1
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
2
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
3
|
Alaei Faradonbeh F, Lastuvkova H, Cermanova J, Hroch M, Nova Z, Uher M, Hirsova P, Pavek P, Micuda S. Multidrug Resistance-Associated Protein 2 Deficiency Aggravates Estrogen-Induced Impairment of Bile Acid Metabolomics in Rats. Front Physiol 2022; 13:859294. [PMID: 35388287 PMCID: PMC8979289 DOI: 10.3389/fphys.2022.859294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2) mediates biliary secretion of anionic endobiotics and xenobiotics. Genetic alteration of Mrp2 leads to conjugated hyperbilirubinemia and predisposes to the development of intrahepatic cholestasis of pregnancy (ICP), characterized by increased plasma bile acids (BAs) due to mechanisms that are incompletely understood. Therefore, this study aimed to characterize BA metabolomics during experimental Mrp2 deficiency and ICP. ICP was modeled by ethinylestradiol (EE) administration to Mrp2-deficient (TR) rats and their wild-type (WT) controls. Spectra of BAs were analyzed in plasma, bile, and stool using an advanced liquid chromatography–mass spectrometry (LC–MS) method. Changes in BA-related genes and proteins were analyzed in the liver and intestine. Vehicle-administered TR rats demonstrated higher plasma BA concentrations consistent with reduced BA biliary secretion and increased BA efflux from hepatocytes to blood via upregulated multidrug resistance-associated protein 3 (Mrp3) and multidrug resistance-associated protein 4 (Mrp4) transporters. TR rats also showed a decrease in intestinal BA reabsorption due to reduced ileal sodium/bile acid cotransporter (Asbt) expression. Analysis of regulatory mechanisms indicated that activation of the hepatic constitutive androstane receptor (CAR)-Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by accumulating bilirubin may be responsible for changes in BA metabolomics in TR rats. Ethinylestradiol administration to TR rats further increased plasma BA concentrations as a result of reduced BA uptake and increased efflux via reduced Slco1a1 and upregulated Mrp4 transporters. These results demonstrate that Mrp2-deficient organism is more sensitive to estrogen-induced cholestasis. Inherited deficiency in Mrp2 is associated with activation of Mrp3 and Mrp4 proteins, which is further accentuated by increased estrogen. Bile acid monitoring is therefore highly desirable in pregnant women with conjugated hyperbilirubinemia for early detection of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Uher
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Stanislav Micuda,
| |
Collapse
|
4
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
5
|
Rodrigues AD. Drug Interactions Involving 17α-Ethinylestradiol: Considerations Beyond Cytochrome P450 3A Induction and Inhibition. Clin Pharmacol Ther 2021; 111:1212-1221. [PMID: 34342002 DOI: 10.1002/cpt.2383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
It is widely acknowledged that drug-drug interactions (DDIs) involving estrogen (17α-ethinylestradiol (EE))-containing oral contraceptives (OCs) are important. Consequently, sponsors of new molecular entities (NMEs) often conduct clinical studies with priority given to OCs as victims of cytochrome P450 (CYP) 3A (CYP3A) induction and inhibition. Such scenarios are reflected in the US Food and Drug Administration-issued guidance documentation related to OC DDI studies. Although CYP3A is important, OCs such as EE are metabolized by sulfotransferase 1E1 and UDP-glucuronosyltransferase (UGT) 1A1, expressed in the gut and liver, and so both can also serve as loci of victim OC DDI. Therefore, for any NME, one should carefully consider its induction and inhibition profile involving CYP3A4/5, UGT1A1, and SULT1E1. As DDI perpetrators, available clinical DDI data indicate that EE-containing OCs can induce (e.g., UGT1A4 and CYP2A6) and inhibit (CYP1A2 ≥ CYP2C19 > CYP3A4/5 > CYP2C8, CYP2B6, CYP2D6, and CYP2C9) various CYP forms. Although available in vitro CYP inhibition data do not explain such a graded inhibitory effect in vivo, it is hypothesized that EE differentially modulates CYP expression via potent agonism of the estrogen receptor expressed in the gut and liver. From the standpoint of the NME as potential OC DDI victim, therefore, it is important to assess its projected (pre-phase I) or known therapeutic index and pharmacokinetic profile (fraction absorbed, absolute oral bioavailability, clearance/extraction class, fraction metabolized by CYP1A2, CYP2C19, CYP2A6, and UGT1A4). Such information can enable the prioritization, design, and interpretation of NME-OC DDI studies.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
6
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
7
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Wang J, Fu T, Dong R, Wang C, Liu K, Sun H, Huo X, Ma X, Yang X, Meng Q. Hepatoprotection of auraptene from the peels of citrus fruits against 17α-ethinylestradiol-induced cholestasis in mice by activating farnesoid X receptor. Food Funct 2019; 10:3839-3850. [DOI: 10.1039/c9fo00318e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auraptene protects against estrogen-induced cholestasis in mice.
