1
|
Dinesh NEH, Rousseau J, Mosher DF, Strauss M, Mui J, Campeau PM, Reinhardt DP. Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia. Cell Mol Life Sci 2024; 81:419. [PMID: 39367925 PMCID: PMC11456097 DOI: 10.1007/s00018-024-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Dhanabalan KM, Padhan B, Dravid AA, Agarwal S, Pancheri NM, Lin A, Willet NJ, Padmanabhan AK, Agarwal R. Nordihydroguaiaretic acid microparticles are effective in the treatment of osteoarthritis. J Mater Chem B 2024. [PMID: 39356214 DOI: 10.1039/d4tb01342e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several disease-modifying osteoarthritis (OA) drugs have emerged, but none have been approved for clinical use due to their systemic side effects, short half-life, and rapid clearance from the joints. Nordihydroguaiaretic acid (NDGA), a reactive oxygen species (ROS) scavenger and autophagy inducer, could be a potential treatment for OA. In this report, we show for the first time that sustained delivery of NDGA through polymeric microparticles maintains therapeutic concentrations of drug in the joint and ameliorates post-traumatic OA (PTOA) in a mouse model. In vitro treatment of oxidatively stressed primary chondrocytes from OA patients using NDGA-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles (NDGA-MP) inhibited 15-lipoxygenase, induced autophagy, prevented chondrosenescence, and sustained matrix production. In vivo intra-articular delivery of NDGA-MP was non-toxic and had prolonged retention time (up to 35 days) in murine knee joints. Intra-articular therapy using NDGA-MP effectively reduced cartilage damage and reduced pain in the surgery-induced PTOA mouse model. Our studies open new avenues to modulate the immune environment and treat post-traumatic OA using ROS quenchers and autophagy inducers.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Bhagyashree Padhan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Ameya A Dravid
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Smriti Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Nicholas M Pancheri
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Nick J Willet
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
3
|
Freppel W, Lim EX, Rudd PA, Herrero LJ. Synoviocytes assist in modulating the effect of Ross River virus infection in micromass-cultured primary human chondrocytes. J Med Microbiol 2024; 73:001859. [PMID: 39028255 PMCID: PMC11316548 DOI: 10.1099/jmm.0.001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction. Ross River virus (RRV) is a mosquito-borne virus prevalent in Australia and the islands of the South Pacific, where it causes an arthritogenic illness with a hallmark feature of severe joint pain. The joint space is a unique microenvironment that contains cartilage and synovial fluid. Chondrocytes and synoviocytes are crucial components of the joint space and are known targets of RRV infection.Hypothesis/Gap statement. Understanding the relationship between synoviocytes and chondrocytes during RRV infection will provide further insights into RRV-induced joint pathology.Methodology. To better understand the unique dynamics of these cells during RRV infection, we used primary chondrocytes cultured in physiologically relevant micromasses. We then directly infected micromass chondrocytes or infected primary fibroblast-like synoviocytes (FLS), co-cultured with micromass chondrocytes. Micromass cultures and supernatants were collected and analysed for viral load with a PCR array of target genes known to play a role in arthritis.Results. We show that RRV through direct or secondary infection in micromass chondrocytes modulates the expression of cellular factors that likely contribute to joint inflammation and disease pathology, as well as symptoms such as pain. More importantly, while we show that RRV can infect micromass-cultured chondrocytes via FLS infection, FLS themselves affect the regulation of cellular genes known to contribute to arthritis.Conclusion. Single-cell culture systems lack the complexity of in vivo systems, and understanding the interaction between cell populations is crucial for deciphering disease pathology, including for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Elisa X.Y. Lim
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Penny A. Rudd
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
4
|
Hussain MT, Austin-Williams S, Wright TD, Dhawan UK, Pinto AL, Cooper D, Norling LV. β1-Integrin-Mediated Uptake of Chondrocyte Extracellular Vesicles Regulates Chondrocyte Homeostasis. Int J Mol Sci 2024; 25:4756. [PMID: 38731975 PMCID: PMC11083596 DOI: 10.3390/ijms25094756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent age-related degenerative disorder, which severely reduces the quality of life of those affected. Whilst management strategies exist, no cures are currently available. Virtually all joint resident cells generate extracellular vesicles (EVs), and alterations in chondrocyte EVs during OA have previously been reported. Herein, we investigated factors influencing chondrocyte EV release and the functional role that these EVs exhibit. Both 2D and 3D models of culturing C28I/2 chondrocytes were used for generating chondrocyte EVs. We assessed the effect of these EVs on chondrogenic gene expression as well as their uptake by chondrocytes. Collectively, the data demonstrated that chondrocyte EVs are sequestered within the cartilage ECM and that a bi-directional relationship exists between chondrocyte EV release and changes in chondrogenic differentiation. Finally, we demonstrated that the uptake of chondrocyte EVs is at least partially dependent on β1-integrin. These results indicate that chondrocyte EVs have an autocrine homeostatic role that maintains chondrocyte phenotype. How this role is perturbed under OA conditions remains the subject of future work.
Collapse
Affiliation(s)
- Mohammed Tayab Hussain
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
| | - Shani Austin-Williams
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
| | - Thomas Dudley Wright
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
| | - Umesh Kumar Dhawan
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
| | - Andreia L. Pinto
- Royal Brompton & Harefield NHS Foundation Trust, London SW3 6PY, UK;
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lucy V. Norling
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (M.T.H.); (T.D.W.); (U.K.D.); (D.C.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
5
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Choudhary BS, Kumar TA, Vashishtha A, Tejasri S, Kumar AS, Agarwal R, Chakrapani H. An esterase-cleavable persulfide donor with no electrophilic byproducts and a fluorescence reporter. Chem Commun (Camb) 2024; 60:1727-1730. [PMID: 38240148 DOI: 10.1039/d3cc04948e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Hydrogen sulfide (H2S) and associated sulfur species known as persulfide or sulfane sulfur are considered among the first responders to oxidative stress. However, tools that reliably generate these species without any potentially toxic byproducts are limited, and even fewer report the generation of a persulfide. Here, using a latent fluorophore embedded with N-acetylcysteine persulfide, we report a new tool that is cleaved by esterase to produce a persulfide as well as a fluorescence reporter without any electrophilic byproducts. The rate of formation of the fluorescence reporter is nearly identical to the rate of formation of the persulfide suggesting that the use of this probe eliminates the need for secondary assays that report persulfide formation. Symptomatic with persulfide generation, the newly developed donor was able to protect chondrocyte cells from oxidative stress.
Collapse
Affiliation(s)
- Bharat S Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Akshi Vashishtha
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560 012, Karnataka, India
| | - Sushma Tejasri
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Amal S Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560 012, Karnataka, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
7
|
Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, Guo F, Liang J, Hong X, Guo R, Zhang B. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/ nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed Pharmacother 2023; 164:114964. [PMID: 37269815 DOI: 10.1016/j.biopha.2023.114964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1β (IL-1β)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1β in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Yuxin Yang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Yiqin Zhang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Fengfen Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
8
|
Green D, Singh A, Tippett VL, Tattersall L, Shah KM, Siachisumo C, Ward NJ, Thomas P, Carter S, Jeys L, Sumathi V, McNamara I, Elliott DJ, Gartland A, Dalmay T, Fraser WD. YBX1-interacting small RNAs and RUNX2 can be blocked in primary bone cancer using CADD522. J Bone Oncol 2023; 39:100474. [PMID: 36936386 PMCID: PMC10015236 DOI: 10.1016/j.jbo.2023.100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.
Collapse
Key Words
- CADD522
- CADD522, computer aided drug design molecule 522
- CI, confidence interval
- CNV, copy number variant
- CS, chondrosarcoma
- CTC, circulating tumour cell
- DE, differentially expressed
- ES, Ewing sarcoma
- HD, high definition
- HR, hazard ratio
- OS, osteosarcoma
- RBP, RNA binding protein
- RNU6-1, U6 small nuclear 1
- ROI, region-of-interest
- Rnl, T4 RNA ligase
- SNV, single nucleotide variant
- SV, structural variant
- bone cancer
- iCLIP, individual nucleotide resolution cross-linking and immunoprecipitation
- mRNA, messenger RNA
- miRNA
- miRNA, microRNA
- piRNA, piwi interacting RNA
- sRNA, small RNA
- small RNA
- tRF
- tRF, transfer RNA fragment
- tRNA, transfer RNA
- ysRNA, Y RNA-derived sRNA
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Corresponding author.
