1
|
Pudhuvai B, Beneš K, Čurn V, Bohata A, Lencova J, Vrzalova R, Barta J, Matha V. The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production. Microorganisms 2024; 12:2639. [PMCID: PMC11676270 DOI: 10.3390/microorganisms12122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/05/2025] Open
Abstract
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge. Our prospective review sheds light on a method involving perturbation that enhances the precursors to regulate the type II PKS pathway, enhancing cells’ capacity to increase secondary metabolite production. The suggested method also entails the preparation of culture media for the cultivation of Streptomyces sp. and enhanced yield of DNR, as well as making it inactive with iron or its reduced forms following efflux from the producer. The iron or iron–DNR complex is encapsulated by oleic acid or lipid micelle layers in the culture media, finally resulting in the generated inactive DNR and the DNR–iron–oil complex. This idea has the potential to protect the producer organism from autotoxicity and prevent the inhibition of metabolite production. The approach of substituting sugar with oil in culture media has a dual role wherein it promotes Streptomyces growth by utilizing lipids as an energy source and encapsulating the generated DNR–iron complex in the medium. In this review, we discussed aspects like anthracycline producers, biosynthesis pathways, and gene regulation; side effects of DNR; mechanisms for autotoxicity evasion; and culture media components for the enhancement of DNR production in Streptomyces sp. We anticipate that our work will help researchers working with secondary metabolites production and decipher a methodology that would enhance DNR yield and facilitate the extraction of the resulting DNR by lowering costs in large-scale fermentation.
Collapse
Affiliation(s)
- Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Karel Beneš
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (V.M.)
| | - Vladislav Čurn
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Andrea Bohata
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Jana Lencova
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Radka Vrzalova
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Jan Barta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Vladimir Matha
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (V.M.)
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| |
Collapse
|
2
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
3
|
Ibrahim I, Ayariga JA, Xu J, Adebanjo A, Robertson BK, Samuel-Foo M, Ajayi OS. CBD resistant Salmonella strains are susceptible to epsilon 34 phage tailspike protein. Front Med (Lausanne) 2023; 10:1075698. [PMID: 36960333 PMCID: PMC10028193 DOI: 10.3389/fmed.2023.1075698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- *Correspondence: Joseph Atia Ayariga,
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Ayomide Adebanjo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- Olufemi S. Ajayi,
| |
Collapse
|
4
|
Circulating Tumor Cells in Breast Cancer Patients: A Balancing Act between Stemness, EMT Features and DNA Damage Responses. Cancers (Basel) 2022; 14:cancers14040997. [PMID: 35205744 PMCID: PMC8869884 DOI: 10.3390/cancers14040997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) traverse vessels to travel from the primary tumor to distant organs where they adhere, transmigrate, and seed metastases. To cope with these challenges, CTCs have reached maximal flexibility to change their differentiation status, morphology, migratory capacity, and their responses to genotoxic stress caused by metabolic changes, hormones, the inflammatory environment, or cytostatic treatment. A significant percentage of breast cancer cells are defective in homologous recombination repair and other mechanisms that protect the integrity of the replication fork. To prevent cell death caused by broken forks, alternative, mutagenic repair, and bypass pathways are engaged but these increase genomic instability. CTCs, arising from such breast tumors, are endowed with an even larger toolbox of escape mechanisms that can be switched on and off at different stages during their journey according to the stress stimulus. Accumulating evidence suggests that DNA damage responses, DNA repair, and replication are integral parts of a regulatory network orchestrating the plasticity of stemness features and transitions between epithelial and mesenchymal states in CTCs. This review summarizes the published information on these regulatory circuits of relevance for the design of biomarkers reflecting CTC functions in real-time to monitor therapeutic responses and detect evolving chemoresistance mechanisms.
