1
|
Shi ZR, Mabuchi T, Riutta SJ, Wu X, Peterson FC, Volkman BF, Hwang ST. The Chemokine, CCL20, and Its Receptor, CCR6, in the Pathogenesis and Treatment of Psoriasis and Psoriatic Arthritis. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2023; 8:107-117. [PMID: 39296310 PMCID: PMC11361516 DOI: 10.1177/24755303231159106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Background Chemokines represent a superfamily of immune-modulatory small protein molecules that regulate leukocyte migration to inflammatory sites through their chemoattractant and cell signaling properties. This review focuses on the immunological functions of the CCR6 chemokine receptor and is chemokine ligand, CCL20, that contribute to it role in inflammation in human psoriasis. Methods Peer-reviewed relevant articles are searched and selected from 2000 to 2022 using the search engines including PubMed and Google Scholar. Results After selectively reviewing and evaluating over seventy articles, a comprehensive overview on the immunology of CCL20-CCR6 axis in psoriasis and psoriatic arthritis, the X-ray crystal structures of CCL20 monomers, and the potential of developing clinical therapies targeting this axis is summarized. Conclusions Over the past decade, preclinical studies carried out in animal models of psoriasis involving agents targeting CCL20-CCR6 axis have yielded promising results. Other studies that this axis may play a role in a number of other autoimmune diseases, including rheumatoid arthritis, suggesting a rationale for further investigation into this key signaling/migratory pathway.
Collapse
Affiliation(s)
- Zhen-Rui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Guang-zhou, China
| | - Tomotaka Mabuchi
- Department of Dermatology, Tokai University School of Medicine, Isehara, Japan
| | - Sarah J Riutta
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sam T Hwang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
2
|
Hu ZG, Dong ZQ, Miao JH, Li KJ, Wang J, Chen P, Lu C, Pan MH. Identification of the Key Functional Domains of Bombyx mori Nucleopolyhedrovirus IE1 Protein. Int J Mol Sci 2022; 23:ijms231810276. [PMID: 36142194 PMCID: PMC9499007 DOI: 10.3390/ijms231810276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158–208 was a major nuclear localization element, and IE11–157 and IE1539–559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11–258, IE1560–584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Jiang-Hao Miao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ke-Jie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| |
Collapse
|
3
|
Rosenberg EM, Herrington J, Rajasekaran D, Murphy JW, Pantouris G, Lolis EJ. The N-terminal length and side-chain composition of CXCL13 affect crystallization, structure and functional activity. Acta Crystallogr D Struct Biol 2020; 76:1033-1049. [PMID: 33021505 PMCID: PMC7543660 DOI: 10.1107/s2059798320011687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023] Open
Abstract
CXCL13 is the cognate chemokine agonist of CXCR5, a class A G-protein-coupled receptor (GPCR) that is essential for proper humoral immune responses. Using a `methionine scanning' mutagenesis method on the N-terminus of CXCL13, which is the chemokine signaling region, it was shown that minor length alterations and side-chain substitutions still result in CXCR5 activation. This observation indicates that the orthosteric pocket of CXCR5 can tolerate these changes without severely affecting the activity. The introduction of bulk on the ligand was well tolerated by the receptor, whereas a loss of contacts was less tolerated. Furthermore, two crystal structures of CXCL13 mutants were solved, both of which represent the first uncomplexed structures of the human protein. These structures were stabilized by unique interactions formed by the N-termini of the ligands, indicating that CXCL13 exhibits substantial N-terminal flexibility while the chemokine core domain remains largely unchanged. Additionally, it was observed that CXCL13 harbors a large degree of flexibility in the C-terminal extension of the ligand. Comparisons with other published structures of human and murine CXCL13 validate the relative rigidity of the core domain as well as the N- and C-terminal mobilities. Collectively, these mutants and their structures provide the field with additional insights into how CXCL13 interacts with CXCR5.
