1
|
McNaught-Flores DA, Chen YC, Arias-Montaño JA, Panula P, Leurs R. Pharmacological characterization of the zebrafish Hrh2a histamine H 2 receptor. Eur J Pharmacol 2024; 981:176870. [PMID: 39117262 DOI: 10.1016/j.ejphar.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The zebrafish, Danio rerio, is a widely adopted in vivo model that conserves organs such as the liver, kidney, stomach, and brain, being, therefore, suitable for studying human diseases, drug discovery and toxicology. The brain aminergic systems are also conserved and the histamine H1, H2 and H3 receptors were previously cloned and identified in the zebrafish brain. Genome studies identified another putative H2 receptor (Hrh2) with ∼50% sequence identity with H2 receptor orthologs. In this study, we recombinantly expressed both zebrafish H2 receptor paralogs (hrh2a and hrh2b) and compared their pharmacology with the human H2 receptor ortholog. Our results showed that both zebrafish receptors conserve all the class A GPCR motifs. However, in contrast with the Hrh2a paralog, the Hrh2b does not possess all the amino acid residues shown to participate in histamine binding. The zebrafish Hrh2a receptor displays high affinity for [3H]-tiotidine with a binding profile for H2 receptor ligands similar to that of the human H2 receptor. The zebrafish Hrh2a receptor couples to GαS and Gαq/11 proteins, resulting in cAMP accumulation and activation of several reporter genes linked to the Gαq/11 pathway. Additionally, this receptor shows high constitutive activity, with histamine potency in the low nanomolar range for cAMP accumulation and the micromolar range for the activation of the NFAT response element. Moreover, dimaprit and amthamine seem to preferentially activate GαS over Gαq/11 proteins via the zebrafish Hrh2a receptor. These results can contribute to clarifying the functional roles of the H2 receptor in zebrafish.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Jose-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Wang X, van Westen GJP, Heitman LH, IJzerman AP. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem Pharmacol 2020; 187:114370. [PMID: 33338473 DOI: 10.1016/j.bcp.2020.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins with around 800 members in the human genome/proteome. Extracellular signals such as hormones and neurotransmitters regulate various biological processes via GPCRs, with GPCRs being the bodily target of 30-40% of current drugs on the market. Complete identification and understanding of GPCR functionality will provide opportunities for novel drug discovery. Yeast expresses three different endogenous GPCRs regulating pheromone and sugar sensing, with the pheromone pathway offering perspectives for the characterization of heterologous GPCR signaling. Moreover, yeast offers a ''null" background for studies on mammalian GPCRs, including GPCR activation and signaling, ligand identification, and characterization of disease-related mutations. This review focuses on modifications of the yeast pheromone signaling pathway for functional GPCR studies, and on opportunities and usage of the yeast system as a platform for human GPCR studies. Finally, this review discusses in some further detail studies of adenosine receptors heterologously expressed in yeast, and what Geoff Burnstock thought of this approach.
Collapse
Affiliation(s)
- Xuesong Wang
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H Heitman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur J Pharmacol 2020; 880:173126. [DOI: 10.1016/j.ejphar.2020.173126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023]
|
4
|
Asano T, Noda Y, Tanaka KI, Yamakawa N, Wada M, Mashimo T, Fukunishi Y, Mizushima T, Takenaga M. A 2B adenosine receptor inhibition by the dihydropyridine calcium channel blocker nifedipine involves colonic fluid secretion. Sci Rep 2020; 10:3555. [PMID: 32103051 PMCID: PMC7044278 DOI: 10.1038/s41598-020-60147-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/28/2020] [Indexed: 11/26/2022] Open
Abstract
The adenosine A2B receptor is a critical protein in intestinal water secretion. In the present study, we screened compound libraries to identify inhibitors of the A2B receptor and evaluated their effect on adenosine-induced intestinal fluid secretion. The screening identified the dihydropyridine calcium antagonists nifedipine and nisoldipine. Their respective affinities for the A2B receptor (Ki value) were 886 and 1,399 nM. Nifedipine and nisoldipine, but not amlodipine or nitrendipine, inhibited both calcium mobilization and adenosine-induced cAMP accumulation in cell lines. Moreover, adenosine injection into the lumen significantly increased fluid volume in the colonic loop of wild-type mice but not A2B receptor-deficient mice. PSB-1115, a selective A2B receptor antagonist, and nifedipine prevented elevated adenosine-stimulated fluid secretion in mice. Our results may provide useful insights into the structure–activity relationship of dihydropyridines for A2B receptor. As colonic fluid secretion by adenosine seems to rely predominantly on the A2B receptor, nifedipine could be a therapeutic candidate for diarrhoea-related diseases.
