2
|
Frost KL, Jilek JL, Toth EL, Goedken MJ, Wright SH, Cherrington NJ. Representative Rodent Models for Renal Transporter Alterations in Human Nonalcoholic Steatohepatitis. Drug Metab Dispos 2023; 51:970-981. [PMID: 37137719 PMCID: PMC10353148 DOI: 10.1124/dmd.122.001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
Alterations in renal elimination processes of glomerular filtration and active tubular secretion by renal transporters can result in adverse drug reactions. Nonalcoholic steatohepatitis (NASH) alters hepatic transporter expression and xenobiotic elimination, but until recently, renal transporter alterations in NASH were unknown. This study investigates renal transporter changes in rodent models of NASH to identify a model that recapitulates human alterations. Quantitative protein expression by surrogate peptide liquid chromatography-coupled mass spectrometry (LC-MS/MS) on renal biopsies from NASH patients was used for concordance analysis with rodent models, including methionine/choline deficient (MCD), atherogenic (Athero), or control rats and Leprdb/db MCD (db/db), C57BL/6J fast-food thioacetamide (FFDTH), American lifestyle-induced obesity syndrome (ALIOS), or control mice. Demonstrating clinical similarity to NASH patients, db/db, FFDTH, and ALIOS showed decreases in glomerular filtration rate (GFR) by 76%, 28%, and 24%. Organic anion transporter 3 (OAT3) showed an upward trend in all models except the FFDTH (from 3.20 to 2.39 pmol/mg protein), making the latter the only model to represent human OAT3 changes. OAT5, a functional ortholog of human OAT4, significantly decreased in db/db, FFDTH, and ALIOS (from 4.59 to 0.45, 1.59, and 2.83 pmol/mg protein, respectively) but significantly increased for MCD (1.67 to 4.17 pmol/mg protein), suggesting that the mouse models are comparable to human for these specific transport processes. These data suggest that variations in rodent renal transporter expression are elicited by NASH, and the concordance analysis enables appropriate model selection for future pharmacokinetic studies based on transporter specificity. These models provide a valuable resource to extrapolate the consequences of human variability in renal drug elimination. SIGNIFICANCE STATEMENT: Rodent models of nonalcoholic steatohepatitis that recapitulate human renal transporter alterations are identified for future transporter-specific pharmacokinetic studies to facilitate the prevention of adverse drug reactions due to human variability.
Collapse
Affiliation(s)
- Kayla L Frost
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Joseph L Jilek
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Erica L Toth
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Michael J Goedken
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| |
Collapse
|
3
|
Jilek JL, Frost KL, Marie S, Myers CM, Goedken M, Wright SH, Cherrington NJ. Attenuated Ochratoxin A Transporter Expression in a Mouse Model of Nonalcoholic Steatohepatitis Protects against Proximal Convoluted Tubule Toxicity. Drug Metab Dispos 2022; 50:1389-1395. [PMID: 34921099 PMCID: PMC9513848 DOI: 10.1124/dmd.121.000451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.
Collapse
Affiliation(s)
- Joseph L Jilek
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Kayla L Frost
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Solène Marie
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Cassandra M Myers
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Michael Goedken
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| |
Collapse
|
6
|
Chatterjee S, Mukherjee S, Sankara Sivaprasad LVJ, Naik T, Gautam SS, Murali BV, Hadambar AA, Gunti GR, Kuchibhotla V, Deyati A, Basavanthappa S, Ramarao M, Mariappan TT, Zinker BA, Zhang Y, Sinz M, Shen H. Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. J Pharmacol Exp Ther 2021; 376:29-39. [PMID: 33127749 DOI: 10.1124/jpet.120.000291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Expression and functional changes in the organic anion transporting polypeptide (OATP)-multidrug resistance-associated protein (MRP) axis of transporters are well reported in patients with nonalcoholic steatohepatitis (NASH). These changes can impact plasma and tissue disposition of endo- and exogenous compounds. The transporter alterations are often assessed by administration of a xenobiotic or by transporter proteomic analysis from liver biopsies. Using gene expression, proteomics, and endogenous biomarkers, we show that the gene expression and activity of OATP and MRP transporters are associated with disease progression and recovery in humans and in preclinical animal models of NASH. Decreased OATP and increased MRP3/4 gene expression in two cohorts of patients with steatosis and NASH, as well as gene and protein expression in multiple NASH rodent models, have been established. Coproporphyrin I and III (CP I and III) were established as substrates of MRP4. CP I plasma concentration increased significantly in four animal models of NASH, indicating the transporter changes. Up to a 60-fold increase in CP I plasma concentration was observed in the mouse bile duct-ligated model compared with sham controls. In the choline-deficient amino acid-defined high-fat diet (CDAHFD) model, CP I plasma concentrations increased by >3-fold compared with chow diet-fed mice. In contrast, CP III plasma concentrations remain unaltered in the CDAHFD model, although they increased in the other three NASH models. These results suggest that tracking CP I plasma concentrations can provide transporter modulation information at a functional level in NASH animal models and in patients. SIGNIFICANCE STATEMENT: Our analysis demonstrates that multidrug resistance-associated protein 4 (MRP4) transporter gene expression tracks with nonalcoholic steatohepatitis (NASH) progression and intervention in patients. Additionally, we show that coproporphyrin I and III (CP I and III) are substrates of MRP4. CP I plasma and liver concentrations increase in different diet- and surgery-induced rodent NASH models, likely explained by both gene- and protein-level changes in transporters. CP I and III are therefore potential plasma-based biomarkers that can track NASH progression in preclinical models and in humans.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Sambuddho Mukherjee
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - L V J Sankara Sivaprasad
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Tanvi Naik
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Shashyendra Singh Gautam
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Bokka Venkata Murali
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Avinash Annasao Hadambar
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Gowtham Raj Gunti
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Vijaykumar Kuchibhotla
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Avisek Deyati
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Sushma Basavanthappa
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Manjunath Ramarao
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - T Thanga Mariappan
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Bradley A Zinker
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Michael Sinz
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Hong Shen
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| |
Collapse
|