Collapse
Affiliation(s)
- Eric M. Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - James W. Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020; 145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemokines regulate directed cell migration, proliferation and survival and are key components in cancer biology. They exert their functions by interacting with seven-transmembrane domain receptors that signal through G proteins (GPCRs). A subgroup of four chemokine receptors known as the atypical chemokine receptors (ACKRs) has emerged as essential regulators of the chemokine functions. ACKRs play diverse and complex roles in tumor biology from tumor initiation to metastasis, including cancer cell proliferation, adherence to endothelium, epithelial-mesenchymal transition (EMT), extravasation from blood vessels, tumor-associated angiogenesis or protection from immunological responses. This chapter gives an overview on the established and emerging roles that the atypical chemokine receptors ACKR1, ACKR2, ACKR3 and ACKR4 play in the different phases of cancer development and dissemination, their clinical relevance, as well as on the hurdles to overcome in ACKRs targeting as cancer therapy.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018; 293:19092-19100. [PMID: 30305389 DOI: 10.1074/jbc.ra118.004370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
Peptides represent a promising source of new medicines, but improved technologies are needed to facilitate discovery and optimization campaigns. In particular, longer peptides with multiple disulfide bridges are challenging to produce, and producing large numbers of structurally related variants is dissuasively costly and time-consuming. The principal cost and time drivers are the multiple column chromatography purification steps that are used during the multistep chemical synthesis procedure, which involves both ligation and oxidative refolding steps. In this study, we developed a method for multiplex parallel synthesis of complex peptide analogs in which the structurally variant region of the molecule is produced as a small peptide on a 384-well synthesizer with subsequent ligation to the longer, structurally invariant region and oxidative refolding carried out in-well without any column purification steps. To test the method, we used a panel of 96 analogs of the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 (69 residues, two disulfide bridges), which had been synthesized using standard approaches and characterized pharmacologically in an earlier study. Although, as expected, the multiplex method generated chemokine analogs of lower purity than those produced in the original study, it was nonetheless possible to closely match the pharmacological attributes (anti-HIV potency, capacity to elicit G protein signaling, and capacity to elicit intracellular receptor sequestration) of each chemokine analog to reference data from the earlier study. This rapid, low-cost approach has the potential to support discovery and optimization campaigns based on analogs of other chemokines as well as those of other complex peptide and small protein targets of a similar size.
Collapse
Affiliation(s)
- Marianne Paolini-Bertrand
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Fabrice Cerini
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Elsa Martins
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Ilaria Scurci
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Oliver Hartley
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
7
|
Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochem Pharmacol 2018. [DOI: 10.1016/j.bcp.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018; 175:1419-1438. [PMID: 29272550 DOI: 10.1111/bph.14132] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemokines and their receptors form an intricate interaction and signalling network that plays critical roles in various physiological and pathological cellular processes. The high promiscuity and apparent redundancy of this network makes probing individual chemokine/receptor interactions and functional effects, as well as targeting individual receptor axes for therapeutic applications, challenging. Despite poor sequence identity, the N-terminal regions of chemokines, which play a key role in their activity and selectivity, contain several conserved features. Thus far little is known regarding the molecular basis of their interactions with typical and atypical chemokine receptors or the conservation of their contributions across chemokine-receptor pairs. EXPERIMENTAL APPROACH We used a broad panel of chemokine variants and modified peptides derived from the N-terminal region of chemokines CXCL12, CXCL11 and vCCL2, to compare the contributions of various features to binding and activation of their shared receptors, the two typical, canonical G protein-signalling receptors, CXCR4 and CXCR3, as well as the atypical scavenger receptor CXCR7/ACKR3, which shows exclusively arrestin-dependent activity. KEY RESULTS We provide molecular insights into the plasticity of the ligand-binding pockets of these receptors, their chemokine binding modes and their activation mechanisms. Although the chemokine N-terminal region is a critical determinant, neither the most proximal residues nor the N-loop are essential for binding and activation of ACKR3, as distinct from binding and activation of CXCR4 and CXCR3. CONCLUSION AND IMPLICATIONS These results suggest a different interaction mechanism between this atypical receptor and its ligands and illustrate its strong propensity to activation.
