1
|
Shinohara S, Uchijima S, Hirosawa K, Nagaoka M, Nakano M, Nakajima M, Fukami T. Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis. Arch Toxicol 2024; 98:4059-4075. [PMID: 39367970 DOI: 10.1007/s00204-024-03873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Arylacetamide deacetylase (AADAC) catalyzes the hydrolysis of small molecules containing ester and amide bonds. Recently, it has been reported that AADAC can suppress reactive oxygen species production in cancer cells. This study aimed to elucidate the possibility that AADAC protects against drug-induced liver injury accompanied by oxidative stress and to explore its molecular mechanisms. Intraperitoneal administration of carbon tetrachloride induced significantly more severe liver injury in Aadac knockout (KO) mice (plasma alanine aminotransferase level: 19,381 ± 10,578 U/L) than in wild-type (WT) mice (7219 ± 4729 U/L). More severe liver injury in Aadac KO mice was accompanied by higher hepatic malondialdehyde and antioxidant gene mRNA levels than those in WT mice. The increase in plasma alanine aminotransferase levels in Aadac KO mice was substantially suppressed by pretreatment with the ferroptosis inhibitors deferoxamine or ferrostatin-1, suggesting that Aadac deficiency increases susceptibility to ferroptosis. Immunoprecipitation followed by proteomic analysis revealed that AADAC interacts with ceruloplasmin (CP), which oxidizes ferrous iron to ferric iron. Hepatic CP activity was significantly lower in Aadac KO mice than that in WT mice, resulting in elevated hepatic ferrous iron levels in Aadac KO mice. Overexpression of human AADAC in Huh-7 cells significantly attenuated carbon tetrachloride-induced cytotoxicity by suppressing ferrous iron accumulation, suggesting that AADAC interacts with CP to suppress hepatic ferrous iron accumulation. The hepatoprotective role of Aadac in ferroptosis was also observed in mice with acetaminophen-induced liver injury. This study demonstrates a novel function of AADAC in protecting against ferroptosis induced by hepatotoxicants, carbon tetrachloride and acetaminophen.
Collapse
Affiliation(s)
- Soshi Shinohara
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Seijo Uchijima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Morikawa T, Fukami T, Gotoh-Saito S, Nakano M, Nakajima M. PPARα regulates the expression of human arylacetamide deacetylase involved in drug hydrolysis and lipid metabolism. Biochem Pharmacol 2022; 199:115010. [PMID: 35314168 DOI: 10.1016/j.bcp.2022.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
|
4
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
5
|
Yasuda K, Watanabe K, Fukami T, Nakashima S, Ikushiro SI, Nakajima M, Sakaki T. Epicatechin gallate and epigallocatechin gallate are potent inhibitors of human arylacetamide deacetylase. Drug Metab Pharmacokinet 2021; 39:100397. [PMID: 34171773 DOI: 10.1016/j.dmpk.2021.100397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Recently, in addition to carboxylesterases (CESs), we found that arylacetamide deacetylase (AADAC) plays an important role in the metabolism of some clinical drugs. In this study, we screened for food-related natural compounds that could specifically inhibit human AADAC, CES1, or CES2. AADAC, CES1, and CES2 activities in human liver microsomes were measured using phenacetin, fenofibrate, and procaine as specific substrates, respectively. In total, 43 natural compounds were screened for their inhibitory effects on each of these enzymes. Curcumin and quercetin showed strong inhibitory effects against all three enzymes, whereas epicatechin, epicatechin gallate (ECg), and epigallocatechin gallate (EGCg) specifically inhibited AADAC. In particular, ECg and EGCg showed strong inhibitory effects on AADAC (IC50 values: 3.0 ± 0.5 and 2.2 ± 0.2 μM, respectively). ECg and EGCg also strongly inhibited AADAC-mediated rifampicin hydrolase activity in human liver microsomes with IC50 values of 2.2 ± 1.4 and 1.7 ± 0.4 μM, respectively, whereas it weakly inhibited p-nitrophenyl acetate hydrolase activity, which is catalyzed by AADAC, CES1, and CES2. Our results indicate that ECg and EGCg are potent inhibitors of AADAC.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Kazuki Watanabe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shimon Nakashima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
6
|
Guo J, Zhu X, Badawy S, Ihsan A, Liu Z, Xie C, Wang X. Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Curr Drug Metab 2021; 22:40-49. [PMID: 33397254 DOI: 10.2174/1389200221999210101233135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Human cytochrome P450 enzyme 1A2 (CYP1A2) is one of the most important cytochrome P450 (CYP) enzymes in the liver, accounting for 13% to 15% of hepatic CYP enzymes. CYP1A2 metabolises many clinical drugs, such as phenacetin, caffeine, clozapine, tacrine, propranolol, and mexiletine. CYP1A2 also metabolises certain precarcinogens such as aflatoxins, mycotoxins, nitrosamines, and endogenous substances such as steroids. The regulation of CYP1A2 is influenced by many factors. The transcription of CYP1A2 involves not only the aromatic hydrocarbon receptor pathway but also many additional transcription factors, and CYP1A2 expression may be affected by transcription coactivators and compression factors. Degradation of CYP1A2 mRNA and protein, alternative splicing, RNA stability, regulatory microRNAs, and DNA methylation are also known to affect the regulation of CYP1A2. Many factors can lead to changes in the activity of CYP1A2. Smoking, polycyclic aromatic hydrocarbon ingestion, and certain drugs (e.g., omeprazole) increase its activity, while many clinical drugs such as theophylline, fluvoxamine, quinolone antibiotics, verapamil, cimetidine, and oral contraceptives can inhibit CYP1A2 activity. Here, we review the drugs metabolised by CYP1A2, the metabolic mechanism of CYP1A2, and various factors that influence CYP1A2 metabolism. The metabolic mechanism of CYP1A2 is of great significance in the development of personalised medicine and CYP1A2 target-based drugs.