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria L. Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | | | - Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich, UK
| | - Simon Carter
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Lee Jeys
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Vaiyapuri Sumathi
- Musculoskeletal Pathology, University Hospitals Birmingham, Royal Orthopaedic Hospital, Birmingham, UK
| | - Iain McNamara
- Orthopaedics & Trauma, Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - William D. Fraser
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
9
|
Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Jahr H, Wang FS. Inhibition of histone lysine demethylase 6A promotes chondrocytic activity and attenuates osteoarthritis development through repressing H3K27me3 enhancement of Wnt10a. Int J Biochem Cell Biol 2023; 158:106394. [PMID: 36871937 DOI: 10.1016/j.biocel.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Germany; Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Zhang P, Chen J, Sun Y, Cao Z, Zhang Y, Mo Q, Yao Q, Zhang W. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. J Mater Chem B 2023; 11:1240-1261. [PMID: 36648128 DOI: 10.1039/d2tb02203f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone. The bi-layer scaffolds were subsequently modified with tannic acid (TA) prime-coating and E7 peptide conjugation (PCL/HA-GelMA/KGN@TA/E7) to regulate endogenous stem cell behaviors and exert antioxidant activity for enhanced osteochondral regeneration. In vitro, the scaffolds could support cell attachment and proliferation, and enhance the chondrogenic and osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BMSCs) in a specific layer. Besides, the incorporation of TA/E7 significantly increased the biological activity of the bi-layer scaffolds including the pro-migratory effect, antioxidant activity, and the maintenance of cell viability against oxidative stress. In vivo, the developed bi-layer scaffolds enhanced the simultaneous regeneration of cartilage and subchondral bone when implanted into a rabbit OCD model through macroscopic, micro-CT, and histological evaluation. Taken together, these investigations demonstrated that the 3D multifunctional bi-layer scaffolds could provide a suitable microenvironment for endogenous stem cells, and promote in situ osteochondral regeneration, showing great potential for the clinical treatment of OCD.
Collapse
Affiliation(s)
- Po Zhang
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
11
|
Staebler S, Lichtblau A, Gurbiel S, Schubert T, Riechers A, Rottensteiner-Brandl U, Bosserhoff A. MIA/CD-RAP Regulates MMP13 and Is a Potential New Disease-Modifying Target for Osteoarthritis Therapy. Cells 2023; 12:cells12020229. [PMID: 36672165 PMCID: PMC9856983 DOI: 10.3390/cells12020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Melanoma inhibitory activity/cartilage-derived retinoicacid-sensitive protein (MIA/CD-RAP) is a protein expressed and secreted by chondrocytes and cartilaginous tissues. MIA/CD-RAP-deficient mice develop milder osteoarthritis than wildtype mice. In this study, we investigated MIA/CD-RAP downstream targets to explain this reduced disease development. As a possible mediator, we could detect matrix metalloproteinase 13 (MMP13), and the influence of MIA/CD-RAP on MMP13 regulation was analyzed in vitro using SW1353 chondrosarcoma cells and primary chondrocytes. The femoral head cartilage of WT and MIA/CD-RAP -/- mice were cultured ex vivo to further investigate MMP13 activity. Finally, osteoarthritis was surgically induced via DMM in C57BL/6 mice, and the animals were treated with an MIA/CD-RAP inhibitory peptide by subcutaneously implanted pellets. MMP13 was regulated by MIA/CD-RAP in SW1353 cells, and MIA/CD-RAP -/- murine chondrocytes showed less expression of MMP13. Further, IL-1β-treated MIA/CD-RAP -/- chondrocytes displayed less MMP13 expression and activity. Additionally, MIA/CD-RAP-deficient ex vivo cultured cartilage explants showed less MMP13 activity as well as reduced cartilage degradation. The mice treated with the MIA/CD-RAP inhibitory peptide showed less osteoarthritis development. Our findings revealed MIA/CD-RAP as a new regulator of MMP13 and highlighted its role as a potential new target for osteoarthritis therapy.
Collapse
Affiliation(s)
- Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Adrian Lichtblau
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Slavyana Gurbiel
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 8-10, 91054 Erlangen, Germany
- Institute of Applied Pathology, 67346 Speyer, Germany
| | - Alexander Riechers
- Institute of Pathology, Medical School, University of Regensburg, 93053 Regensburg, Germany
| | | | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
12
|
Dhanabalan KM, Dravid AA, Agarwal S, Sharath RK, Padmanabhan AK, Agarwal R. Intra-articular injection of rapamycin microparticles prevent senescence and effectively treat osteoarthritis. Bioeng Transl Med 2023; 8:e10298. [PMID: 36684078 PMCID: PMC9842044 DOI: 10.1002/btm2.10298] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Trauma to the knee joint is associated with significant cartilage degeneration and erosion of subchondral bone, which eventually leads to osteoarthritis (OA), resulting in substantial morbidity and healthcare burden. With no disease-modifying drugs in clinics, the current standard of care focuses on symptomatic relief and viscosupplementation. Modulation of autophagy and targeting senescence pathways are emerging as potential treatment strategies. Rapamycin has shown promise in OA disease amelioration by autophagy upregulation, yet its clinical use is hindered by difficulties in achieving therapeutic concentrations, necessitating multiple weekly injections. Rapamycin-loaded in poly(lactic-co-glycolic acid) microparticles (RMPs) induced autophagy, prevented senescence, and sustained sulphated glycosaminoglycans production in primary human articular chondrocytes from OA patients. RMPs were potent, nontoxic, and exhibited high retention time (up to 35 days) in mice joints. Intra-articular delivery of RMPs effectively mitigated cartilage damage and inflammation in surgery-induced OA when administered as a prophylactic or therapeutic regimen. Together, the study demonstrates the feasibility of using RMPs as a potential clinically translatable therapy to prevent the progression of post-traumatic OA.
Collapse
Affiliation(s)
- Kaamini M. Dhanabalan
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Ameya A. Dravid
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Smriti Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | | | | | - Rachit Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
13
|
Hsieh CC, Yen BL, Chang CC, Hsu PJ, Lee YW, Yen ML, Yet SF, Chen L. Wnt antagonism without TGFβ induces rapid MSC chondrogenesis via increasing AJ interactions and restricting lineage commitment. iScience 2022; 26:105713. [PMID: 36582823 PMCID: PMC9792887 DOI: 10.1016/j.isci.2022.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification toward smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions-key components of the adherens junctions (AJ)-and increasing cytoskeleton-mediated condensation. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin as an upstream regulator. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application.
Collapse
Affiliation(s)
- Chen-Chan Hsieh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Corresponding author
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Shaw-Fang Yet
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
14
|
Foster NC, Hall NM, El Haj AJ. Two-Dimensional and Three-Dimensional Cartilage Model Platforms for Drug Evaluation and High-Throughput Screening Assays. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:421-436. [PMID: 34010074 PMCID: PMC7612674 DOI: 10.1089/ten.teb.2020.0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a severely painful and debilitating disease of the joint, which brings about degradation of the articular cartilage and currently has few therapeutic solutions. Two-dimensional (2D) high-throughput screening (HTS) assays have been widely used to identify candidate drugs with therapeutic potential for the treatment of OA. A number of small molecules which improve the chondrogenic differentiation of progenitor cells for tissue engineering applications have also been discovered in this way. However, due to the failure of these models to accurately represent the native joint environment, the efficacy of these drugs has been limited in vivo. Screening systems utilizing three-dimensional (3D) models, which more closely reflect the tissue and its complex cell and molecular interactions, have also been described. However, the vast majority of these systems fail to recapitulate the complex, zonal structure of articular cartilage and its unique cell population. This review summarizes current 2D HTS techniques and addresses the question of how to use existing 3D models of tissue-engineered cartilage to create 3D drug screening platforms with improved outcomes. Impact statement Currently, the use of two-dimensional (2D) screening platforms in drug discovery is common practice. However, these systems often fail to predict efficacy in vivo, as they do not accurately represent the complexity of the native three-dimensional (3D) environment. This article describes existing 2D and 3D high-throughput systems used to identify small molecules for osteoarthritis treatment or in vitro chondrogenic differentiation, and suggests ways to improve the efficacy of these systems based on the most recent research.
