM9, respectively, were constructed and subsequently infected into the A549 human NSCLC cell line. Cell proliferation, migration, invasion and apoptosis were determined in vitro in A549 cells following treatment with Lv/sh-Stat3 or Lv/sh-ADAM9 alone or in combination. In addition, the combined effect of Lv/sh-Stat3 and Lv/sh-ADAM9 gene therapy was evaluated in vivo using A549 xenograft models in nude mice. The in vitro experiments demonstrated that A549 cells treated with a combination of Lv/sh-Stat3 and Lv/sh-ADAM9 exhibited a significant additive effect in their cell proliferation, migration, invasion and apoptosis abilities, compared with A549 cells treated with Lv/sh-Stat3 or Lv/sh-ADAM9 alone. The in vivo experiments conducted in A549 xenograft tumor mouse models revealed that the combined treatment with Lv/sh-Stat3 and Lv/sh-ADAM9 exerted an additive effect on tumor growth inhibition, compared with the treatment with Lv/sh-Stat3 or Lv/sh-ADAM9 alone. These results suggested that combined RNAi gene therapy targeting human Stat3 and ADAM9 may be a novel and promising strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fangchao Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Li Q, Zhang D, Chen X, He L, Li T, Xu X, Li M. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci Rep 2015; 5:16082. [PMID: 26542452 PMCID: PMC4635355 DOI: 10.1038/srep16082] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
Gefitinib (Iressa, ZD-1839), a small molecule tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR) pathway, is currently under investigation in clinical trials for the treatment of colorectal cancer (CRC). However, as known, some patients develop resistance to TKIs, and the mechanisms mediating intrinsic resistance to EGFR-TKIs in CRC have not been fully characterized. Resistance to EGFR inhibitors reportedly involves activation of signal transducer and activator of transcription 3 (STAT3) in glioma and lung cancer. Here, we demonstrated that the nuclear pyruvate kinase isoform M2 (PKM2) levels were positively correlated with gefitinib resistance in CRC cells. The overexpression of nuclear PKM2 in HT29 cells decreased the effect of gefitinib therapy, whereas PKM2 knockdown increased gefitinib efficacy. Furthermore, the activation of STAT3 by nuclear PKM2 was associated with gefitinib resistance. Inhibition of STAT3 by Stattic, a STAT3-specific inhibitor, or STAT3-specific siRNA sensitized resistant cells to gefitinib. These results suggest that nuclear PKM2 modulates the sensitivity of CRC cells to gefitinib and indicate that small molecule pharmacological disruption of nuclear PKM2 association with STAT3 is a potential avenue for overcoming EGFR-TKI resistance in CRC patients.
Collapse
Affiliation(s)
- Qiong Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Daoxiang Zhang
- Division of Oncology, School of Medicine, Washington University in St. Louis, MO, 63110, USA
| | - Xiaoying Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tianming Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaoping Xu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
29
|
Abstract
The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 activation correlates with Gleason score and pathological stage and modulates cancer stem cells and epithelial-mesenchymal transition. In addition, STAT3 promotes the progression from carcinoma in situ to invasive bladder cancer and modulates renal cell carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients with metastatic renal cell carcinoma, and to second-generation androgen receptor inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we describe the role of STAT3 in genitourinary tumors, thus describing its potential for future therapeutic strategies.
