1
|
Huangfu Y, Yu X, Wan C, Zhu Y, Wei Z, Li F, Wang Y, Zhang K, Li S, Dong Y, Li Y, Niu H, Xin G, Huang W. Xanthohumol alleviates oxidative stress and impaired autophagy in experimental severe acute pancreatitis through inhibition of AKT/mTOR. Front Pharmacol 2023; 14:1105726. [PMID: 36744265 PMCID: PMC9890064 DOI: 10.3389/fphar.2023.1105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a lethal gastrointestinal disorder, yet no specific and effective treatment is available. Its pathogenesis involves inflammatory cascade, oxidative stress, and autophagy dysfunction. Xanthohumol (Xn) displays various medicinal properties, including anti-inflammation, antioxidative, and enhancing autophagic flux. However, it is unclear whether Xn inhibits SAP. This study investigated the efficacy of Xn on sodium taurocholate (NaT)-induced SAP (NaT-SAP) in vitro and in vivo. First, Xn attenuated biochemical and histopathological responses in NaT-SAP mice. And Xn reduced NaT-induced necrosis, inflammation, oxidative stress, and autophagy impairment. The mTOR activator MHY1485 and the AKT activator SC79 partly reversed the treatment effect of Xn. Overall, this is an innovative study to identify that Xn improved pancreatic injury by enhancing autophagic flux via inhibition of AKT/mTOR. Xn is expected to become a novel SAP therapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- *Correspondence: Wen Huang, ; Guang Xin,
| | - Wen Huang
- *Correspondence: Wen Huang, ; Guang Xin,
| |
Collapse
|
2
|
Yu X, Dai C, Zhao X, Huang Q, He X, Zhang R, Lin Z, Shen Y. Ruthenium red attenuates acute pancreatitis by inhibiting MCU and improving mitochondrial function. Biochem Biophys Res Commun 2022; 635:236-243. [DOI: 10.1016/j.bbrc.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
|
3
|
Ordoñez ME, Borges VS, Souza AC, Ferreira LR, Costa FM, Melo FP, Vale JK, Borges RS. Molecular modifications on β-nitro-styrene derivatives increase their antioxidant capacities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
The soluble guanylate cyclase stimulator, 1-nitro-2-phenylethane, reverses monocrotaline-induced pulmonary arterial hypertension in rats. Life Sci 2021; 275:119334. [PMID: 33711391 DOI: 10.1016/j.lfs.2021.119334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
AIMS We examined the effects of treatment with 1-nitro-2-phenylethane (NP), a novel soluble guanylate cyclase stimulator, on monocrotaline (MCT)-induced PAH in rats. MAIN METHODS At day 0, male adult rats were injected with a single subcutaneous (s.c.) dose of monocrotaline (60 mg/kg). Control (CNT) rats received an equal volume of monocrotaline's vehicle only (s.c.). Four weeks later, MCT-treated rats were treated orally for 14 days with NP (50 mg/kg/day) (MCT-NP group) or its vehicle (Tween 2%) (MCT-V group). At the end of the treatment period and before invasive hemodynamic study, rats of all experimental groups were examined by echocardiography. KEY FINDINGS With respect to CNT rats, MCT-V rats showed significant; (1) increases in pulmonary artery (PA) diameter, RV free wall thickness and end-diastolic RV area, and increase of Fulton index; (2) decreases in maximum pulmonary flow velocity, PA acceleration time (PAAT), PAAT/time of ejection ratio, and velocity-time integral; (3) increases in estimated mean pulmonary arterial pressure; (4) reduction of maximal relaxation to acetylcholine in aortic rings, and (5) increases in wall thickness of pulmonary arterioles. All these measured parameters were significantly reduced or even abolished by oral treatment with NP. SIGNIFICANCE NP reversed endothelial dysfunction and pulmonary vascular remodeling, which in turn reduced ventricular hypertrophy. NP reduced pulmonary artery stiffness, normalized the pulmonary artery diameter and alleviated RV enlargement. Thus, NP may represent a new therapeutic or a complementary approach to treatment of PAH.
Collapse
|
5
|
Petřivalský M, Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:598. [PMID: 32508862 PMCID: PMC7248558 DOI: 10.3389/fpls.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.