Collapse
|
5
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
6
|
Gong J, Guo F, Cheng W, Fan H, Miao Q, Yang J. Preliminary biological evaluation of 123I-labelled anti-CD30-LDM in CD30-positive lymphomas murine models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:408-414. [PMID: 31913714 DOI: 10.1080/21691401.2019.1709857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Overexpression of CD30 has been reported on the surface of some T-cell lymphomas, especially on Hodgkin's lymphoma (HL) and anaplastic large cell lymphoma (ALCL). CD30 targeted immunotherapy has good clinical therapy response. We have produced a novel antibody drug conjugates (ADCs)-anti-CD30-LDM, which shows attractive tumour-targeting capability and extremely potent antitumor efficacy. To further investigate biological characteristics and promote clinical translation of anti-CD30-LDM, we constructed a radiolabeled 123I-anti-CD30-LDM to evaluate the biodistribution characteristics. The anti-CD30-LDM was radioiodinated by the Iodogen method. The radiochemical purity of 123I-anti-CD30-LDM was more over 98%, and the specific activity of 240.5 MBq/mg. The stability and the specificity of 123I-anti-CD30-LDM were evaluated in vitro. Cellular binding assays were used to evaluate the binding capabilities in CD30-positive Karpas299 cells and CD30-negative Raji cells. B-NDG mice bearing Karpas 299 and Raji xenografts were used for in vivo biodistribution studies. Our results demonstrated that anti-CD30-LDM as an ideal ADC targeted to CD30, which was labelled easily with 123I and obtained the sufficient yields. The 123I-anti-CD30-LDM preserved specific binding to CD30 in vitro and uptake in tumour xenografts in B-NDG mice. These results are encouraging for anti-CD30-LDM as a promising clinical translational candidate for various CD30 positive lymphomas and other diseases.
Collapse
Affiliation(s)
- Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Guo
- High Tech of Atom Co. Ltd, Beijing, China
| | | | | | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Hu X, Zhang H. Doxorubicin-Induced Cancer Cell Senescence Shows a Time Delay Effect and Is Inhibited by Epithelial-Mesenchymal Transition (EMT). Med Sci Monit 2019; 25:3617-3623. [PMID: 31092810 PMCID: PMC6536035 DOI: 10.12659/msm.914295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Senescence is a natural barrier for the body to resist the malignant transformation of its own cells. This work investigated the senescence characteristics of cancer cells in vitro. Material/Methods Human cervical cancer HeLa cells were treated with different concentrations of doxorubicin for 3 days, with or without subsequent extended culture in drug-free medium for 6 days. Senescent cell ratios between these 2 culture schemes were calculated. Expression of 2 senescence-associated secretory factors, IL-6 and IL-8, were detected by RT-PCR and ELISA. Doxorubicin treatment induced epithelial-mesenchymal transition in cancer cells. The proportions of senescent cells in epithelial-like and mesenchymal-like sub-groups were calculated. Doxorubicin-treated HeLa cells were stained with Vimentin antibody and sorted by flow cytometry. Senescent cell marker p16INK4a and IL-8 expression in Vimentin-high and Vimentin-low cells were detected by Western blot. Results We found that less than 1% of HeLa cells showed senescence phenotype after treatment with doxorubicin for 3 days. However, the proportion of senescent cells was significantly increased when the doxorubicin-treated cells were subsequently cultured in drug-free medium for another 6d. RT-PCR and ELISA results showed that this prolonged culture method could further improve the expression of IL-6 and IL-8. We also found that the senescent cells were mainly epithelial-like type and few presented mesenchymal-like shape. p16INK4a and IL-8 expression were decreased in cell fraction with higher Vimentin expression. Conclusions Our results suggested the existence of time delay effect in doxorubicin-induced senescence of HeLa cells, and epithelial-mesenchymal transition may resist doxorubicin-induced cell senescence.