Collapse
|
30
|
Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P, Huang L. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep 2015; 5:8477. [PMID: 26166037 PMCID: PMC4499885 DOI: 10.1038/srep08477] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/22/2015] [Indexed: 12/25/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are mostly used in non-small cell lung cancer (NSCLC) treatment. Unfortunately, treatment with Gefitinib for a period of time will result in drug resistance and cause treatment failure in clinic. Therefore, exploring novel compounds to overcome this resistance is urgently required. Here we investigated the antitumor effect of homoharringtonine (HHT), a natural compound extracted from Cephalotaxus harringtonia, on Gefitinib-resistant NSCLC cell lines in vitro and in vivo. NCI-H1975 cells with EGFR T790M mutation are more sensitive to HHT treatment compared with that of A549 cells with wild type EGFR. HHT inhibited cells growth, cell viability and colony formation, as well as induced cell apoptosis through mitochondria pathway. Furthermore, we explored the mechanism of HHT inhibition on NSCLC cells. Higher level of interleukin-6 (IL-6) existed in lung cancer patients and mutant EGFR and TGFβ signal requires the upregulation of IL-6 through the gp130/JAK pathway to overactive STAT3, an oncogenic protein which has been considered as a potential target for cancer therapy. HHT reversiblely inhibited IL-6-induced STAT3 Tyrosine 705 phosphorylation and reduced anti-apoptotic proteins expression. Gefitinib-resistant NSCLC xenograft tests also confirmed the antitumor effect of HHT in vivo. Consequently, HHT has the potential in Gefitinib-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Wei Cao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ying Liu
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ran Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongling Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Pinghong Ming
- Laboratory of Zhuhai People’s Hospital, Zhuhai, Guangdong, 519000, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, Montironi R, Santini D, Danesi R, Tortora G, Cascinu S. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs 2015; 24:809-24. [PMID: 25746129 DOI: 10.1517/13543784.2015.1020370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) mediates the expression of a variety of genes in response to cell stimuli and thus plays a key role in several cellular processes such as cell growth and apoptosis. Deregulation of the STAT3 activity has been shown in many malignancies, including breast, head and neck, prostate, pancreas, ovarian and brain cancers and melanoma. Thus, STAT3 may represent an ideal target for cancer therapy. AREAS COVERED The authors review recent data on the role of STAT3 in tumor initiation and progression, as well as the ongoing clinical trials in cancer patients. The content includes information derived from trial databases, regulatory authorities and scientific literature. EXPERT OPINION Targeting STAT3 activation leads to the inhibition of tumor growth and metastasis both in vitro and in vivo without affecting normal cells; this suggests that STAT3 could be a valid molecular target for cancer therapy. Extensive clinical research is trying to find anti-STAT3 agents with high single-agent activity. The identification and development of novel drugs that can target deregulated STAT3 activation effectively is both a scientific and clinical challenge that needs to be addressed in the near future.
Collapse
Affiliation(s)
- Matteo Santoni
- Polytechnic University of the Marche Region, Medical Oncology, AOU Ospedali Riuniti , via Conca 71, 60126 Ancona , Italy +39 0715964263 ; +39 0715964269 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis. Sci Rep 2014; 4:7461. [PMID: 25514838 PMCID: PMC4268632 DOI: 10.1038/srep07461] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence reveals that activation of STAT3 and miR-21 contributes to chemoresistance in multiple tumors. We examined the expression of STAT3 and miR-21 in 43 oral squamous cell carcinoma (OSCC) tumors and classified them into cisplatin sensitive or resistant group. Tca8113 and Tca8113/DDP cells were treated with cisplatin (DDP), WP1066 (STAT3 inhibitor) or in combination. MTT, colony formation, wound healing, 3-D culture, and transwell chamber assays were used to evaluate the malignant phenotype of OSCC cells. We evaluated the effect of WP1066 on the expression of STAT3 and miR-21. A Tca8113/DDP OSCC xenograft tumor model was established to evaluate the therapeutic effect of WP1066 in combination with DDP. The expression of STAT3/miR-21 was significantly increased in DDP-resistant OSCC samples and Tca8113/DDP cells compared to its parental cell. Treatment of DDP combined with WP1066 efficiently inhibited Tca8113 and Tca8113/DDP cell proliferation, migration and invasion. STAT3 mediated OSCC cell survival and DDP resistance through upregulating the expression of miR-21 and downregulating miR-21 downstream targets, including PTEN, TIMP3 and PDCD4. WP1066 plus DDP treatment could inhibit Tca8113 and Tca8113/DDP cell growth by inhibiting STAT3 phosphorylation and miR-21 expression. These results indicated that STAT3/miR-21 axis could be a candidate therapeutic target for OSCC chemoresistance.