Collapse
|
6
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
7
|
Optimization, validation and application of headspace solid-phase microextraction gas chromatography for the determination of 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla (H.B.K.) Mez essential oil in skin permeation samples. J Chromatogr A 2018; 1564:163-175. [DOI: 10.1016/j.chroma.2018.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
8
|
Vasodilator effects and putative guanylyl cyclase stimulation by 2-nitro-1-phenylethanone and 2-nitro-2-phenyl-propane-1,3-diol on rat aorta. Eur J Pharmacol 2018; 830:105-114. [DOI: 10.1016/j.ejphar.2018.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
|
9
|
Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q, Xia Q, Xing Z, Zeng Z, Niu H, Huang W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br J Pharmacol 2018; 175:1621-1636. [PMID: 29457828 DOI: 10.1111/bph.14169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is a painful and distressing disorder of the exocrine pancreas with no specific treatment. Diosgenyl saponins extracted from from Dioscorea zingiberensis C. H. Wright have been reported to protect against experimental models of AP. Diosgenin, or its derivatives are anti-inflammatory in various conditions. However, the effects of diosgenin and its spiroacetal ring opened analogue, dihydrodiosgenin (Dydio), on AP have not been determined. EXPERIMENTAL APPROACH Effects of diosgenin and Dydio on sodium taurocholate hydrate (Tauro)-induced necrosis were tested, using freshly isolated murine pancreatic acinar cells. Effects of Dydio on mitochondrial dysfunction in response to Tauro, cholecystokinin-8 and palmitoleic acid ethyl ester were also assessed. Dydio (5 or 10 mg·kg-1 ) was administered after the induction in vivo of Tauro-induced AP (Wistar rats), caerulein-induced AP and palmitoleic acid plus ethanol-induced AP (Balb/c mice). Pancreatitis was assessed biochemically and histologically. Activation of pancreatic PI3Kγ/Akt was measured by immunoblotting. KEY RESULTS Dydio inhibited Tauro-induced activation of the necrotic cell death pathway and prevented pancreatitis stimuli-induced mitochondrial dysfunction. Therapeutic administration of Dydio ameliorated biochemical and histopathological responses in all three models of AP through pancreatic mitochondrial protection and PI3Kγ/Akt inactivation. Moreover, Dydio improved pancreatitis-associated acute lung injury through preventing excessive inflammatory responses. CONCLUSION AND IMPLICATIONS These data provide in vitro and in vivo mechanistic evidence that the diosgenin analogue, Dydio could be potential treatment for AP. Further medicinal optimization of diosgenin and its analogue might be a useful strategy for identifying lead candidates for inflammatory diseases.
Collapse
Affiliation(s)
- Yan Shen
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Li Wen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC and School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rui Zhang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,College of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Arimoto H, Takahashi D. 8-Nitro-cGMP: A Novel Protein-Reactive cNMP and Its Emerging Roles in Autophagy. Handb Exp Pharmacol 2017; 238:253-268. [PMID: 28213625 DOI: 10.1007/164_2016_5000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) raises the intracellular 3',5'-cyclic guanosine monophosphate (cGMP) level through the activation of soluble guanylate cyclase and, in the presence of reactive oxygen species (ROS), reacts with biomolecules to produce nitrated cGMP derivatives. 8-Nitro-cGMP was the first endogenous cGMP derivative discovered in mammalian cells (2007) and was later found in plant cells. Among the six nitrogen atoms in this molecule, the one in the nitro group (NO2) comes from NO. This chapter asserts that this newly found cGMP is undoubtedly one of the major physiological cNMPs. Multiple studies suggest that its intracellular abundance might exceed that of unmodified cGMP. The characteristic chemical feature of 8-nitro-cGMP is its ability to modify proteinous cysteine residues via a stable sulfide bond. In this posttranslational modification, the nitro group is detached from the guanine base. This modification, termed "protein S-guanylation," is known to regulate the physiological functions of several important proteins. Furthermore, 8-nitro-cGMP participates in the regulation of autophagy. For example, in antibacterial autophagy (xenophagy), S-guanylation accumulates around invading bacterial cells and functions as a "tag" for subsequent clearance of the organism via ubiquitin modifications. This finding suggests the existence of a system for recognizing the cGMP structure on proteins. Autophagy induction by 8-nitro-cGMP is mechanistically distinct from the well-described starvation-induced autophagy and is independent of the action of mTOR, the master regulator of canonical autophagy.
