1
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
2
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
4
|
Pasqualetto G, Zuanon M, Brancale A, Young MT. Identification of a novel P2X7 antagonist using structure-based virtual screening. Front Pharmacol 2023; 13:1094607. [PMID: 36712671 PMCID: PMC9877316 DOI: 10.3389/fphar.2022.1094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
P2X4 and P2X7 receptors are ATP-gated ion channels, which play important roles in neuropathic and inflammatory pain, and as such they are important drug targets in diseases of inflammatory origin. While several compounds targeting P2X4 and P2X7 receptors have been developed using traditional high-throughput screening approaches, relatively few compounds have been developed using structure-based design. We initially set out to develop compounds targeting human P2X4, by performing virtual screening on the orthosteric (ATP-binding) pocket of a molecular model of human P2X4 based on the crystal structure of the Danio rerio receptor. The screening of a library of approximately 300,000 commercially available drug-like compounds led to the initial selection of 17 compounds; however, none of these compounds displayed a significant antagonist effect at P2X4 in a Fluo-4 ATP-induced calcium influx assay. When the same set of compounds was tested against human P2X7 in an ATP-stimulated Yo-Pro1 dye uptake assay, one compound (an indeno(1,2-b)pyridine derivative; GP-25) reduced the response by greater than 50% when applied at a concentration of 30 µM. GP-25 displayed an IC50 value of 8.7 μM at human P2X7 and 24.4 μM at rat P2X7, and was confirmed to be active using whole-cell patch clamp electrophysiology and not cytotoxic. Schild analysis suggested that mode of action of GP-25 was orthosteric. Screening of a further 16 commercially available analogues of GP-25 led to the discovery of five additional compounds with antagonist activity at human P2X7, enabling us to investigate the structure-activity relationship. Finally, docking of the R- and S-enantiomers of GP-25 into the orthosteric pocket of molecular models of human P2X4 and human P2X7 revealed that, while both enantiomers were able to make multiple interactions between their carboxyl moieties and conserved positively charged amino-acids in human P2X7, only the S-enantiomer of GP-25 was able to do this in human P2X4, potentially explaining the lack of activity of GP-25 at this receptor.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marika Zuanon
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom,Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Mark T. Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom,*Correspondence: Mark T. Young,
| |
Collapse
|
5
|
Sheng D, Hattori M. Recent progress in the structural biology of P2X receptors. Proteins 2022; 90:1779-1785. [PMID: 35023590 DOI: 10.1002/prot.26302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
Abstract
P2X receptors are ATP-gated trimeric nonselective cation channels that are important for various physiological and pathological processes, including synaptic transmission, pain perception, immune regulation, and apoptosis. Accordingly, they attract a wide range of interest as drug targets, such as those for chronic cough, neuropathic pain, and depression. After the zebrafish P2X4 receptor structure was reported in 2009, various other P2X receptor structures have been reported, extending our understanding of the molecular mechanisms of P2X receptors. This review article describes the recent progress on understanding the structures and mechanisms of P2X receptors, especially of the mechanisms underlying ATP binding and conformational changes during the gating cycle. In addition, since several antagonists for different P2X subtypes have entered into clinical trials, this review also summarizes the binding sites and regulatory mechanisms of these antagonists, which may contribute to new strategies of targeting P2X receptors for drug discovery.
Collapse
Affiliation(s)
- Danqi Sheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
7
|
Caseley EA, Muench SP, Jiang LH. Tyrosine 288 in the extracellular domain of the human P2X7 receptor is critical for receptor function revealed by structural modeling and site-directed mutagenesis. Proteins 2021; 90:619-624. [PMID: 34622987 DOI: 10.1002/prot.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 11/06/2022]
Abstract
The P2X7 receptor (P2X7R) is a calcium-permeable cation channel activated by high concentrations of extracellular ATP. It plays a role in vital physiological processes, particularly in innate immunity, and is dysregulated in pathological conditions such as inflammatory diseases, neurodegenerative diseases, mood disorders, and cancers. Structural modeling of the human P2X7R (hP2X7R) based on the recently available structures of the rat P2X7 receptor (rP2XR) in conjunction with molecular docking predicts the orientation of tyrosine at position 288 (Y288) in the extracellular domain to face ATP. In this short communication, we combined site-directed mutagenesis and whole-cell patch-clamp recording to investigate the role of this residue in the hP2X7R function. Mutation of this extracellular residue to amino acids with different properties massively impaired current responses to both ATP and BzATP, suggesting that Y288 is important for normal receptor function. Such a finding facilitates development of an in-depth understanding of the molecular basis of hP2X7R structure-function relationships.