Collapse
Affiliation(s)
- Xuerui Hu
- Department of Clinical Medicine, School of Clinical Medicine, Shanghai Medical College of Fudan University, Shanghai, China (mainland)
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, Shanghai, China (mainland)
| |
Collapse
|
8
|
Overexpression of ANLN contributed to poor prognosis of anthracycline-based chemotherapy in breast cancer patients. Cancer Chemother Pharmacol 2017; 79:535-543. [PMID: 28243684 DOI: 10.1007/s00280-017-3248-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/26/2017] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the associations of ANLN expression with prognosis of breast cancer and clinical outcome of anthracycline-based chemotherapy. METHODS This study enrolled 308 breast cancer patients in which 264 of them received anthracycline-based chemotherapy. Immunohistochemistry was used to detect ANLN expression level of the patients. Clinical characteristics of the patients were collected, and associations of ANLN expression with prognosis were analyzed. RESULTS Our results showed that ANLN expression was associated with survival of breast cancer patients, and it was also related to clinical outcome of patients received anthracycline-based chemotherapy. Breast cancer patients with high expression of ANLN would have poor prognosis and poor clinical outcome to anthracycline-based chemotherapy. CONCLUSION ANLN could be an independent prognosis predictor for breast cancer, and its expression might be used to predict the anthracycline-based chemotherapy clinical outcome in breast cancer patients.
Collapse
|
9
|
Gross E, van Tinteren H, Li Z, Raab S, Meul C, Avril S, Laddach N, Aubele M, Propping C, Gkazepis A, Schmitt M, Meindl A, Nederlof PM, Kiechle M, Lips EH. Identification of BRCA1-like triple-negative breast cancers by quantitative multiplex-ligation-dependent probe amplification (MLPA) analysis of BRCA1-associated chromosomal regions: a validation study. BMC Cancer 2016; 16:811. [PMID: 27756336 PMCID: PMC5070367 DOI: 10.1186/s12885-016-2848-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) with a BRCA1-like molecular signature has been demonstrated to remarkably respond to platinum-based chemotherapy and might be suited for a future treatment with poly(ADP-ribose)polymerase (PARP) inhibitors. In order to rapidly assess this signature we have previously developed a multiplex-ligation-dependent probe amplification (MLPA)-based assay. Here we present an independent validation of this assay to confirm its important clinical impact. Methods One-hundred-forty-four TNBC tumor specimens were analysed by the MLPA-based “BRCA1-like” test. Classification into BRCA1-like vs. non-BRCA1-like samples was performed by our formerly established nearest shrunken centroids classifier. Data were subsequently compared with the BRCA1-mutation/methylation status of the samples. T-lymphocyte infiltration and expression of the main target of PARP inhibitors, PARP1, were assessed on a subset of samples by immunohistochemistry. Data acquisition and interpretation was performed in a blinded manner. Results In the studied TNBC cohort, 63 out of 144 (44 %) tumors were classified into the BRCA1-like category. Among these, the MLPA test correctly predicted 15 out of 18 (83 %) samples with a pathogenic BRCA1-mutation and 20 of 22 (91 %) samples exhibiting BRCA1-promoter methylation. Five false-negative samples were observed. We identified high lymphocyte infiltration as one possible basis for misclassification. However, two falsely classified BRCA1-mutated tumors were also characterized by rather non-BRCA1-associated histopathological features such as borderline ER expression. The BRCA1-like vs. non-BRCA1-like signature was specifically enriched in high-grade (G3) cancers (90 % vs. 58 %, p = 0.0004) and was also frequent in tumors with strong (3+) nuclear PARP1 expression (37 % vs. 16 %; p = 0.087). Conclusions This validation study confirmed the good performance of the initial MLPA assay which might thus serve as a valuable tool to select patients for platinum-based chemotherapy regimens. Moreover, frequent PARP1 upregulation in BRCA1-like tumors may also point to susceptibility to treatment with PARP inhibitors. Limitations are the requirement of high tumor content and high-quality DNA.