Collapse
Affiliation(s)
- Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - David Rhainds
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Thomas D'huys
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - François Guité-Vinet
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geneviève St-Onge
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018; 104:343-357. [PMID: 29570832 DOI: 10.1002/jlb.3ma0118-007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
The chemokine receptor CXCR4 (C-X-C chemokine receptor type 4 also known as fusin or CD184 (cluster of differentiation 184)) is implicated in various biological and pathological processes of the hematopoietic and immune systems. CXCR4 is also one of the major coreceptors for HIV-1 entry into target cells and is overexpressed in many cancers, supporting cell survival, proliferation, and migration. CXCR4 is thus an extremely relevant drug target. Among the different strategies to block CXCR4, chemokine-derived peptide inhibitors hold great therapeutic potential. In this study, we used the N-terminus of vCCL2/vMIPII, a viral CXCR4 antagonist chemokine, as a scaffold motif to engineer and select CXCR4 peptide inhibitors, called Mimokines, which imitate the chemokine-binding mode but display an enhanced receptor affinity, antiviral properties, and receptor selectivity. We first engineered a Mimokine phage displayed library based on the first 21 residues of vCCL2, in which cysteine 11 and 12 were fully randomized and screened it against purified CXCR4 stabilized in liposomes. We identified Mimokines displaying up to 4-fold higher affinity for CXCR4 when compared to the reference peptide and fully protected MT-4 cells against HIV-1 infection. These selected Mimokines were then subjected to dimerization, D-amino acid, and aza-β3-amino acid substitution to further enhance their potency and selectivity. Optimized Mimokines exhibited up to 120-fold enhanced CXCR4 binding (range of 20 nM) and more than 200-fold improved antiviral properties (≤ 1 μM) compared to the parental Mimokines. Interestingly, these optimized Mimokines also showed up to 25-fold weaker affinity for ACKR3/CXCR7 and may therefore serve as lead compounds for further development of more selective CXCR4 peptide inhibitors and probes.
Collapse
Affiliation(s)
- Virginie Fievez
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Amor Mosbah
- Université de Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| | - Karthik Arumugam
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Julie Mathu
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Nadia Beaupain
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Sabrina Deroo
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | | | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Mona CE, Besserer-Offroy É, Cabana J, Lefrançois M, Boulais PE, Lefebvre MR, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists. J Med Chem 2016; 59:7512-24. [DOI: 10.1021/acs.jmedchem.6b00566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christine E. Mona
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jérôme Cabana
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Marilou Lefrançois
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philip E. Boulais
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Marie-Reine Lefebvre
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Richard Leduc
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nikolaus Heveker
- Department of Biochemistry and Molecular
Medicine, Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C4, Canada
| | - Éric Marsault
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emanuel Escher
- Department
of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Tian M, Zhang N, Liu X, Guo L, Yang L. Sequential on-line C-terminal sequencing of peptides based on carboxypeptidase Y digestion and optically gated capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2016; 1459:152-159. [PMID: 27425760 DOI: 10.1016/j.chroma.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023]
Abstract
We report a novel method for sequential on-line C-terminal sequencing of peptides, which combines carboxypeptidase Y (CPY) digestion with on-line derivatization and optically gated capillary electrophoresis with laser-induced fluorescence detection (OGCE-LIF). Various factors that may affect the C-terminal sequencing were investigated and optimized. High repeatability of on-line derivatization and the sequential OGCE-LIF assay of amino acids (AAs) was achieved with relative standard deviation (RSD) (n=20) less than 1.5% and 3.2% for migration time and peak height, respectively. A total of 13 AAs was efficiently separated in the present study, indicating that the method can be used for sequencing of peptides consisting of the 13 AAs studied. Using two synthesized N-terminally blocked peptides as test examples, we show that the present method can on-line monitor the released AAs with a temporal resolution of 50s during the entire CPY digestion process. The rates of AA release as a function of digestion time were easily measured; thus, the AA sequence of the peptide was determined with just one OGCE assay. Our study indicates the present approach is an effective, reliable, and convenient method for rapid analysis of the C-terminal sequence of peptides, with potential application in peptide analysis and proteome research.