Collapse
Affiliation(s)
| | - Nicole M Hall
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, University of Birmingham, Edgbaston, B15 2TH
| |
Collapse
|
15
|
Zhu M, Xu Q, Yang X, Zhan H, Zhang B, Liu X, Dai M. Vindoline Attenuates Osteoarthritis Progression Through Suppressing the NF-κB and ERK Pathways in Both Chondrocytes and Subchondral Osteoclasts. Front Pharmacol 2022; 12:764598. [PMID: 35095488 PMCID: PMC8790248 DOI: 10.3389/fphar.2021.764598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Disruption of extracellular matrix (ECM) homeostasis and subchondral bone remodeling play significant roles in osteoarthritis (OA) pathogenesis. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, possesses anti-inflammatory properties. According to previous studies, inflammation is closely associated with osteoclast differentiation and the disorders of the homeostasis between ECM. Although Vin has demonstrated effective anti-inflammatory properties, its effects on the progression of OA remain unclear. We hypothesized that Vin may suppress the progress of OA by suppressing osteoclastogenesis and stabilizing ECM of articular cartilage. Therefore, we investigated the effects and molecular mechanisms of Vin as a treatment for OA in vitro and in vivo. In the present study, we found that Vin significantly suppressed RANKL-induced osteoclast formation and obviously stabilized the disorders of the ECM homeostasis stimulated by IL-1β in a dose-dependent manner. The mRNA expressions of osteoclast-specific genes were inhibited by Vin treatment. Vin also suppressed IL-1β-induced mRNA expressions of catabolism and protected the mRNA expressions of anabolism. Moreover, Vin notably inhibited the activation of RANKL-induced and IL-1β-induced NF-κB and ERK pathways. In vivo, Vin played a protective role by inhibiting osteoclast formation and stabilizing cartilage ECM in destabilization of the medial meniscus (DMM)-induced OA mice. Collectively, our observations provide a molecular-level basis for Vin’s potential in the treatment of OA.
Collapse
Affiliation(s)
- Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xinmin Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Haibo Zhan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
16
|
Semitela Â, Ramalho G, Capitão A, Sousa C, Mendes AF, Aap Marques P, Completo A. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. J Tissue Eng 2022; 13:20417314211069342. [PMID: 35024136 PMCID: PMC8743920 DOI: 10.1177/20417314211069342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023] Open
Abstract
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibers during electrospinning may be a solution. However, before this approach can be effectively employed, it is critical to identify whether chondrocytes are adversely affected. Several electrospraying operating settings were tested to determine their effect on the survival and function of an immortalized human chondrocyte cell line. These chondrocytes survived through an electric field formed by low needle-to-collector distances and low voltage. No differences in chondrocyte viability, morphology, gene expression, or proliferation were found. Preliminary data of the combination of electrospraying and polymer electrospinning disclosed that chondrocyte integration was feasible using an alternated approach. The overall increase in chondrocyte viability over time indicated that the embedded cells retained their proliferative capacity. Besides the cell line, primary chondrocytes were also electrosprayed under the previously optimized operational conditions, revealing the higher sensitivity degree of these cells. Still, their post-electrosprayed viability remained considerably high. The data reported here further suggest that bio-electrospraying under the optimal operational conditions might be a promising alternative to the existent cell seeding techniques, promoting not only cells safe delivery to the scaffold, but also the development of cellularized cartilage tissue constructs.
Collapse
Affiliation(s)
- Ângela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Gonçalo Ramalho
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Capitão
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Cátia Sousa
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Alexandrina F Mendes
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Paula Aap Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Paglia DN, Kanjilal D, Kadkoy Y, Moskonas S, Wetterstrand C, Lin A, Galloway J, Tompson J, Culbertson MD, O’Connor JP. Naproxen treatment inhibits articular cartilage loss in a rat model of osteoarthritis. J Orthop Res 2021; 39:2252-2259. [PMID: 33274763 PMCID: PMC8175455 DOI: 10.1002/jor.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
The effects of naproxen, a nonsteroidal anti-inflammatory drug (NSAID), on articular cartilage degeneration in female Sprague-Dawley rats was examined. Osteoarthritis (OA) was induced by destabilization of the medial meniscus (DMM) in each knee. Rats were treated with acetaminophen (60 mg/kg), naproxen (8 mg/kg), or 1% carboxymethylcellulose (placebo) by oral gavage twice daily for 3 weeks, beginning 2 weeks after surgery. OA severity was assessed by histological Osteoarthritis Research Society International (OARSI) scoring and by measuring proximal tibia cartilage depth using contrast enhanced µCT (n = 6 per group) in specimens collected at 2, 5, and 7 weeks after surgery as well as on pristine knees. Medial cartilage OARSI scores from the DMM knees of naproxen-treated rats were statistically lower (i.e., better) than the medial cartilage OARSI scores from the DMM knees of placebo-treated rats at 5-weeks (8.7 ± 3.6 vs. 13.2 ± 2.4, p = 0.025) and 7-weeks (9.5 ± 1.2 vs. 12.5 ± 2.5, p = 0.024) after surgery. At 5 weeks after DMM surgery, medial articular cartilage depth in the proximal tibia specimens was significantly greater in the naproxen (1.78 ± 0.26 mm, p = 0.005) and acetaminophen (1.94 ± 0.12 mm, p < 0.001) treated rats as compared with placebo-treated rats (1.34 ± 0.24 mm). However, at 7 weeks (2 weeks after drug withdrawal), medial articular cartilage depth for acetaminophen-treated rats (1.36 ± 0.29 mm) was significantly reduced compared with specimens from the naproxen-treated rats (1.88 ± 0.14 mm; p = 0.004). The results indicate that naproxen treatment reduced articular cartilage degradation in the rat DMM model during and after naproxen treatment.
Collapse
Affiliation(s)
| | | | - Yazan Kadkoy
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | - Anthony Lin
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | - J. Patrick O’Connor
- Rutgers-New Jersey Medical School, Newark, NJ, USA
- School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
18
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Fürsatz M, Gerges P, Wolbank S, Nürnberger S. Autonomous spheroid formation by culture plate compartmentation. Biofabrication 2021; 13. [PMID: 33513590 DOI: 10.1088/1758-5090/abe186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/29/2021] [Indexed: 11/12/2022]
Abstract
Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remain expensive or require tedious procedures. The aim of this study was to establish a system for resource efficient spheroid generation. This was achieved by compartmentation of cell culture surfaces utilising laser engraving (grid plates). This compartmentation triggered autonomous spheroid formation via rolling-up of the cell monolayer in human adipose-derived stem cells (ASC/TERT1) and human articular chondrocytes (hAC)-ASC/TERT1 co-cultures, when cultivated on grid plates under chondrogenic conditions. Plates with 3 mm grid size yielded stable diameters (about 300 μm). ASC/TERT1 spheroids fully formed within 3 weeks while co-cultures took 1-2 weeks, forming significantly faster with increasing hAC ratio (p<0.05 and 0.01 for 1:1 and 1:4 ASC/TERT1:hAC ratio respectively). Co-cultures showed slightly lower spheroid diameter, due to earlier spheroid formation and incomplete monolayer formation. However, this was associated with more regular matrix distribution in the co-culture. Both showed differentiation capacity comparable to standard pellet culture in (immune-)histochemistry and RT-qPCR. To assess usability for cartilage repair, spheroids were embedded into a hydrogel (fibrin), yielding cellular outgrowth and matrix deposition, which was especially pronounced in co-cultures. The herein presented novel cell culture system is not only a promising tool for autonomous spheroid generation with the potential of experimental and clinical application in tissue engineering but also for high-throughput analysis for both pharmaceutical and therapeutic uses.