Collapse
Affiliation(s)
- Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaohui Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Iwamura A, Watanabe K, Akai S, Nishinosono T, Tsuneyama K, Oda S, Kume T, Yokoi T. Zomepirac Acyl Glucuronide Is Responsible for Zomepirac-Induced Acute Kidney Injury in Mice. Drug Metab Dispos 2016; 44:888-96. [DOI: 10.1124/dmd.116.069575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
|
8
|
Umehara KI, Zollinger M, Kigondu E, Witschi M, Juif C, Huth F, Schiller H, Chibale K, Camenisch G. Esterase phenotyping in human liver in vitro: specificity of carboxylesterase inhibitors. Xenobiotica 2016; 46:862-7. [DOI: 10.3109/00498254.2015.1133867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ken-Ichi Umehara
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Markus Zollinger
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa, and
| | - Marc Witschi
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Claire Juif
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Felix Huth
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Hilmar Schiller
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa, and
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Gian Camenisch
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| |
Collapse
|
9
|
Kurokawa T, Fukami T, Yoshida T, Nakajima M. Arylacetamide Deacetylase is Responsible for Activation of Prasugrel in Human and Dog. Drug Metab Dispos 2015; 44:409-16. [DOI: 10.1124/dmd.115.068221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022] Open
|
10
|
Muta K, Fukami T, Nakajima M. A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production. Biochem Pharmacol 2015; 98:659-70. [DOI: 10.1016/j.bcp.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
|
11
|
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University
| |
Collapse
|
12
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
13
|
Shimizu M, Fukami T, Nakajima M, Yokoi T. Screening of Specific Inhibitors for Human Carboxylesterases or Arylacetamide Deacetylase. Drug Metab Dispos 2014; 42:1103-9. [DOI: 10.1124/dmd.114.056994] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Development of a cell-based assay system considering drug metabolism and immune- and inflammatory-related factors for the risk assessment of drug-induced liver injury. Toxicol Lett 2014; 228:13-24. [PMID: 24747151 DOI: 10.1016/j.toxlet.2014.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/16/2023]
Abstract
Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical pharmacotherapy. However, prediction of DILI is difficult because the underlying mechanisms are not fully understood. To establish a novel cell-based screening system to suggest drugs with hepatotoxic potential in preclinical drug development, comprehensive gene expression analyses during in vivo DILI are necessary. Using in vivo mouse DILI models and 4 sets of hepatotoxic positive and non-hepatotoxic drugs, we found that the hepatic mRNA levels of S100A8; S100A9; "NATCH, LRR, and pyrin domain-containing protein 3" (NALP3); interleukin (IL)-1β; and the receptor for advanced glycation endproducts (RAGE) were commonly increased in hepatotoxic drug-administered mice compared to non-hepatotoxic drug-administered mice. To clarify whether these 5 in vivo biomarkers can be applied to a cell-based screening system, we adapted human liver microsomes (HLM) in the presence of NADPH to assess the metabolic activation reaction, and we also adapted human monocytic leukemia cells HL-60, K562, KG-1 and THP-1 to assess the effects on mRNA expression of immune- and inflammatory-related factors. We investigated 30 clinical drugs with different safety profiles with regard to DILI and found that the total sum score of gene expression levels of S100A8, S100A9, RAGE, NALP3 and IL-1β mRNA in HL-60 or K562 cells incubated with HLM, could identify drugs at high risk for hepatotoxicity. We proposed the use of the total sum score of gene expression level for assessing metabolic activation by drug-metabolizing enzymes and immune- and inflammatory-related factors for the risk assessment of DILI in preclinical drug development.
Collapse
|
15
|
Shimizu M, Fukami T, Ito Y, Kurokawa T, Kariya M, Nakajima M, Yokoi T. Indiplon Is Hydrolyzed by Arylacetamide Deacetylase in Human Liver. Drug Metab Dispos 2014; 42:751-8. [DOI: 10.1124/dmd.113.056184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Muta K, Fukami T, Nakajima M, Yokoi T. N-Glycosylation during translation is essential for human arylacetamide deacetylase enzyme activity. Biochem Pharmacol 2014; 87:352-9. [DOI: 10.1016/j.bcp.2013.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
17
|
Higuchi R, Fukami T, Nakajima M, Yokoi T. Prilocaine- and Lidocaine-Induced Methemoglobinemia Is Caused by Human Carboxylesterase-, CYP2E1-, and CYP3A4-Mediated Metabolic Activation. Drug Metab Dispos 2013; 41:1220-30. [DOI: 10.1124/dmd.113.051714] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
|