Collapse
Affiliation(s)
- Eva Gross
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.
| | - Harm van Tinteren
- Biometrics Department, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Zhou Li
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Sandra Raab
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Christina Meul
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Stefanie Avril
- Institute of Pathology, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.,Present address: Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Nadja Laddach
- MRC-Holland, Willem Schoutenstraat 6, 1057 DN, Amsterdam, The Netherlands
| | - Michaela Aubele
- Helmholtz Zentrum München, Institute of Pathology, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Corinna Propping
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Apostolos Gkazepis
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Manfred Schmitt
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Petra M Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Esther H Lips
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Schaaf L, Schwab M, Ulmer C, Heine S, Mürdter TE, Schmid JO, Sauer G, Aulitzky WE, van der Kuip H. Hyperthermia Synergizes with Chemotherapy by Inhibiting PARP1-Dependent DNA Replication Arrest. Cancer Res 2016; 76:2868-75. [PMID: 27013194 DOI: 10.1158/0008-5472.can-15-2908] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
Although hyperthermia offers clinical appeal to sensitize cells to chemotherapy, this approach has been limited in terms of long-term outcome as well as economic and technical burden. Thus, a more detailed knowledge about how hyperthermia exerts its effects on chemotherapy may illuminate ways to improve the approach. Here, we asked whether hyperthermia alters the response to chemotherapy-induced DNA damage and whether this mechanism is involved in its sensitizing effect in BRCA-competent models of ovarian and colon cancer. Notably, we found that hyperthermia delayed the repair of DNA damage caused by cisplatin or doxorubicin, acting upstream of different repair pathways to block histone polyADP-ribosylation (PARylation), a known effect of chemotherapy. Furthermore, hyperthermia blocked this histone modification as efficiently as pharmacologic inhibitors of PARP (PARPi), producing comparable delay in DNA repair, induction of double-strand breaks (DSB), and cell cytotoxicity after chemotherapy. Mechanistic investigations indicated that inhibiting PARylation by either hyperthermia or PARPi induced lethal DSB upon chemotherapy treatment not only by reducing DNA repair but also by preventing replication fork slowing. Overall, our work reveals how PARP blockade, either by hyperthermia or small-molecule inhibition, can increase chemotherapy-induced damage in BRCA-competent cells. Cancer Res; 76(10); 2868-75. ©2016 AACR.
Collapse
Affiliation(s)
- Lea Schaaf
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany. Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Ulmer
- Department of Surgery, Robert Bosch Hospital, Stuttgart, Germany
| | - Simon Heine
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Jens O Schmid
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Georg Sauer
- Department of Gynaecology, Robert Bosch Hospital, Stuttgart, Germany
| | | | - Heiko van der Kuip
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany.
| |
Collapse
|
11
|
Scaglioni L, Mondelli R, Artali R, Sirtori FR, Mazzini S. Nemorubicin and doxorubicin bind the G-quadruplex sequences of the human telomeres and of the c-MYC promoter element Pu22. Biochim Biophys Acta Gen Subj 2016; 1860:1129-38. [PMID: 26922833 DOI: 10.1016/j.bbagen.2016.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intra-molecular G-quadruplex structures are present in the guanine rich regions of human telomeres and were found to be prevalent in gene promoters. More recently, the targeting of c-MYC transcriptional control has been suggested, because the over expression of the c-MYC oncogene is one of the most common aberration found in a wide range of human tumors. METHODS The interaction of nemorubicin and doxorubicin with DNA G-quadruplex structures has been studied by NMR, ESI-MS and molecular modelling, in order to obtain further information about the complex and the multiple mechanisms of action of these drugs. RESULTS AND CONCLUSIONS Nemorubicin intercalates between A3 and G4 of d(TTAGGGT)4 and form cap-complex at the G6pT7 site. The presence of the adenine in this sequence is important for the stabilization of the complex, as was shown by the interaction with d(TTGGGTT)4 and d(TTTGGGT)4, which form only a 1:1 complex. The interaction of doxorubicin with d(TTAGGGT)4 is similar, but the complex appears less stable. Nemorubicin also binds with high efficiency the c-MYC G-quadruplex sequence Pu22, to form a very well defined complex. Two nemorubicin molecules bind to the 3'-end and to the 5'-end, forming an additional plane of stacking over each external G-tetrad. The wild type c-MYCPu22 sequence forms with nemorubicin the same complex. GENERAL SIGNIFICANCE Nemorubicin and doxorubicin, not only intercalate into the duplex DNA, but also result in significant ligands for G-quadruplex DNA segments, stabilizing their structure; this may in part explain the multiple mechanisms of action of their antitumor activity.