Collapse
Affiliation(s)
- Marian Fürsatz
- Austrian Cluster of Tissue Regeneration , Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Wien, Wien, 1200, AUSTRIA
| | - Peter Gerges
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, Wien, Wien, 1040, AUSTRIA
| | - Susanne Wolbank
- Austrian Cluster of Tissue Regeneration , Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Wien, Wien, 1200, AUSTRIA
| | - Sylvia Nürnberger
- Medical University of Vienna, Währinger Gürtel 18-20, Wien, Wien, 1090, AUSTRIA
| |
Collapse
|
20
|
Uzieliene I, Kalvaityte U, Bernotiene E, Mobasheri A. Non-viral Gene Therapy for Osteoarthritis. Front Bioeng Biotechnol 2021; 8:618399. [PMID: 33520968 PMCID: PMC7838585 DOI: 10.3389/fbioe.2020.618399] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Strategies for delivering nucleic acids into damaged and diseased tissues have been divided into two major areas: viral and non-viral gene therapy. In this mini-review article we discuss the application of gene therapy for the treatment of osteoarthritis (OA), one of the most common forms of arthritis. We focus primarily on non-viral gene therapy and cell therapy. We briefly discuss the advantages and disadvantages of viral and non-viral gene therapy and review the nucleic acid transfer systems that have been used for gene delivery into articular chondrocytes in cartilage from the synovial joint. Although viral gene delivery has been more popular due to its reported efficiency, significant effort has gone into enhancing the transfection efficiency of non-viral delivery, making non-viral approaches promising tools for further application in basic, translational and clinical studies on OA. Non-viral gene delivery technologies have the potential to transform the future development of disease-modifying therapeutics for OA and related osteoarticular disorders. However, further research is needed to optimize transfection efficiency, longevity and duration of gene expression.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
21
|
Ravera F, Efeoglu E, Byrne HJ. Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation. Analyst 2021; 146:322-337. [PMID: 33155580 DOI: 10.1039/d0an01983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) has been demonstrated to be a powerful analytical tool, which provides detailed label free biochemical fingerprint information in a non-invasive way, for analysis of cells, tissues and body fluids. In this work, RMS is explored to monitor the process of Mesenchymal Stem Cell (MSC) differentiation into chondrocytes in vitro, providing a holistic molecular picture of cellular events governing the differentiation. Spectral signatures of the subcellular compartments, nucleolus, nucleus and cytoplasm were initially probed and characteristic molecular changes between differentiated and undifferentiated were identified. Moreover, high density cell micromasses were cultured over a period of three weeks, and a systematic monitoring of cellular molecular components and the progress of the ECM formation, associated with the chondrogenic differentiation, was performed. This study shows the potential applicability of RMS as a powerful tool to monitor and better understand the differentiation pathways and process.
Collapse
Affiliation(s)
- Francesca Ravera
- School of Physics and Clinical and Optometric Sciences, TU Dublin, City Campus, Dublin 8, Ireland.
| | | | | |
Collapse
|
22
|
Abstract
MicroRNAs have been shown to play a role in cartilage development, homeostasis and breakdown during osteoarthritis. We previously identified miR-3085 in humans as a chondrocyte-selective microRNA, however it could not be detected by Northern blot. The aim of the current study was to prove that miR-3085 is a microRNA and to investigate the function of miR-3085 in signaling pathways relevant to cartilage homeostasis and osteoarthritis. Here, we confirm that miR-3085 is a microRNA and not another class of small RNA using (1) a pre-miR hairpin maturation assay, (2) expression levels in a Dicer null cell line, and (3) Ago2 pulldown. MicroRNA-3085-3p is expressed more highly in micromass than monolayer cultured chondrocytes. Transfection of miR-3085-3p into chondrocytes decreases expression of COL2A1 and ACAN, both of which are validated as direct targets of miR-3085-3p. Interleukin-1 induces the expression of miR-3085-3p, at least in part via NFκB. In a feed-forward mechanism, miR-3085-3p then potentiates NFκB signaling. However, at early time points after transfection, its action appears to be inhibitory. MyD88 has been shown to be a direct target of miR-3085-3p and may be responsible for the early inhibition of NFκB signaling. However, at later time points, MyD88 knockdown remains inhibitory and so other functions of miR-3085-3p are clearly dominant. TGFβ1 also induces the expression of miR-3085-3p, but in this instance, it exerts a feedback inhibition on signaling with SMAD3 and SMAD4 shown to be direct targets. This in vitro analysis shows that miR-3085-3p functions in chondrocytes to induce IL-1-signaling, reduce TGFβ1 signaling, and inhibit expression of matrix genes. These data suggest that miR-3085-3p has a role in chondrocyte function and could contribute to the process of osteoarthritis.
Collapse
|
23
|
Shi ZD, Tchao J, Wu L, Carman AJ. Precision installation of a highly efficient suicide gene safety switch in human induced pluripotent stem cells. Stem Cells Transl Med 2020; 9:1378-1388. [PMID: 32662231 PMCID: PMC7581441 DOI: 10.1002/sctm.20-0007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) and embryonic stem cells, hold great promise for cell‐based therapies, but safety concerns that complicate consideration for routine clinical use remain. Installing a “safety switch” based on the inducible caspase‐9 (iCASP9) suicide gene system should offer added control over undesirable cell replication or activity. Previous studies utilized lentiviral vectors to integrate the iCASP9 system into T cells and iPSCs. This method results in random genomic insertion of the suicide switch and inefficient killing of the cells after the switch is “turned on” with a small molecule (eg, AP1903). To improve the safety and efficiency of the iCASP9 system for use in iPSC‐based therapy, we precisely installed the system into a genomic safe harbor, the AAVS1 locus in the PPP1R12C gene. We then evaluated the efficiencies of different promoters to drive iCASP9 expression in human iPSCs. We report that the commonly used EF1α promoter is silenced in iPSCs, and that the endogenous promoter of the PPP1R12C gene is not strong enough to drive high levels of iCASP9 expression. However, the CAG promoter induces strong and stable iCASP9 expression in iPSCs, and activation of this system with AP1903 leads to rapid killing and complete elimination of iPSCs and their derivatives, including MSCs and chondrocytes, in vitro. Furthermore, iPSC‐derived teratomas shrank dramatically or were completely eliminated after administration of AP1903 in mice. Our data suggest significant improvements on existing iCASP9 suicide switch technologies and may serve as a guide to other groups seeking to improve the safety of stem cell‐based therapies.
Collapse
Affiliation(s)
- Zhong-Dong Shi
- InVitro Cell Research, LLC, Greater New York Metropolitan Area, New York, USA
| | - Jason Tchao
- InVitro Cell Research, LLC, Greater New York Metropolitan Area, New York, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Greater New York Metropolitan Area, New York, USA
| | - Aaron J Carman
- InVitro Cell Research, LLC, Greater New York Metropolitan Area, New York, USA
| |
Collapse
|
24
|
Dhanabalan KM, Gupta VK, Agarwal R. Rapamycin-PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints. Biomater Sci 2020; 8:4308-4321. [PMID: 32597443 DOI: 10.1039/d0bm00596g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteoarthritis (OA) is a joint disease characterized by progressive damage of articular cartilage and the adjoining subchondral bone. Chondrocytes, the primary cells of the cartilage, have limited regenerative capacity and when they undergo stress due to trauma or with aging, they senesce or become apoptotic. Rapamycin, a potent immunomodulator, has shown promise in OA treatment. It activates autophagy and is known to prevent senescence. However, its clinical translation for OA is hampered due to systemic toxicity as high and frequent doses are required. Here, we have fabricated rapamycin encapsulated poly(lactic-co-glycolic acid) (PLGA) based carriers that induced autophagy and prevented cellular senescence in human chondrocytes. The microparticle (MP) delivery system showed sustained release of the drug for several weeks. Rapamycin microparticles protected in vitro cartilage mimics (micromass cultures) from degradation, allowing sustained production of sGAG, and demonstrated a prolonged senescence preventive effect under oxidative and genomic stress conditions. These microparticles also exhibited a residence time of ∼30 days after intra-articular injections in murine knee joints. Such particulate systems are promising candidates for intra-articular delivery of rapamycin for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012 India.