Collapse
Affiliation(s)
- Miaomiao Tian
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Ning Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Xiaoxia Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China.
| |
Collapse
|
12
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 2016; 570:389-420. [PMID: 26921956 DOI: 10.1016/bs.mie.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Lauren G Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ling Qin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tracy M Handel
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
14
|
Szpakowska M, Chevigné A. vCCL2/vMIP-II, the viral master KEYmokine. J Leukoc Biol 2015; 99:893-900. [DOI: 10.1189/jlb.2mr0815-383r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022] Open
|
15
|
Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, Handel TM. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem 2015. [PMID: 26216880 DOI: 10.1074/jbc.m115.675108] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3.
Collapse
Affiliation(s)
- Melinda S Hanes
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Catherina L Salanga
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Arnab B Chowdry
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Iain Comerford
- Chemokine Biology Group, The School of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | - Shaun R McColl
- Chemokine Biology Group, The School of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | - Irina Kufareva
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Tracy M Handel
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|
16
|
Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/7355_2014_77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Bonvin P, Dunn SM, Rousseau F, Dyer DP, Shaw J, Power CA, Handel TM, Proudfoot AEI. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display. J Biol Chem 2014; 289:31846-31855. [PMID: 25266725 DOI: 10.1074/jbc.m114.599233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the ligand-binding surface of the CC chemokine-binding proteins Evasin-1 and Evasin-4, produced by the tick Rhipicephalus sanguineus, we sought to identify the key determinants responsible for their different chemokine selectivities by expressing Evasin mutants using phage display. We first designed alanine mutants based on the Evasin-1·CCL3 complex structure and an in silico model of Evasin-4 bound to CCL3. The mutants were displayed on M13 phage particles, and binding to chemokine was assessed by ELISA. Selected variants were then produced as purified proteins and characterized by surface plasmon resonance analysis and inhibition of chemotaxis. The method was validated by confirming the importance of Phe-14 and Trp-89 to the inhibitory properties of Evasin-1 and led to the identification of a third crucial residue, Asn-88. Two amino acids, Glu-16 and Tyr-19, were identified as key residues for binding and inhibition of Evasin-4. In a parallel approach, we identified one clone (Y28Q/N60D) that showed a clear reduction in binding to CCL3, CCL5, and CCL8. It therefore appears that Evasin-1 and -4 use different pharmacophores to bind CC chemokines, with the principal binding occurring through the C terminus of Evasin-1, but through the N-terminal region of Evasin-4. However, both proteins appear to target chemokine N termini, presumably because these domains are key to receptor signaling. The results also suggest that phage display may offer a useful approach for rapid investigation of the pharmacophores of small inhibitory binding proteins.
Collapse
Affiliation(s)
- Pauline Bonvin
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland,; NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and
| | - Steven M Dunn
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - François Rousseau
- NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and
| | - Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0684
| | - Jeffrey Shaw
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Christine A Power
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0684
| | - Amanda E I Proudfoot
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland,; NovImmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland, and.