Collapse
|
33
|
Wu K, Chang Q, Lu Y, Qiu P, Chen B, Thakur C, Sun J, Li L, Kowluru A, Chen F. Gefitinib resistance resulted from STAT3-mediated Akt activation in lung cancer cells. Oncotarget 2014; 4:2430-8. [PMID: 24280348 PMCID: PMC3926838 DOI: 10.18632/oncotarget.1431] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hyperactivation of Epidermal Growth Factor Receptor (EGFR) tyrosine kinase is prevalent in human lung cancer and its inhibition by the tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, initially controls tumor growth. However, most patients ultimately relapse due to the development of drug resistance. In this study, we have discovered a STAT3-dependent Akt activation that impairs the efficacy of gefitinib. Mechanistically, gefitinib increased association of EGFR with STAT3, which de-repressed STAT3 from SOCS3, an upstream suppressor of STAT3. Such a de-repression of STAT3 in turn fostered Akt activation. Genetic or pharmacological inhibition of STAT3 abrogated Akt activation and combined gefitinib with STAT3 inhibition synergistically reduced the growth of the tumor cells. Taken together, this study suggests that activation of STAT3 is an intrinsic mechanism of drug resistance in response to EGFR TKIs. Combinational targeting on both EGFR and STAT3 may enhance the efficacy of gefitinib or other EGFR TKIs in lung cancer.
Collapse
|
34
|
Oh SB, Hwang CJ, Song SY, Jung YY, Yun HM, Sok CH, Sung HC, Yi JM, Park DH, Ham YW, Han SB, Hwang BY, Hong JT. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett 2014; 353:95-103. [DOI: 10.1016/j.canlet.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
|
35
|
The Role of STAT3 in Non-Small Cell Lung Cancer. Cancers (Basel) 2014; 6:708-22. [PMID: 24675568 PMCID: PMC4074799 DOI: 10.3390/cancers6020708] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
Persistent phosphorylation of signal transducer and activator of transcription 3 (STAT3) has been demonstrated in 22%~65% of non-small cell lung cancers (NSCLC). STAT3 activation is mediated by receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and MET, cytokine receptors, such as IL-6, and non-receptor kinases, such as Src. Overexpression of total or phosphorylated STAT3 in resected NSCLC leads to poor prognosis. In a preclinical study, overexpression of STAT3 was correlated with chemoresistance and radioresistance in NSCLC cells. Here, we review the role of STAT3 and the mechanisms of treatment resistance in malignant diseases, especially NSCLC. As STAT3 is a critical mediator of the oncogenic effects of EGFR mutations, we discuss STAT3 pathways in EGFR-mutated NSCLC, referring to mechanisms of EGFR tyrosine kinase inhibitor resistance.
Collapse
|
36
|
Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, Jiang J, He Y. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res 2014; 20:2714-26. [PMID: 24644001 DOI: 10.1158/1078-0432.ccr-13-2613] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have become a standard therapy in patients with EGFR-activating mutations. Unfortunately, acquired resistance eventually limits the clinical effects and application of EGFR-TKIs. Studies have shown that suppression of epithelial-mesenchymal transition (EMT) and the interleukin (IL)-6/STAT3 pathway may abrogate this acquired mechanism of drug resistance of TKIs. This study aims to investigate the effect of metformin on sensitizing EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. EXPERIMENTAL DESIGN The effect of metformin on reversing TKI resistance was examined in vitro and in vivo using MTT, BrdUrd incorporation assay, invasion assay, flow cytometry analysis, immunostaining, Western blot analysis, and xenograft implantation. RESULTS In this study, metformin, a widely used antidiabetic agent, effectively increased the sensitivity of TKI-resistant lung cancer cells to erlotinib or gefitinib. Metformin reversed EMT and decreased IL-6 signaling activation in TKI-resistant cells, while adding IL-6 to those cells bypassed the anti-TKI-resistance effect of metformin. Furthermore, overexpression or addition of IL-6 to TKI-sensitive cells induced TKI resistance, which could be overcome by metformin. Finally, metformin-based combinatorial therapy effectively blocked tumor growth in xenografts with TKI-resistant cancer cells, which was associated with decreased IL-6 secretion and expression, EMT reversal, and decreased IL-6-signaling activation in vivo. CONCLUSION Metformin, generally considered nontoxic and remarkably inexpensive, might be used in combination with TKIs in patients with non-small cell lung cancer, harboring EGFR mutations to overcome TKI resistance and prolong survival.