| | | | | |
Collapse
|
25
|
LIU MIN, ALHARBI MOHAMMED, GRAVES DANA, YANG SHUYING. IFT80 Is Required for Fracture Healing Through Controlling the Regulation of TGF-β Signaling in Chondrocyte Differentiation and Function. J Bone Miner Res 2020; 35:571-582. [PMID: 31643106 PMCID: PMC7525768 DOI: 10.1002/jbmr.3902] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Primary cilia are essential cellular organelles that are anchored at the cell surface membrane to sense and transduce signaling. Intraflagellar transport (IFT) proteins are indispensable for cilia formation and function. Although major advances in understanding the roles of these proteins in bone development have been made, the mechanisms by which IFT proteins regulate bone repair have not been identified. We investigated the role of the IFT80 protein in chondrocytes during fracture healing by creating femoral fractures in mice with conditional deletion of IFT80 in chondrocytes utilizing tamoxifen inducible Col2α1-CreER mice. Col2α1cre IFT80f/f mice had smaller fracture calluses than IFT80f/f (control) mice. The max-width and max-callus area were 31% and 48% smaller than those of the control mice, respectively. Col2α1cre IFT80f/f mice formed low-density/porous woven bony tissue with significantly lower ratio of bone volume, Trabecular (Tb) number and Tb thickness, and greater Tb spacing compared to control mice. IFT80 deletion significantly downregulated the expression of angiogenesis markers-VEGF, PDGF and angiopoietin and inhibited fracture callus vascularization. Mechanistically, loss of IFT80 in chondrocytes resulted in a decrease in cilia formation and chondrocyte proliferation rate in fracture callus compared to the control mice. Meanwhile, IFT80 deletion downregulated the TGF-β signaling pathway by inhibiting the expression of TGF-βI, TGF-βR, and phosphorylation of Smad2/3 in the fracture callus. In primary chondrocyte cultures in vitro, IFT80 deletion dramatically reduced chondrocyte proliferation, cilia assembly, and chondrogenic gene expression and differentiation. Collectively, our findings demonstrate that IFT80 and primary cilia play an essential role in fracture healing, likely through controlling chondrocyte proliferation and differentiation, and the TGF-β signaling pathway. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- MIN LIU
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| | - MOHAMMED ALHARBI
- Dept. of Endodontics, Faculty of Dentistry, King Abdulaziz
University, Saudi Arabia
| | - DANA GRAVES
- Dept. of Periodontics, School of Dental Medicine,
University of Pennsylvania, Philadelphia, PA
| | - SHUYING YANG
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Dennis JE, Splawn T, Kean TJ. High-Throughput, Temporal and Dose Dependent, Effect of Vitamins and Minerals on Chondrogenesis. Front Cell Dev Biol 2020; 8:92. [PMID: 32161755 PMCID: PMC7053227 DOI: 10.3389/fcell.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue engineered hyaline cartilage is plagued by poor mechanical properties largely due to inadequate type II collagen expression. Of note, commonly used defined chondrogenic media lack 14 vitamins and minerals, some of which are implicated in chondrogenesis. Type II collagen promoter-driven Gaussia luciferase was transfected into ATDC5 cells to create a chondrogenic cell with a secreted-reporter. The reporter cells were used in an aggregate-based chondrogenic culture model to develop a high-throughput analytic platform. This high-throughput platform was used to assess the effect of vitamins and minerals, alone and in combination with TGFβ1, on COL2A1 promoter-driven expression. Significant combinatorial effects between vitamins, minerals, and TGFβ1 in terms of COL2A1 promoter-driven expression and metabolism were discovered. An “optimal” continual supplement of copper and vitamin K in the presence of TGFβ1 gave a 2.5-fold increase in COL2A1 promoter-driven expression over TGFβ1 supplemented media alone in ATDC5 cells.
Collapse
Affiliation(s)
- James E Dennis
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Taylor Splawn
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Thomas J Kean
- Biionix Cluster, Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
27
|
Yu AXD, Xu ML, Yao P, Kwan KKL, Liu YX, Duan R, Dong TTX, Ko RKM, Tsim KWK. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/β-catenin signaling pathways. FASEB J 2020; 34:4311-4328. [PMID: 31965654 DOI: 10.1096/fj.201902319rrr] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/11/2022]
Abstract
Corylin is a naturally occurring flavonoid isolated from the fruit of Psoralea corylifolia L. (Fabaceae), which is a Chinese medicinal herb in treating osteoporosis. Although a variety of pharmacological activities of corylin have been reported, its osteogenic action and the underlying mechanism in bone development remain unclear. In the present study, the involvement of bone-specific genes in corylininduced differentiated osteoblasts was analyzed by RT-PCR, promoter-reporter assay, and Western blotting. In cultured osteoblasts, corylin-induced cell differentiation and mineralization, as well as increased the expressions of vital biological markers for osteogenesis, such as Runx2, Osterix, Col1, and ALP. Corylin was proposed to have dual pathways in triggering the osteoblastic differentiation. First, the osteogenic function of corylin acted through the activation of Wnt/β-catenin signaling. The nuclear translocation of β-catenin of cultured osteoblasts, as determined by flow cytometry and confocal microscopy, was triggered by applied corylin, and which was blocked by DKK-1, an inhibitor of Wnt/β-catenin signaling. Second, the application of corylin-induced estrogenic response in a dose-dependent manner, and which was blocked by ICI 182 780, an antagonist of estrogen receptor. Furthermore, the activation of Runx2 promoter by corylin was abolished by both DKK-1 and ICI 182,780, indicating that the corylin exhibited its osteogenic effect via estrogen and Wnt/β-catenin signaling pathways. In addition, corylin regulated the metabolic profiles, as well as the membrane potential of mitochondria, in cultured osteoblasts. Corylin also stimulated the osteogenesis in bone micromass derived from mesenchymal progenitor cells. This study demonstrated the osteogenic activities of corylin in osteoblasts and micromass, suggesting that corylin has the potential to be developed as a novel pro-osteogenic agent in targeting for the treatment of osteoblast-mediated osteoporosis.
Collapse
Affiliation(s)
- Anna Xiao-Dan Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Yao
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kenneth Kin-Leung Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yong-Xiang Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Robert Kam-Ming Ko
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
28
|
Pirosa A, Clark KL, Tan J, Yu S, Yang Y, Tuan RS, Alexander PG. Modeling appendicular skeletal cartilage development with modified high-density micromass cultures of adult human bone marrow-derived mesenchymal progenitor cells. Stem Cell Res Ther 2019; 10:388. [PMID: 31842986 PMCID: PMC6916440 DOI: 10.1186/s13287-019-1505-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. Methods We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. Results These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. Conclusions The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Karen L Clark
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Jian Tan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Shuting Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Yuanheng Yang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
29
|
Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells. Stem Cells Int 2019; 2019:8387478. [PMID: 31191685 PMCID: PMC6525813 DOI: 10.1155/2019/8387478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development by which sessile epithelial cells are converted into migratory mesenchymal cells. Our laboratory has been successful in the establishment of Xenopus tropicalis immature Sertoli cells (XtiSCs) with the restricted differentiation potential. The aim of this study is the determination of factors responsible for EMT activation in XtiSCs and stemness window acquisition where cells possess the broadest differentiation potential. For this purpose, we tested three potent EMT inducers—GSK-3 inhibitor (CHIR99021), FGF2, and/or TGF-β1 ligand. XtiSCs underwent full EMT after 3-day treatment with CHIR99021 and partial EMT with FGF2 but not with TGF-β1. The morphological change of CHIR-treated XtiSCs to the typical spindle-like cell shape was associated with the upregulation of mesenchymal markers and the downregulation of epithelial markers. Moreover, only CHIR-treated XtiSCs were able to differentiate into chondrocytes in vitro and cardiomyocytes in vivo. Interestingly, EMT-shifted cells could migrate towards cancer cells (HeLa) in vitro and to the injury site in vivo. The results provide a better understanding of signaling pathways underlying the generation of testis-derived stem cells.