| |
Collapse
|
18
|
Chen L, Wang N, Sun D, Li L. Microwave-assisted acid hydrolysis of proteins combined with peptide fractionation and mass spectrometry analysis for characterizing protein terminal sequences. J Proteomics 2014; 100:68-78. [PMID: 24145141 DOI: 10.1016/j.jprot.2013.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/24/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
Abstract
We report a relatively simple mass spectrometric technique for characterizing the terminal amino acid sequences of proteins. It is based on the use of microwave-assisted acid hydrolysis (MAAH) with 3M HCl to hydrolyze a protein into polypeptide ladders with varying sizes of up to the molecular mass of the protein. The hydrolysate is then fractionated by isocratic reversed phase liquid chromatography (RPLC) to produce a low-mass-peptide fraction mainly consisting of the terminal peptides. This fraction is subjected to LC tandem mass spectrometry (MS/MS) analysis to generate the terminal peptide sequence information. Using bovine serum albumin as an example, it is shown that more than 10 terminal peptides of each end could be identified using as little as 0.5μg (7.5pmol) of protein. This method was applied for the characterization of a recombinant protein (mCherry with an additional sequence tag added to the N-terminal for expression and purification) and its truncated form (mCherry treated with enterokinase to cleave off the tag). Sequence errors and unexpected by-products with different terminal sequences were determined from these two samples, illustrating that this method of HCl MAAH with peptide fractionation and LC-MS/MS analysis should be useful for detailed characterization of protein terminal sequences. BIOLOGICAL SIGNIFICANCE Protein terminal truncation or modification plays an important role in determining the biological functions of a protein. Detailed characterization of protein terminal sequences is critical in biological studies as well as in the development and quality control of protein-based therapeutics and vaccines. In this work, we report a relatively simple method for analyzing protein terminal sequences based on microwave-assisted acid hydrolysis to generate the peptide ladder of a protein, liquid chromatography fractionation of the resultant ladder to collect the low-mass-peptide fraction which mainly contains terminal peptides, and LC-ESI MS/MS sequencing of the collected peptides. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Difei Sun
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Neutralising properties of peptides derived from CXCR4 extracellular loops towards CXCL12 binding and HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1031-41. [PMID: 24480462 DOI: 10.1016/j.bbamcr.2014.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CXCR4 interacts with a single endogenous chemokine, CXCL12, and regulates a wide variety of physiological and pathological processes including inflammation and metastasis development. CXCR4 also binds the HIV-1 envelope glycoprotein, gp120, resulting in viral entry into host cells. Therefore, CXCR4 and its ligands represent valuable drug targets. In this study, we investigated the inhibitory properties of synthetic peptides derived from CXCR4 extracellular loops (ECL1-X4, ECL2-X4 and ECL3-X4) towards HIV-1 infection and CXCL12-mediated receptor activation. Among these peptides, ECL1-X4 displayed anti-HIV-1 activity against X4, R5/X4 and R5 viruses (IC50=24 to 76μM) in cell viability assay without impairing physiological CXCR4-CXCL12 signalling. In contrast, ECL2-X4 only inhibited X4 and R5/X4 strains, interfering with HIV-entry into cells. At the same time, ECL2-X4 strongly and specifically interacted with CXCL12, blocking its binding to CXCR4 and its second receptor, CXCR7 (IC50=20 and 100μM). Further analysis using mutated and truncated peptides showed that ECL2 of CXCR4 forms multiple contacts with the gp120 protein and the N-terminus of CXCL12. Chemokine neutralisation was mainly driven by four aspartates and the C-terminal residues of ECL2-X4. These results demonstrate that ECL2 represents an important structural determinant in CXCR4 activation. We identified the putative site for the binding of CXCL12 N-terminus and provided new structural elements to explain the recognition of gp120 and dimeric CXCR4 ligands.
Collapse
|
20
|
Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins. Anal Chim Acta 2013; 792:79-85. [DOI: 10.1016/j.aca.2013.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022]
|
21
|
Jaerve A, Müller HW. Chemokines in CNS injury and repair. Cell Tissue Res 2012; 349:229-48. [PMID: 22700007 DOI: 10.1007/s00441-012-1427-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/05/2012] [Indexed: 12/17/2022]
Abstract
Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Medical Faculty Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | |
Collapse
|
22
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|