Collapse
Affiliation(s)
- Li Li
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rui Han
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, ChinaAuthors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hualiang Xiao
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Caiyu Lin
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yubo Wang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao Liu
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kunlin Li
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hengyi Chen
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fenfen Sun
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenzhou Yang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jianxin Jiang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong He
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
38
|
Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 2013; 33:1073-81. [PMID: 23542173 DOI: 10.1038/onc.2013.74] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) have an important role in the initiation and progression of various types of cancer. Inhibitors targeting these receptor tyrosine kinases are some of the most successful targeted anticancer drugs widely used for cancer treatment; however, cancer cells have mechanisms of intrinsic and acquired drug resistance that pose as major obstacles in drug efficacy. Extensive studies from both clinical and laboratory research have identified several molecular mechanisms underlying resistance. Among them is the role of signaling cross-talk between the EGFR/HER2 and other signaling pathways. In this review, we focus particularly on this signaling cross-talk at the receptor, mediator and effector levels, and further discuss alternative approaches to overcome resistance. In addition to well-recognized signaling cross-talk involved in the resistance, we also introduce the cross-talk between EGFR/HER2-mediated pathways and pathways triggered by other types of receptors, including those of the Notch, Wnt and TNFR/IKK/NF-κB pathways, and discuss the potential role of targeting this cross-talk to sensitize cells to EGFR/HER2 inhibitors.
Collapse
|
39
|
Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1028-40. [PMID: 23384777 DOI: 10.1016/j.bbamcr.2013.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/09/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Gefitinib is an Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor, approved for patients with non-small cell lung cancer (NSCLC). In this report we demonstrate that gefitinib loaded PLGA nanoparticles (GNPs), in comparison to gefitinib, exhibited higher anti-cancer activity on A549 lung carcinoma cells and A431 skin carcinoma cells. Increased inhibition of pEGFR in both the cell types explains its higher anti-cancer activity. Interestingly, gefitinib resistant, H1975 (T790M EGFR mutant) lung carcinoma cells was also found to be sensitive to GNPs. Our data shows that GNPs hyperacetylate histone H3 in these cells, either directly or indirectly, which may account for the augmented cell death. GNPs were proficient in activating histone acetyltransferases (p300/CBP), which in turn induces the expression of p21 and cell cycle arrest. Furthermore, inhibition of histone acetyltransferases by garcinol results in alleviation of cell death caused by GNPs. In addition to this, nuclear intrusion of GNPs results in the inhibition of NO production in nucleus, possibly through nuclear EGFR, which might be responsible for preventing cell proliferation in resistant cells. To best of our knowledge, we provide first evidence that GNPs potentiate cell death by activating p300/CBP histone acetyltransferases.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
40
|
Popper HH. Interstitial lung diseases-can pathologists arrive at an etiology-based diagnosis? A critical update. Virchows Arch 2013; 462:1-26. [PMID: 23224047 PMCID: PMC7102182 DOI: 10.1007/s00428-012-1305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/07/2023]
Abstract
Interstitial lung diseases (ILD) encompass a group of diseases with a wide range of etiologies and a variety of tissue reactions within the lung. In many instances, a careful evaluation of the tissue reactions will result in a specific diagnosis or at least in a narrow range of differentials, which will assist the clinician to arrive at a definite diagnosis, when combining our interpretation with the clinical presentation of the patient and high-resolution computed tomography. In this review, we will exclude granulomatous pneumonias as well as vascular diseases (primary arterial pulmonary hypertension and vasculitis); however, pulmonary hypertension as a complication of interstitial processes will be mentioned. Few entities of pneumoconiosis presenting as an interstitial process will be included, whereas those with granulomatous reactions will be excluded. Drug reactions will be touched on within interstitial pneumonias, but will not be a major focus. In contrast to the present-day preferred descriptive pattern recognition, it is the author's strong belief that pathologists should always try to dig out the etiology from a tissue specimen and not being satisfied with just a pattern description. It is the difference of sorting tissue reactions into boxes by their main pattern, without recognizing minor or minute reactions, which sometimes will guide one to the correct etiology-oriented interpretation. In the author's personal perspective, tissue reactions can even be sorted by their timeliness, and therefore, ordered by the time of appearance, providing an insight into the pathogenesis and course of a disease. Also, underlying immune mechanisms will be discussed briefly as far as they are essential to understand the disease.