Collapse
Affiliation(s)
- Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Daiki Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
de Brito TS, Batista-Lima FJ, Gadelha KKL, da Fonseca-Magalhães PA, Lahlou S, Magalhães PJC. Vasorelaxant effects of 2-nitro-1-phenyl-1-propanol in rat aorta. Clin Exp Pharmacol Physiol 2017; 43:1054-1061. [PMID: 27437904 DOI: 10.1111/1440-1681.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
2-Nitro-1-phenyl-1-propanol (NPP) is a nitro alcohol that is known as an intermediate in the synthesis of sympathomimetic agents, such as norephedrine. The present study investigated the vasoactive effects of NPP on rat aorta. In endothelium-intact aortic rings, NPP fully relaxed contractions that were induced by phenylephrine, KCl, and U-46619. The relaxant effects of NPP on phenylephrine-elicited contractions remained unaffected by NG-nitro-l-arginine methyl ester (l-NAME), indomethacin, propranolol, tetraethylammonium, 4-aminopyridine, and glibenclamide. Conversely, pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride (MDL-12,330A), and N-[2-(P-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89) reduced the ability of NPP to relax contractions that were elicited by phenylephrine. NPP inhibited the vasoconstrictor response that was induced by Ca2+ in aortic rings that were stimulated by pharmacomechanical or electromechanical coupling with phenylephrine and 60 mmol/L KCl, respectively, and after the depletion of intracellular Ca2+ stores. Such effects of NPP were significantly reversed by pretreatment with the guanylyl cyclase inhibitor ODQ and weakly influenced by the adenylyl cyclase inhibitor MDL-12,330A. In Ca2+ -free medium, NPP inhibited transient contractions that were induced by phenylephrine but not caffeine. In homogenates of aortic rings, NPP increased cyclic guanosine 3',5'-monophosphate (cGMP) and cyclic adenosine 3'-5'-monophosphate levels, but this effect was statistically significant only for cGMP. In conclusion, in contrast to the vasoconstrictor amine norephedrine, NPP is a vasodilator in rat aorta, and its relaxant effects are likely attributable to cGMP production.
Collapse
Affiliation(s)
- Teresinha Silva de Brito
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco José Batista-Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Kalinne Kelly Lima Gadelha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Saad Lahlou
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
12
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Bai ZH, Su LJ, Pei HH. The toll-like receptor 4 antagonist transforming growth factor-β-activated kinase(TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells. J Surg Res 2016; 206:298-306. [PMID: 27884323 DOI: 10.1016/j.jss.2016.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a commonly occurring and potentially life-threatening disease. Recently, toll-like receptor 4 (TLR4) has been considered as a new clue for studying the pathogenesis of AP due to its important role in inflammatory response cascade. MATERIALS AND METHODS The aim of this study was to investigate the potential protective effect of transforming growth factor-β-activated kinase (TAK)-242, a novel TLR4 antagonist, in taurocholate-treated mice pancreatic acinar cells. The protective effects were measured by cell viability, lactate dehydrogenase release and apoptosis, and oxidative stress was assayed by lipid peroxidation and oxidative enzyme activities. To determine the potential underlying mechanisms, mitochondrial cytochrome c release, swelling, and calcium buffering capacity were measured in isolated mitochondria, and mitochondrial biogenesis and expression of mitochondrial dynamic proteins were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. RESULTS Treatment with 6-mM taurocholate significantly increased the expression of TLR4 at both mRNA and protein levels. TAK-242 markedly increased cell viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death as measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining in pancreatic acinar cells. These protective effects were accompanied by the suppressed lipid peroxidation and enhanced endogenous antioxidative enzyme activity. Using isolated and purified mitochondria from pancreatic acinar cells, we found that TAK-242 treatment also inhibited cytochrome c release into the cytoplasm, mitochondrial swelling, and decrease in mitochondrial Ca2+ buffering capacity after taurocholate exposure. In addition, TAK-242 significantly promoted mitochondrial biogenesis, as evidenced by increased mtDNA and upregulated mitochondrial transcription factors. The results of Western blot analysis showed that TAK-242 also differently regulated the expression of mitochondrial fusion and fission proteins. CONCLUSIONS All these data strongly indicated that blocking TLR4 activity via TAK-242 exerts protective effects in an in vitro AP model, and it could be a possible strategy to improve clinical outcome in AP patients.
Collapse
Affiliation(s)
- Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Yu
- Department of Clinical Laboratory, Xi'an Medical College, Xi'an, Shaanxi, China
| | - Li-Ming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun-Tao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Bo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng-Hai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li-Juan Su
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong-Hong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|