Collapse
|
30
|
Morrovati F, Karimian Fathi N, Soleimani Rad J, Montaseri A. Mummy Prevents IL-1β-Induced Inflammatory Responses and Cartilage Matrix Degradation via Inhibition of NF-қB Subunits Gene Expression in Pellet Culture System. Adv Pharm Bull 2018; 8:283-289. [PMID: 30023330 PMCID: PMC6046416 DOI: 10.15171/apb.2018.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose: In Persian traditional medicine, application of Mummy material has been advised since hundred years ago for treatment of different diseases as bone fracture, cutaneous wounds and joint inflammation. Regarding to the claim of indigenous people for application of this material in the treatment of joint inflammation, the present study was designed to evaluate whether Mummy can revoke the inflammatory responses in chondrocytes stimulated with interleukin 1-β (IL-1β). Methods: Isolated chondrocytes at the second passage were plated in 50 ml conical tubes at density of 1x106 for pellet culture or were plated in T75 culture flasks as monolayer. Cells in both groups were treated as control (receiving serum free culture medium), negative control (receiving IL-1β (10ng/ml for 24 hr)) and IL-1β pre-stimulated cells which treated with Mummy at concentrations of 500 and 1000µg/ml for 72hrs. After 72 hrs, to evaluate whether Mummy can revoke the inflammatory response in chondrocytes, cell in different groups were prepared for investigation of gene expression profile of collagen II, Cox-2, MMP-13, C-Rel and P65 using real-time RT-PCR. Results: Treatment of chondrocytes with IL-1β (10ng/ml) resulted in a significant increase in expression level of Cox-2, MMP-13, C-Rel and P65 in pellet culture system, while treatment of IL-1β-stimulated choncrocytes with Mummy at both concentrations of 500 and 1000µg/ml inhibited the expression level of above mentioned genes. Compared to the pellet culture, Mummy did not affect expression level of genes in monolayer condition. Conclusion: The obtained data from this investigation revealed that Mummy can be used as a potent factor for inhibiting the inflammatory responses induced by IL-1β in chondrocytes probably through inhibition of NF-қB subunits activation.
Collapse
Affiliation(s)
- Fereshteh Morrovati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karimian Fathi
- Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Jin GZ, Kim HW. Chondrogenic Potential of Dedifferentiated Rat Chondrocytes Reevaluated in Two- and Three-Dimensional Culture Conditions. Tissue Eng Regen Med 2018; 15:163-172. [PMID: 30603544 PMCID: PMC6171694 DOI: 10.1007/s13770-017-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
For the cartilage repair, the cell sources currently adopted are primarily chondrocytes or mesenchymal stem cells (MSCs). Due to the fact that chondrocytes dedifferentiate during 2-dimensional (2D) expansion, MSCs are generally more studied and considered to have higher potential for cartilage repair purposes. Here we question if the dedifferentiated chondrocytes can regain the chondrogenic potential, to find potential applications in cartilage repair. For this we chose chondrocytes at passage 12 (considered to have sufficiently dedifferentiated) and the expression of chondrogenic phenotypes and matrix syntheses were examined over 14 days. In particular, the chondrogenic potential of MSCs was also compared. Results showed that the dedifferentiated chondrocytes proliferated actively over 14 days with almost 2.5-fold increase relative to MSCs. Moreover, the chondrogenic ability of chondrocytes was significantly higher than that of MSCs, as confirmed by the expression of a series of mRNA levels and the production of cartilage extracellular matrix molecules in 2D-monolayer and 3-dimensional (3D)-spheroid cultures. Of note, the significance was higher in 3D-culture than in 2D-culture. Although more studies are needed such as the use of different cell passages and human cell source, and the chondrogenic confirmation under in vivo conditions, this study showing that the dedifferentiated chondrocytes can also be a suitable cell source for the cell-based cartilage repair, as a counterpart of MSCs, will encourage further studies regarding this issue.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
32
|
Bicho D, Pina S, Oliveira JM, Reis RL. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:373-394. [PMID: 29736583 DOI: 10.1007/978-3-319-76735-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sandra Pina
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
33
|
MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9792512. [PMID: 28612031 PMCID: PMC5458373 DOI: 10.1155/2017/9792512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022]
Abstract
Objective Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA) cartilage. MicroRNA- (miR-) 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype. Methods After preliminary microarrays screening, miR-29b levels were measured by RT- quantitative PCR in in vitro models of chondrocyte phenotype changes (IL-1β challenge or serial subculturing) and in chondrocytes from OA and non-OA patients. Potential miR-29b targets identified in silico in 3′-UTRs of collagens mRNAs were tested with luciferase reporter assays. The impact of premiR-29b overexpression in ATDC5 cells was studied on collagen mRNA levels and synthesis (Sirius red staining) during chondrogenesis. Results MiR-29b level increased significantly in IL-1β-stimulated and weakly in subcultured chondrocytes. A 5.8-fold increase was observed in chondrocytes from OA versus non-OA patients. Reporter assays showed that miR-29b targeted COL2A1 and COL1A2 3′-UTRs although with a variable recovery upon mutation. In ATDC5 cells overexpressing premiR-29b, collagen production was reduced while mRNA levels increased. Conclusions By acting probably as a posttranscriptional regulator with a different efficacy on COL2A1 and COL1A2 expression, miR-29b can contribute to the collagens imbalance associated with an abnormal chondrocyte phenotype.
Collapse
|
34
|
Kaneva MK, Greco KV, Headland SE, Montero-Melendez T, Mori P, Greenslade K, Pitzalis C, Moore A, Perretti M. Identification of Novel Chondroprotective Mediators in Resolving Inflammatory Exudates. THE JOURNAL OF IMMUNOLOGY 2017; 198:2876-2885. [PMID: 28242648 DOI: 10.4049/jimmunol.1601111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
We hypothesized that exudates collected at the beginning of the resolution phase of inflammation might be enriched for tissue protective molecules; thus an integrated cellular and molecular approach was applied to identify novel chondroprotective bioactions. Exudates were collected 6 h (inflammatory) and 24 h (resolving) following carrageenan-induced pleurisy in rats. The resolving exudate was subjected to gel filtration chromatography followed by proteomics, identifying 61 proteins. Fractions were added to C28/I2 chondrocytes, grown in micromasses, ions with or without IL-1β or osteoarthritic synovial fluids for 48 h. Three proteins were selected from the proteomic analysis, α1-antitrypsin (AAT), hemopexin (HX), and gelsolin (GSN), and tested against catabolic stimulation for their effects on glycosaminoglycan deposition as assessed by Alcian blue staining, and gene expression of key anabolic proteins by real-time PCR. In an in vivo model of inflammatory arthritis, cartilage integrity was determined histologically 48 h after intra-articular injection of AAT or GSN. The resolving exudate displayed protective activities on chondrocytes, using multiple readouts: these effects were retained in low m.w. fractions of the exudate (46.7% increase in glycosaminoglycan deposition; ∼20% upregulation of COL2A1 and aggrecan mRNA expression), which reversed the effect of IL-1β. Exogenous administration of HX, GSN, or AAT abrogated the effects of IL-1β and osteoarthritic synovial fluids on anabolic gene expression and increased glycosaminoglycan deposition. Intra-articular injection of AAT or GSN protected cartilage integrity in mice with inflammatory arthritis. In summary, the strategy for identification of novel chondroprotective activities in resolving exudates identified HX, GSN and AAT as potential leads for new drug discovery programs.
Collapse
Affiliation(s)
- Magdalena K Kaneva
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Karin V Greco
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Sarah E Headland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | | | | | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | | | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| |
Collapse
|
35
|
Saha A, Rolfe R, Carroll S, Kelly DJ, Murphy P. Chondrogenesis of embryonic limb bud cells in micromass culture progresses rapidly to hypertrophy and is modulated by hydrostatic pressure. Cell Tissue Res 2016; 368:47-59. [PMID: 27770257 DOI: 10.1007/s00441-016-2512-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/17/2016] [Indexed: 12/18/2022]
Abstract
Chondrogenesis in vivo is precisely controlled in time and space. The entire limb skeleton forms from cells at the core of the early limb bud that condense and undergo chondrogenic differentiation. Whether they form stable cartilage at the articular surface of the joint or transient cartilage that progresses to hypertrophy as endochondral bone, replacing the cartilage template of the skeletal rudiment, is spatially controlled over several days in the embryo. Here, we follow the differentiation of cells taken from the early limb bud (embryonic day 11.5), grown in high-density micromass culture and show that a self-organising pattern of evenly spaced cartilage nodules occurs spontaneously in growth medium. Although chondrogenesis is enhanced by addition of BMP6 to the medium, the spatial pattern of nodule formation is disrupted. We show rapid progression of the entire nodule to hypertrophy in culture and therefore loss of the local signals required to direct formation of stable cartilage. Dynamic hydrostatic pressure, which we have previously predicted to be a feature of the forming embryonic joint region, had a stabilising effect on chondrogenesis, reducing expression of hypertrophic marker genes. This demonstrates the use of micromass culture as a relatively simple assay to compare the effect of both biophysical and molecular signals on spatial and temporal control of chondrogenesis that could be used to examine the response of different types of progenitor cell, both adult- and embryo-derived.