Collapse
Affiliation(s)
- Helmut H Popper
- Research Unit for Molecular Lung and Pleura Pathology, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| |
Collapse
|
41
|
Zhang W, Wan M, Ma L, Liu X, He J. Protective effects of ADAM8 against cisplatin-mediated apoptosis in non-small-cell lung cancer. Cell Biol Int 2012; 37:47-53. [PMID: 23319321 DOI: 10.1002/cbin.10011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/18/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Weifeng Zhang
- Department of Cardiothoracic Surgery; The First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease; Guangzhou 510120 China
| | - Minghui Wan
- Department of Cardiothoracic Surgery; The First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease; Guangzhou 510120 China
| | - Lunchao Ma
- Department of Cardiothoracic Surgery; The First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease; Guangzhou 510120 China
| | - Xiang Liu
- Department of Cardiothoracic Surgery; The First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease; Guangzhou 510120 China
| | - Jianxing He
- Department of Cardiothoracic Surgery; The First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease; Guangzhou 510120 China
| |
Collapse
|
42
|
Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ, Soo RA, Christensen JG, Lee JH, Cho BC. Activation of IL-6R/JAK1/STAT3 Signaling Induces De Novo Resistance to Irreversible EGFR Inhibitors in Non–Small Cell Lung Cancer with T790M Resistance Mutation. Mol Cancer Ther 2012; 11:2254-64. [DOI: 10.1158/1535-7163.mct-12-0311] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Sen M, Joyce S, Panahandeh M, Li C, Thomas SM, Maxwell J, Wang L, Gooding WE, Johnson DE, Grandis JR. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 2012; 18:4986-96. [PMID: 22825581 DOI: 10.1158/1078-0432.ccr-12-0792] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE EGF receptor (EGFR) is upregulated in most epithelial cancers where signaling through EGFR contributes to cancer cell proliferation and survival. The limited clinical efficacy of EGFR inhibitors suggests that identification of resistance mechanisms may identify new pathways for therapeutic targeting. STAT3 is upregulated in many cancers and activated via both EGFR-dependent and -independent pathways. In the present study, we tested the consequences of STAT3 inhibition in EGFR inhibitor-resistant head and neck squamous cell carcinoma (HNSCC) and bladder cancer models to determine whether STAT3 blockade can enhance responses to EGFR targeting. EXPERIMENTAL DESIGN pSTAT3 expression was assessed in human HNSCC tumors that recurred following cetuximab treatment. Cetuximab-sensitive and -resistant cell lines were treated with a STAT3 decoy to determine EC(50) concentrations and the effects on STAT3 target gene expression by Western blotting. In vivo assays included evaluation of antitumor efficacy of STAT3 decoy in cetuximab-sensitive and -resistant models followed by immunoblotting for STAT3 target protein expression. RESULTS Targeting STAT3 with a STAT3 decoy reduced cellular viability and the expression of STAT3 target genes in EGFR inhibitor resistance models. The addition of a STAT3 inhibitor to EGFR blocking strategies significantly enhanced antitumor effects in vivo. Biopsies from HNSCC tumors that recurred following cetuximab treatment showed increased STAT3 activation compared with pretreatment biopsies. CONCLUSIONS These results suggest that STAT3 activation contributes to EGFR inhibitor resistance both in HNSCC and bladder cancer where concomitant targeting of STAT3 may represent an effective treatment strategy.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen W, Shen X, Xia X, Xu G, Ma T, Bai X, Liang T. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma. Liver Int 2012; 32:70-7. [PMID: 22098470 DOI: 10.1111/j.1478-3231.2011.02631.