Collapse
Affiliation(s)
- Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Rosanna Mondelli
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | | | - Federico Riccardi Sirtori
- Nerviano, Medical Sciences, Oncology-Chemical Core, Technologies Department, viale Pasteur, 10, 20014 Nerviano, Milano, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
12
|
Liu F, Suryadi J, Bierbach U. Cellular Recognition and Repair of Monofunctional-Intercalative Platinum--DNA Adducts. Chem Res Toxicol 2015; 28:2170-8. [PMID: 26457537 DOI: 10.1021/acs.chemrestox.5b00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular recognition and processing of monofunctional-intercalative DNA adducts formed by [PtCl(en)(L)](NO3)2 (P1-A1; en = ethane-1,2-diamine; L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine, acridinium cation), a cytotoxic hybrid agent with potent anticancer activity, was studied. Excision of these adducts and subsequent DNA repair synthesis were monitored in plasmids modified with platinum using incubations with mammalian cell-free extract. On the basis of the levels of [α-(32)P]-dCTP incorporation, P1-A1-DNA adducts were rapidly repaired with a rate approximately 8 times faster (t1/2 ≈ 18 min at 30 °C) than the adducts (cross-links) formed by the drug cisplatin. Cellular responses to P1-A1 and cisplatin were also studied in NCI-H460 lung cancer cells using immunocytochemistry in conjunction with confocal fluorescence microscopy. At the same dose, P1-A1, but not cisplatin, elicited a distinct requirement for DNA double-strand break repair and stalled replication fork repair, which caused nuclear fluorescent staining related to high levels of MUS81, a specialized repair endonuclease, and phosphorylated histone protein γ-H2AX. The results confirm previous observations in yeast-based chemical genomics assays. γ-H2AX fluorescence is observed as a large number of discrete foci signaling DNA double-strand breaks, pan-nuclear preapoptotic staining, and unique circularly shaped staining around the nucleoli and nuclear rim. DNA cleavage assays indicate that P1-A1 does not act as a typical topoisomerase poison, suggesting the high level of DNA double-strand breaks in cells is more likely a result of topoisomerase-independent replication fork collapse. Overall, the cellular response to platinum-acridines shares striking similarities with that reported for DNA adduct-forming derivatives of the drug doxorubicin. The results of this study are discussed in light of the cellular mechanism of action of platinum-acridines and their ability to overcome resistance to cisplatin.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
13
|
Engen CBN, Wergeland L, Skavland J, Gjertsen BT. Targeted Therapy of FLT3 in Treatment of AML-Current Status and Future Directions. J Clin Med 2014; 3:1466-89. [PMID: 26237612 PMCID: PMC4470194 DOI: 10.3390/jcm3041466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022] Open
Abstract
Internal tandem duplications (ITDs) of the gene encoding the Fms-Like Tyrosine kinase-3 (FLT3) receptor are present in approximately 25% of patients with acute myeloid leukemia (AML). The mutation is associated with poor prognosis, and the aberrant protein product has been hypothesized as an attractive therapeutic target. Various tyrosine kinase inhibitors (TKIs) have been developed targeting FLT3, but in spite of initial optimism the first generation TKIs tested in clinical studies generally induce only partial and transient hematological responses. The limited treatment efficacy generally observed may be explained by numerous factors; extensively pretreated and high risk cohorts, suboptimal pharmacodynamic and pharmacokinetic properties of the compounds, acquired TKI resistance, or the possible fact that inhibition of mutated FLT3 alone is not sufficient to avoid disease progression. The second-generation agent quizartinb is showing promising outcomes and seems better tolerated and with less toxic effects than traditional chemotherapeutic agents. Therefore, new generations of TKIs might be feasible for use in combination therapy or in a salvage setting in selected patients. Here, we sum up experiences so far, and we discuss the future outlook of targeting dysregulated FLT3 signaling in the treatment of AML.