Collapse
|
10
|
Perdomo VG, Rigalli JP, Luquita MG, Pellegrino JM, Ruiz ML, Catania VA. Up-regulation of ATP-binding cassette transporters in the THP-1 human macrophage cell line by the antichagasic benznidazole. Mem Inst Oswaldo Cruz 2016; 111:707-711. [PMID: 27783718 PMCID: PMC5125048 DOI: 10.1590/0074-02760160080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
The effect of benznidazole (BZL) on the expression and activity of P-glycoprotein
(P-gp, ABCB1) and multidrug resistance-associated protein 2 (MRP2, ABCC2), the two
major transporters of endogenous and exogenous compounds, was evaluated in
differentiated THP-1 cells. BZL induced P-gp and MRP2 proteins in a
concentration-dependent manner. The increase in mRNA levels of both transporters
suggests transcriptional regulation. P-gp and MRP2 activities correlated with
increased protein levels. BZL intracellular accumulation was significantly lower in
BZL-pre-treated cells than in control cells. PSC833 (a P-gp inhibitor) increased the
intracellular BZL concentration in both pre-treated and control cells, confirming
P-gp participation in BZL efflux.
Collapse
Affiliation(s)
- Virginia G Perdomo
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina
| | - Juan P Rigalli
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina.,University of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg, Germany
| | - Marcelo G Luquita
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina
| | - José M Pellegrino
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina
| | - Viviana A Catania
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario, Argentina
| |
Collapse
|
11
|
Huang Y, Hoque MT, Jenabian MA, Vyboh K, Whyte SK, Sheehan NL, Brassard P, Bélanger M, Chomont N, Fletcher CV, Routy JP, Bendayan R. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother 2016; 71:1954-65. [PMID: 27076103 DOI: 10.1093/jac/dkw046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The testes are a potential viral sanctuary site for HIV-1 infection. Our study aims to provide insight into the expression and localization of key drug transporters and metabolic enzymes relevant to ART in this tissue compartment. METHODS We characterized gene and protein expression of 12 representative drug transporters and two metabolic enzymes in testicular tissue samples obtained from uninfected (n = 8) and virally suppressed HIV-1-infected subjects on ART (n = 5) and quantified antiretroviral drug concentrations in plasma and testicular tissues using LC/MS/MS from HIV-1-infected subjects. RESULTS Our data demonstrate that key ABC drug transporters (permeability glycoprotein, multidrug-resistance protein 1, 2 and 4, and breast cancer resistance protein), solute carrier transporters (organic anion transporting polypeptides 1B1 and 2B1, organic anion transporter 1, concentrative nucleoside transporter 1, equilibrative nucleoside transporter 2) and cytochrome P450 metabolic enzymes (CYP3A4 and CYP2D6) previously shown to interact with many commonly used antiretroviral drugs are expressed at the mRNA and protein level in the testes of both subject groups and localize primarily at the blood-testis barrier, with no significant differences between the two groups. Furthermore, we observed that PIs known to be substrates for ATP-binding cassette membrane transporters, displayed variable testicular tissue penetration, with darunavir concentrations falling below therapeutic values. In contrast, the NRTIs emtricitabine, lamivudine and tenofovir displayed favourable tissue penetration, reaching concentrations comparable to plasma levels. We also demonstrated that nuclear receptors, peroxisome proliferator-activated receptors α and γ exhibited higher gene expression in the testicular tissue compared with pregnane X receptor and constitutive androstane receptor, suggesting a potential regulatory pathway governing drug transporter and metabolic enzyme expression in this tissue compartment. CONCLUSIONS Our data suggest the testes are a complex pharmacological compartment that can restrict the distribution of certain antiretroviral drugs and potentially contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Sana-Kay Whyte