Collapse
Affiliation(s)
- Anurati Saha
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | - Rebecca Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland.,Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Simon Carroll
- Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland. .,Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin, Ireland.
| |
Collapse
|
36
|
Snelling SJB, Davidson RK, Swingler TE, Le LTT, Barter MJ, Culley KL, Price A, Carr AJ, Clark IM. Dickkopf-3 is upregulated in osteoarthritis and has a chondroprotective role. Osteoarthritis Cartilage 2016; 24:883-91. [PMID: 26687825 PMCID: PMC4863878 DOI: 10.1016/j.joca.2015.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Dickkopf-3 (Dkk3) is a non-canonical member of the Dkk family of Wnt antagonists and its upregulation has been reported in microarray analysis of cartilage from mouse models of osteoarthritis (OA). In this study we assessed Dkk3 expression in human OA cartilage to ascertain its potential role in chondrocyte signaling and cartilage maintenance. METHODS Dkk3 expression was analysed in human adult OA cartilage and synovial tissues and during chondrogenesis of ATDC5 and human mesenchymal stem cells. The role of Dkk3 in cartilage maintenance was analysed by incubation of bovine and human cartilage explants with interleukin-1β (IL1β) and oncostatin-M (OSM). Dkk3 gene expression was measured in cartilage following murine hip avulsion. Whether Dkk3 influenced Wnt, TGFβ and activin cell signaling was assessed in primary human chondrocytes and SW1353 chondrosarcoma cells using qRT-PCR and luminescence assays. RESULTS Increased gene and protein levels of Dkk3 were detected in human OA cartilage, synovial tissue and synovial fluid. DKK3 gene expression was decreased during chondrogenesis of both ATDC5 cells and humans MSCs. Dkk3 inhibited IL1β and OSM-mediated proteoglycan loss from human and bovine cartilage explants and collagen loss from bovine cartilage explants. Cartilage DKK3 expression was decreased following hip avulsion injury. TGFβ signaling was enhanced by Dkk3 whilst Wnt3a and activin signaling were inhibited. CONCLUSIONS We provide evidence that Dkk3 is upregulated in OA and may have a protective effect on cartilage integrity by preventing proteoglycan loss and helping to restore OA-relevant signaling pathway activity. Targeting Dkk3 may be a novel approach in the treatment of OA.
Collapse
Affiliation(s)
- S J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - R K Davidson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - T E Swingler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - L T T Le
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - M J Barter
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - K L Culley
- Hospital for Special Surgery and Weill Cornell Medical College, New York, NY, USA
| | - A Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - A J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - I M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
37
|
Norling LV, Headland SE, Dalli J, Arnardottir HH, Haworth O, Jones HR, Irimia D, Serhan CN, Perretti M. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight 2016; 1:e85922. [PMID: 27158677 PMCID: PMC4855303 DOI: 10.1172/jci.insight.85922] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which - once applied to human neutrophils - attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor-deficient mice termed ALX/fpr2/3-/- . These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA.
Collapse
Affiliation(s)
- Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sarah E. Headland
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Hildur H. Arnardottir
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Haworth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Hefin R. Jones
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital (BWH) and Harvard Medical School, Boston, Massachusetts, USA
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Shin H, Lee MN, Choung JS, Kim S, Choi BH, Noh M, Shin JH. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes. J Cell Physiol 2016; 231:1822-31. [PMID: 26661891 DOI: 10.1002/jcp.25290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023]
Abstract
The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyunjun Shin
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Mi Nam Lee
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin Seung Choung
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sanghee Kim
- Department of Mechanical Systems Engineering, Hansung University, Seoul, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Jung-gu, Incheon, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Jennifer H Shin
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Headland SE, Jones HR, Norling LV, Kim A, Souza PR, Corsiero E, Gil CD, Nerviani A, Dell'Accio F, Pitzalis C, Oliani SM, Jan LY, Perretti M. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci Transl Med 2015; 7:315ra190. [PMID: 26606969 PMCID: PMC6034622 DOI: 10.1126/scitranslmed.aac5608] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular lipid and protein components to target cells, yet their function in disease is only now being explored. We found that neutrophil-derived MVs were increased in concentration in synovial fluid from rheumatoid arthritis patients compared to paired plasma. Synovial MVs overexpressed the proresolving, anti-inflammatory protein annexin A1 (AnxA1). Mice deficient in TMEM16F, a lipid scramblase required for microvesiculation, exhibited exacerbated cartilage damage when subjected to inflammatory arthritis. To determine the function of MVs in inflammatory arthritis, toward the possibility of MV-based therapeutics, we examined the role of immune cell-derived MVs in rodent models and in human primary chondrocytes. In vitro, exogenous neutrophil-derived AnxA1(+) MVs activated anabolic gene expression in chondrocytes, leading to extracellular matrix accumulation and cartilage protection through the reduction in stress-adaptive homeostatic mediators interleukin-8 and prostaglandin E2. In vivo, intra-articular injection of AnxA1(+) MV lessened cartilage degradation caused by inflammatory arthritis. Arthritic mice receiving adoptive transfer of whole neutrophils displayed abundant MVs within cartilage matrix and revealed that MVs, but not neutrophils themselves, can penetrate cartilage. Mechanistic studies support a model whereby MV-associated AnxA1 interacts with its receptor FPR2 (formyl peptide receptor 2)/ALX, increasing transforming growth factor-β production by chondrocytes, ultimately leading to cartilage protection. We envisage that MVs, either directly or loaded with therapeutics, can be harnessed as a unique therapeutic strategy for protection in diseases associated with cartilage degeneration.
Collapse
Affiliation(s)
- Sarah E Headland
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hefin R Jones
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lucy V Norling
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Kim
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricia R Souza
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Elisa Corsiero
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Cristiane D Gil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Alessandra Nerviani
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Department of Rheumatology, Barts Health Trust, Bancroft Road, London E1 4DG, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Department of Rheumatology, Barts Health Trust, Bancroft Road, London E1 4DG, UK
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Lily Y Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
40
|
Iwai R, Nemoto Y, Nakayama Y. Preparation and characterization of directed, one-day-self-assembled millimeter-size spheroids of adipose-derived mesenchymal stem cells. J Biomed Mater Res A 2015; 104:305-12. [PMID: 26386244 DOI: 10.1002/jbm.a.35568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
Three-dimensional cell spheroids prepared without using any artificial scaffold materials are desirable for cell-based transplants. However, conventional cell culture systems are inefficient for rapid, large-scale and non-cytotoxic generation of size-controlled spheroids (>1 mm diameter) that are required for tissue regenerative therapy application. In this study, we prepared millimeter-order spheroids of adipose-derived mesenchymal stem cells (ADSCs) by controlling the spheroid size (diameter range: 0.4-2.5 mm). Notably, spheroid generation required only one day of culture on charged culture dishes. Almost all spheroid-derived ADSCs were viable and produced adhesion molecules and growth factors, which play an important role in tissue regeneration. Moreover, spheroid-derived ADSCs could infiltrate and recellularize collagenous tissue membranes in vitro. The ADSC spheroids developed in this study could be directly (without additional processing) used for cell-based tissue regeneration therapy. Furthermore, the rapid scale-up process and noncytotoxic generation of spheroids would also enable other applications such as use as screening models for drug discovery.