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/30/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Cetuximab [an epidermal growth factor receptor (EGFR) inhibitor], which was shown to be effective in rectal and non-small cell lung cancers (NSCLCs), was only modestly effective in clinical trials of hepatocellular carcinoma (HCC). STAT3, which is thought to be a determinant of HCC sensitivity to antitumour drugs, may be involved. AIMS To evaluate the efficacy of combination therapy using cetuximab and NSC 74859 (a novel STAT3 inhibitor) in EGFR and STAT3 overexpressing hepatoma cells. METHODS Hepatoma cell lines were treated with cetuximab, NSC 74859 or a combination of both drugs. Efficacy of treatment was evaluated by determining cell viability using MTT assays and proliferation by cell counting. Expression and activation of STAT3 were determined using Western blot analysis. We evaluated the role of STAT3 in single and combination therapy using siRNA-mediated knock-down of STAT3 or STAT3 overexpression strategies. RESULTS HepG2 and Huh-7 cells, which had lower levels of pSTAT3 than SK-HEP1 cells, were more sensitive to cetuximab treatment when compared with SK-HEP1 cells. Although none of these cell lines was sensitive to NSC 74859 alone, NSC 74859 potentiated the antiproliferative effect of cetuximab in all three cell lines. siRNA knock-down of STAT3 increased the sensitivity of these cell lines to cetuximab, whereas STAT3 overexpression antagonized these effects. CONCLUSIONS Enhanced growth inhibition in hepatoma cells treated with both NSC 74859 and cetuximab suggests that cetuximab resistance is probably mediated via STAT3. Combination therapy using both inhibitors of EGFR and STAT3 signalling warrants further investigation under in vivo condition.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Sandve GK, Gundersen S, Rydbeck H, Glad IK, Holden L, Holden M, Liestøl K, Clancy T, Drabløs F, Ferkingstad E, Johansen M, Nygaard V, Tøstesen E, Frigessi A, Hovig E. The differential disease regulome. BMC Genomics 2011; 12:353. [PMID: 21736759 PMCID: PMC3160420 DOI: 10.1186/1471-2164-12-353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/07/2011] [Indexed: 12/11/2022] Open
Abstract
Background Transcription factors in disease-relevant pathways represent potential drug targets, by impacting a distinct set of pathways that may be modulated through gene regulation. The influence of transcription factors is typically studied on a per disease basis, and no current resources provide a global overview of the relations between transcription factors and disease. Furthermore, existing pipelines for related large-scale analysis are tailored for particular sources of input data, and there is a need for generic methodology for integrating complementary sources of genomic information. Results We here present a large-scale analysis of multiple diseases versus multiple transcription factors, with a global map of over-and under-representation of 446 transcription factors in 1010 diseases. This map, referred to as the differential disease regulome, provides a first global statistical overview of the complex interrelationships between diseases, genes and controlling elements. The map is visualized using the Google map engine, due to its very large size, and provides a range of detailed information in a dynamic presentation format. The analysis is achieved through a novel methodology that performs a pairwise, genome-wide comparison on the cartesian product of two distinct sets of annotation tracks, e.g. all combinations of one disease and one TF. The methodology was also used to extend with maps using alternative data sets related to transcription and disease, as well as data sets related to Gene Ontology classification and histone modifications. We provide a web-based interface that allows users to generate other custom maps, which could be based on precisely specified subsets of transcription factors and diseases, or, in general, on any categorical genome annotation tracks as they are improved or become available. Conclusion We have created a first resource that provides a global overview of the complex relations between transcription factors and disease. As the accuracy of the disease regulome depends mainly on the quality of the input data, forthcoming ChIP-seq based binding data for many TFs will provide improved maps. We further believe our approach to genome analysis could allow an advance from the current typical situation of one-time integrative efforts to reproducible and upgradable integrative analysis. The differential disease regulome and its associated methodology is available at http://hyperbrowser.uio.no.
Collapse
Affiliation(s)
- Geir K Sandve
- Department of Informatics, University of Oslo, Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|