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Nancy L Sheehan
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | | | - Maud Bélanger
- Metropolitan Centre of Plastic Surgery, Montréal, Canada
| | - Nicolas Chomont
- University of Montréal Hospital Research Centre, Montréal, Canada
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| |
Collapse
|
12
|
Rigalli JP, Tocchetti GN, Arana MR, Villanueva SSM, Catania VA, Theile D, Ruiz ML, Weiss J. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett 2016; 376:165-72. [PMID: 27033456 DOI: 10.1016/j.canlet.2016.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol 2015; 287:178-190. [PMID: 26049102 DOI: 10.1016/j.taap.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/18/2023]
Abstract
The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.
Collapse
|
14
|
Rigalli JP, Ciriaci N, Arias A, Ceballos MP, Villanueva SSM, Luquita MG, Mottino AD, Ghanem CI, Catania VA, Ruiz ML. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity. PLoS One 2015; 10:e0119502. [PMID: 25781341 PMCID: PMC4364073 DOI: 10.1371/journal.pone.0119502] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Nadia Ciriaci
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Agostina Arias
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Paula Ceballos
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Marcelo Gabriel Luquita
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Carolina Inés Ghanem
- Institute of Pharmacological Investigations (ININFA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
- * E-mail:
| |
Collapse
|
15
|
Beneficial effect of Calculus Bovis Sativus on 17α-ethynylestradiol-induced cholestasis in the rat. Life Sci 2014; 113:22-30. [PMID: 25072355 DOI: 10.1016/j.lfs.2014.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/19/2014] [Accepted: 07/18/2014] [Indexed: 11/22/2022]
Abstract
AIMS Calculus Bovis Sativus (CBS) shares similar pharmacological effects with Calculus Bovis like relieving hepatobiliary diseases. This study aims to investigate the effect and mechanism of CBS on 17α-ethynylestradiol (EE)-induced cholestasis in the rat. MAIN METHODS CBS (50 and 150 mg/kg per day) was intragastrically (i. g.) given to experimental rats for 5 consecutive days in coadministration with EE. The levels of serum biomarkers, hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined by biochemical methods. The bile flow in 2h was measured. The histopathology of the liver tissue was evaluated. The expression of transporter was studied by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. KEY FINDINGS CBS treatment significantly prevented EE-induced increases in serum levels of biomarkers. Decreased bile flow by EE was restored with CBS treatment. The tissue lesions were also relieved with CBS treatment. Western blot studies indicated that EE significantly decreased the protein expression of multidrug resistance-associated protein 2 (Mrp2) and breast cancer resistance protein (Bcrp), but notably increased P-glycoprotein (P-gp) protein, compared with the control group. CBS treatment significantly increased the protein expression of P-gp, Mrp2 and Bcrp compared with the EE group. RT-qPCR studies indicated that EE down-regulated Bcrp at transcriptional level. CBS up-regulated the mRNA expression of P-gp, Mrp2 and Bcrp compared with the EE group. SIGNIFICANCE The present study indicated that CBS exerted a beneficial effect on EE-induced cholestasis in the rat, which may result from its induction of P-gp, Mrp2 and Bcrp expression.
Collapse
|