Collapse
Affiliation(s)
- Ryosuke Iwai
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yasushi Nemoto
- Development Department, Chemical Products Division, Bridgestone, Co, Yokohama, Japan
| | - Yasuhide Nakayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
41
|
Stramandinoli-Zanicotti RT, Carvalho AL, Rebelatto CLK, Sassi LM, Torres MF, Senegaglia AC, Boldrinileite LM, Correa-Dominguez A, Kuligovsky C, Brofman PRS. Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells. J Appl Oral Sci 2014; 22:218-27. [PMID: 25025563 PMCID: PMC4072273 DOI: 10.1590/1678-775720130526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/20/2014] [Indexed: 01/22/2023] Open
Abstract
Stem cell-based regenerative medicine is one of the most intensively researched
medical issues. Pre-clinical studies in a large-animal model, especially in swine or
miniature pigs, are highly relevant to human applications. Mesenchymal stem cells
(MSCs) have been isolated and expanded from different sources.
Collapse
Affiliation(s)
| | - André Lopes Carvalho
- Department of Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Laurindo Moacir Sassi
- Service of Oral and Maxillofacial Surgery, Erasto Gaertner Hospital, Curitiba, PR, Brazil
| | - Maria Fernanda Torres
- Laboratory of Experimental Surgery, Positivo University/Department of Anatomy, Federal University of Paraná (UFPR), Curitiba, PR, Brazil., Curitiba, PR, Brazil
| | | | | | | | - Crisciele Kuligovsky
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Curitiba, PR, Brazil
| | | |
Collapse
|
42
|
Greco KV, Nalesso G, Kaneva MK, Sherwood J, Iqbal AJ, Moradi-Bidhendi N, Dell'Accio F, Perretti M. Analyses on the mechanisms that underlie the chondroprotective properties of calcitonin. Biochem Pharmacol 2014; 91:348-58. [PMID: 25117448 DOI: 10.1016/j.bcp.2014.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Calcitonin (CT) has recently been shown to display chondroprotective effects. Here, we investigate the putative mechanisms by which CT delivers these actions. METHODS Immortalized C-28/I2 cells or primary adult human articular chondrocytes (AHAC) were cultured in high-density micromasses to investigate: (i) CT anabolic effects using qPCR and immuhistochemistry analysis; (ii) CT anti-apoptotic effects using quantitation of Bax/Bcl gene products ratio, TUNEL assay and caspase-3 expression; (iii) CT effects on CREB, COL2A1 and NFAT transcription factors. RESULTS CT (10(-10)-10(-8)nM) induced significant up-regulation of cartilage phenotypic markers (SOX9, COL2A1 and ACAN), with down-regulation of catabolic (MMP1 and MMP13 and ADAMTS5) gene products both in resting and inflammatory conditions. This was mirrored by an augmented production of type II collagen and accumulation of glycosaminoglycan- and proteoglycan-rich extracellular matrix in vitro. Mechanistic analyses revealed only partial involvement of cyclic AMP formation in these effects of CT. Congruently, using reporter assays for specific transcription factors, there was no indication for CREB activation, whereas the COL2A1 promoter was genuinely and directly activated by cell exposure to CT. Phenotypically, these mechanisms supported the ability of CT, whilst inactive on its own, to counteract the pro-apoptotic effects of IL-1β, demonstrated by TUNEL-positive staining of chondrocytes and ratio of BAX/BCL genes products. CONCLUSION These data may provide a novel lead for the development of CT-based chondroprotective strategies that rely on the engagement of mechanisms that lead to augmented chondrocyte anabolism and inhibited chondrocyte apoptosis.
Collapse
Affiliation(s)
- Karin V Greco
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Giovanna Nalesso
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Magdalena K Kaneva
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Joanna Sherwood
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Asif J Iqbal
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Niloufar Moradi-Bidhendi
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Francesco Dell'Accio
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
43
|
Landman E, Periyasamy P, van Blitterswijk C, Post J, Karperien M. Distinct Effect of TCF4 on the NFκB Pathway in Human Primary Chondrocytes and the C20/A4 Chondrocyte Cell Line. Cartilage 2014; 5:181-9. [PMID: 26069697 PMCID: PMC4297180 DOI: 10.1177/1947603514525036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Previous studies indicated a difference in crosstalk between canonical WNT pathway and nuclear factor-κB (NFκB) signaling in human and animal chondrocytes. To assess whether the differences found were dependent on cell types used, we tested the effect of WNT modulation on NFκB signaling in human primary articular chondrocytes in comparison with the immortalized human costal chondrocyte cell line C20/A4. DESIGN We used gene expression analysis to study the effect of WNT modulation on IL1β-induced matrix metalloproteinase (MMP) expression as well as on WNT and NFκB target gene expression. In addition, we tested the involvement of RelA and TCF4 on activation of the WNT and NFκB pathway by TCF/LEF and NFκB reporter experiments, respectively. RESULTS We found an inhibitory effect of both induction and inhibition of WNT signaling on IL1β-induced MMP mRNA expression in primary chondrocytes, whereas WNT modulation did not affect MMP expression in C20/A4 cells. Furthermore, TCF/LEF and NFκB reporter activation and WNT and NFκB target gene expression were regulated differentially by TCF4 and RelA in a cell type-dependent manner. Additionally, we found significantly higher mRNA and protein expression of TCF4 and RelA in C20/A4 cells in comparison with primary chondrocytes. CONCLUSIONS We conclude that WNT modulation of NFκB is, at least in part, cell type dependent and that the observed differences are likely because of impaired sensitivity of the NFκB pathway in C20/A4 cells to modulations in WNT signaling. This might be caused by higher basal levels of TCF4 and RelA in C20/A4 cells compared to primary chondrocytes.
Collapse
Affiliation(s)
- E.B.M. Landman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - P.C. Periyasamy
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - C.A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - J.N. Post
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - M. Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| |
Collapse
|
44
|
Kogan EA, Namiot VA, Demura TA, Fajzullina HM, Sukhikh GT. Reparative and neoplastic spheroid cellular structures and their mathematical model. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 2013; 31:108-15. [PMID: 23336996 DOI: 10.1016/j.tibtech.2012.12.003] [Citation(s) in RCA: 676] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 01/16/2023]
Abstract
3D cell culture methods confer a high degree of clinical and biological relevance to in vitro models. This is specifically the case with the spheroid culture, where a small aggregate of cells grows free of foreign materials. In spheroid cultures, cells secrete the extracellular matrix (ECM) in which they reside, and they can interact with cells from their original microenvironment. The value of spheroid cultures is increasing quickly due to novel microfabricated platforms amenable to high-throughput screening (HTS) and advances in cell culture. Here, we review new possibilities that combine the strengths of spheroid culture with new microenvironment fabrication methods that allow for the creation of large numbers of highly reproducible, complex tissues.
Collapse
Affiliation(s)
- Eelco Fennema
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Münsterberg A. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J Cell Sci 2012; 125:3590-600. [PMID: 22595520 DOI: 10.1242/jcs.101758] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are short non-coding RNAs involved in post-transcriptional regulation of multiple messenger RNA targets. The miR-1/miR-206 family is expressed during skeletal muscle differentiation and is an integral component of myogenesis. To better understand miR-1/miR-206 function during myoblast differentiation we identified novel target mRNAs by microarray and characterized their function in C2C12 myoblasts. Candidate targets from the screen were experimentally validated together with target genes that were predicted by three different algorithms. Some targets characterised have a known function in skeletal muscle development and/or differentiation and include Meox2, RARB, Fzd7, MAP4K3, CLCN3 and NFAT5, others are potentially novel regulators of myogenesis, such as the chromatin remodelling factors Smarcd2 and Smarcb1 or the anti-apoptotic protein SH3BGRL3. The expression profiles of confirmed target genes were examined during C2C12 cell myogenesis. We found that inhibition of endogenous miR-1 and miR-206 by antimiRs blocked the downregulation of most targets in differentiating cells, thus indicating that microRNA activity and target interaction is required for muscle differentiation. Finally, we show that sustained expression of validated miR-1 and/or miR-206 targets resulted in increased proliferation and inhibition of C2C12 cell myogenesis. In many cases the expression of genes related to non-muscle cell fates, such as chondrogenesis, was activated. This indicates that the concerted downregulation of multiple microRNA targets is not only crucial to the skeletal muscle differentiation program but also serves to prevent alternative cell fate choices.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- Cell and Developmental Biology, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|