Collapse
Affiliation(s)
- Teita Asano
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan.
| | - Yuto Noda
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20, Shin-machi, Nishi-Tokyo, 202-8585, Japan
| | - Naoki Yamakawa
- School of Pharmacy, Shujitsu University, 1-6-1, Nishi-kawahara, Naka-ku, Okayama, 703-8516, Japan
| | - Mitsuhito Wada
- Technology Research Association for Next Generation Natural Products Chemistry, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tadaaki Mashimo
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.,IMSBIO Co., Ltd., Owl Tower, 4-21-1, Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-0013, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan
| |
Collapse
|
5
|
Liu R, Wong W, IJzerman AP. Human G protein-coupled receptor studies in Saccharomyces cerevisiae. Biochem Pharmacol 2016; 114:103-15. [DOI: 10.1016/j.bcp.2016.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
6
|
Agnati LF, Marcoli M, Maura G, Fuxe K, Guidolin D. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Rev Neurosci 2016; 27:347-63. [DOI: 10.1515/revneuro-2015-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
AbstractSeveral ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook’s hypothesis on ‘cell sentience’ is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field potentials.
Collapse
Affiliation(s)
| | - Manuela Marcoli
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Guido Maura
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Kjell Fuxe
- 2Karolinska Institutet, Department of Neuroscience, S-17177 Stockholm, Sweden
| | - Diego Guidolin
- 4University of Padova, Department of Molecular Medicine, I-35122 Padova, Italy
| |
Collapse
|
7
|
Peeters MC, Mos I, Lenselink EB, Lucchesi M, IJzerman AP, Schwartz TW. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112. FASEB J 2016; 30:1836-48. [PMID: 26823453 DOI: 10.1096/fj.201500110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/10/2016] [Indexed: 11/11/2022]
Abstract
The adhesion G protein-coupled receptors [ADGRs/class B2 G protein-coupled receptors (GPCRs)] constitute an ancient family of GPCRs that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight into the structure-function relationship of ADGRs using the family member ADGR subfamily G member 4 (ADGRG4)/GPR112 as a model receptor. In a bioinformatics approach, we compared conserved, functional elements of the well-characterized class A and class B1 secretin-like GPCRs with the ADGRs. We identified several potential equivalent motifs and subjected those to mutational analysis. The importance of the mutated residues was evaluated by examining their effect on the high constitutive activity of the N-terminally truncated ADGRG4/GPR112 in a 1-receptor-1-G protein Saccharomyces cerevisiae screening system and was further confirmed in a transfected mammalian human embryonic kidney 293 cell line. We evaluated the results in light of the crystal structures of the class A adenosine A2A receptor and the class B1 corticotropin-releasing factor receptor 1. ADGRG4 proved to have functionally important motifs resembling class A, class B, and combined elements, but also a unique highly conserved ADGR motif (H3.33). Given the high conservation of these motifs and residues across the adhesion GPCR family, it can be assumed that these are general elements of ADGR function.-Peeters, M. C., Mos, I., Lenselink, E. B., Lucchesi, M., IJzerman, A. P., Schwartz, T. W. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112.
Collapse
Affiliation(s)
- Miriam C Peeters
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden University, The Netherlands; and Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Iris Mos
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden University, The Netherlands; and
| | - Eelke B Lenselink
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden University, The Netherlands; and
| | - Martina Lucchesi
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden University, The Netherlands; and
| | - Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden University, The Netherlands; and
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Liu R, Nahon D, le Roy B, Lenselink EB, IJzerman AP. Scanning mutagenesis in a yeast system delineates the role of the NPxxY(x)(5,6)F motif and helix 8 of the adenosine A(2B) receptor in G protein coupling. Biochem Pharmacol 2015; 95:290-300. [PMID: 25896847 DOI: 10.1016/j.bcp.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/10/2015] [Indexed: 01/05/2023]
Abstract
The adenosine receptor subfamily includes four subtypes: the A1, A2A, A2B and A3 receptors, which all belong to the superfamily of G protein-coupled receptors (GPCRs). The adenosine A2B receptor is the least investigated of the adenosine receptors, and the molecular mechanisms of its activation have hardly been explored. We used a single-GPCR-one-G protein yeast screening method in combination with mutagenesis studies, molecular modeling and bio-informatics to investigate the importance of the different amino acid residues of the NPxxY(x)6F motif and helix 8 in the human adenosine A2B receptor (hA2BR) activation. A scanning mutagenesis protocol was employed, yielding 11 single mutations and one double mutation of the NPxxY(x)6F motif and 16 single mutations of helix 8. The amino acid residues P287(7.50), Y290(7.53), R293(7.56) and I304(8.57) were found to be essential, since mutation of these amino acid residues to alanine led to a complete loss of function. Western blot analysis showed that mutant receptor R293(7.56)A was not expressed, whereas the other proteins were. Amino acid residues that are also important in receptor activation are: N286(7.49), V289(7.52), Y292(7.55), N294(8.47), F297(8.50), R298(8.51), H302(8.55) and R307(8.60). The mutation Y290(7.53)F lost 50% of efficacy, while F297(8.50)A behaved similar to wild type receptor. The double mutation, Y290(7.53)F/F297(8.50)Y, lost around 70% of efficacy and displayed a lower potency for the reference agonist 5'-(N-ethylcarboxamido)adenosine (NECA). This study provides new insight into the molecular interplay and impact of TM7 and helix 8 for hA2B receptor activation, which may be extrapolated to other adenosine receptors and possibly to other GPCRs.
Collapse
Affiliation(s)
- Rongfang Liu
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Dennis Nahon
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Beau le Roy
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|