Collapse
Affiliation(s)
| | - Line Wergeland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Jørn Skavland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen N-5021, Norway.
| |
Collapse
|
14
|
Tay Z, Eng RJ, Sajiki K, Lim KK, Tang MY, Yanagida M, Chen ES. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast. PLoS One 2013; 8:e55041. [PMID: 23365689 PMCID: PMC3554685 DOI: 10.1371/journal.pone.0055041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022] Open
Abstract
Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.
Collapse
Affiliation(s)
- Zoey Tay
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Ru Jun Eng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| |
Collapse
|
15
|
Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2636-57. [PMID: 23066388 PMCID: PMC3447578 DOI: 10.3390/ijerph9082636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers.
Collapse
Affiliation(s)
- Ida Casorelli
- Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035-1039, Roma 00189, Italy;
| | - Cecilia Bossa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
- Author to whom correspondence should be addressed; ; Tel.: +39-6-49901-2355; Fax: +39-6-49901-3650
| |
Collapse
|
16
|
Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2075-91. [PMID: 22829791 PMCID: PMC3397365 DOI: 10.3390/ijerph9062075] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 01/18/2023]
Abstract
Type II DNA topoisomerases have the ability to generate a transient DNA double-strand break through which a second duplex can be passed; an activity essential for DNA decatenation and unknotting. Topoisomerase poisons stabilize the normally transient topoisomerase-induced DSBs and are potent and widely used anticancer drugs. However, their use is associated with therapy-related secondary leukemia, often bearing 11q23 translocations involving the MLL gene. We will explain recent discoveries in the fields of topoisomerase biology and transcription that have consequences for our understanding of the etiology of leukemia, especially therapy-related secondary leukemia and describe how these findings may help minimize the occurrence of these neoplasias.
Collapse
|
17
|
Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura KI, Phillips DR, Cutts SM. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 2012; 83:1602-12. [PMID: 22414726 DOI: 10.1016/j.bcp.2012.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 11/20/2022]
Abstract
The cytotoxicity of doxorubicin, a clinically used anti-neoplastic drug, can be enhanced by formaldehyde (either endogenous or exogenous) to promote the formation of doxorubicin-DNA adducts. Formaldehyde supplies the carbon required for the covalent linkage of doxorubicin to one strand of DNA, with hydrogen bonds stabilising the doxorubicin mono-adduct to the other strand of DNA, to act much like an interstrand crosslink. Interstrand crosslinks present a major challenge for cellular repair processes, requiring the activation of numerous DNA damage response proteins for resolution of the resulting DNA intermediates and damage. This work investigates DNA damage response proteins activated by doxorubicin-DNA adducts. Although p53 was phosphorylated at Serine 15 in response to adducts, long term growth inhibition of mammalian cells was not affected by p53 status. Using siRNA technology and kinase inhibitors we observed enhanced cellular sensitivity to doxorubicin-DNA adducts when the activity of the signalling protein kinases ATM and ATR were lost. Cells synchronised using a double thymidine block were sensitised to adduct-initiated cell death upon ATR knockdown, but relatively unaffected by ATM knockdown. Loss of ATR was associated with abrogation of a drug-induced G(2)/M block and induction of mitotic catastrophe, while loss of ATM was associated with drug-induced apoptosis in non-synchronised cells. These proteins may therefore be potential drug targets to achieve synergistic cytotoxic responses to doxorubicin-DNA adduct forming therapies. The analysis of these protein kinases with respect to cell cycle progression indicates that ATR is required for G(2)/M checkpoint responses while ATM appears to function in G(1) mediated responses to anthracycline adducts.
Collapse
Affiliation(s)
- Robert A Forrest
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|