Collapse
Affiliation(s)
- Emily A Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Jiang LH, Caseley EA, Muench SP, Roger S. Structural basis for the functional properties of the P2X7 receptor for extracellular ATP. Purinergic Signal 2021; 17:331-344. [PMID: 33987781 PMCID: PMC8410900 DOI: 10.1007/s11302-021-09790-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor, originally known as the P2Z receptor due to its distinctive functional properties, has a structure characteristic of the ATP-gated ion channel P2X receptor family. The P2X7 receptor is an important mediator of ATP-induced purinergic signalling and is involved the pathogenesis of numerous conditions as well as in the regulation of diverse physiological functions. Functional characterisations, in conjunction with site-directed mutagenesis, molecular modelling, and, recently, structural determination, have provided significant insights into the structure–function relationships of the P2X7 receptor. This review discusses the current understanding of the structural basis for the functional properties of the P2X7 receptor.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Steve P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
9
|
Caseley EA, Muench SP, Jiang LH. Contribution of Val/Ile87 residue in the extracellular domain in agonist-induced current responses of the human and rat P2X7 receptors. Purinergic Signal 2020; 16:485-490. [PMID: 33029714 PMCID: PMC7855165 DOI: 10.1007/s11302-020-09730-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated cation channel with a critical role in many physiological and pathological processes, and shows prominent functional differences across mammalian species, exemplified by larger current responses of the rat (r) P2X7R to ATP and its analogue BzATP and a greater sensitivity to agonists compared with the human (h) P2X7R. Here, we showed that substitution of Val87 residue in the extracellular domain of the hP2X7R with isoleucine in the rP2X7R increased the current responses of the hP2X7R to both ATP and BzATP. Conversely, introduction of reciprocal I87V mutation in the rP2X7R led to a noticeable but statistically insignificant reduction in the current responses of the rP2X7R to ATP and BzATP. The mutations did not affect the sensitivity of the human and rat P2X7Rs to ATP and BzATP. These results suggest a contribution of Val/Ile87 in agonist-induced current responses of human and rat P2X7Rs, which helps to better understand the molecular determinants for species-dependent function of the mammalian P2X7Rs.
Collapse
Affiliation(s)
- Emily A Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Faculty of Medicine and Health, Leeds, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 JT, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 JT, UK.
| |
Collapse
|
10
|
Alberto AVP, da Silva Ferreira NC, Soares RF, Alves LA. Molecular Modeling Applied to the Discovery of New Lead Compounds for P2 Receptors Based on Natural Sources. Front Pharmacol 2020; 11:01221. [PMID: 33117147 PMCID: PMC7553047 DOI: 10.3389/fphar.2020.01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
P2 receptors are a family of transmembrane receptors activated by nucleotides and nucleosides. Two classes have been described in mammals, P2X and P2Y, which are implicated in various diseases. Currently, only P2Y12 has medicines approved for clinical use as antiplatelet agents and natural products have emerged as a source of new drugs with action on P2 receptors due to the diversity of chemical structures. In drug discovery, in silico virtual screening (VS) techniques have become popular because they have numerous advantages, which include the evaluation of thousands of molecules against a target, usually proteins, faster and cheaper than classical high throughput screening (HTS). The number of studies using VS techniques has been growing in recent years and has led to the discovery of new molecules of natural origin with action on different P2X and P2Y receptors. Using different algorithms it is possible to obtain information on absorption, distribution, metabolism, toxicity, as well as predictions on biological activity and the lead-likeness of the selected hits. Selected biomolecules may then be tested by molecular dynamics and, if necessary, rationally designed or modified to improve their interaction for the target. The algorithms of these in silico tools are being improved to permit the precision development of new drugs and, in the future, this process will take the front of drug development against some central nervous system (CNS) disorders. Therefore, this review discusses the methodologies of in silico tools concerning P2 receptors, as well as future perspectives and discoveries, such as the employment of artificial intelligence in drug discovery.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Rafael Ferreira Soares
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Heterologous Expression and Patch-Clamp Recording of P2X Receptors in HEK293 Cells. Methods Mol Biol 2020; 2041:261-273. [PMID: 31646495 DOI: 10.1007/978-1-4939-9717-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
P2X receptors (P2XRs) are ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP) and play a critical role in mediating ATP-induced purinergic signaling in physiological and pathological processes. Heterologous expression of P2XR in human embryonic kidney 293 (HEK293) cells and measurement of P2XR-mediated currents using patch-clamp recording technique have been widely used to study the biophysical and pharmacological properties of these receptors. Combination of electrophysiology with site-directed mutagenesis and structural information has shed light on the molecular basis for receptor activation and mechanisms of actions by receptor antagonists and modulators. It is anticipated that such methodologies will continue helping us to provide more mechanistic understanding of P2XRs and to test novel receptor antagonists and allosteric modulators for therapeutical purposes. In this chapter, we describe protocols of transiently or stably expressing the P2XR in HEK293 cells and measuring P2XR-mediated currents by using whole-cell recording.
Collapse
|
12
|
Bin Dayel A, Evans RJ, Schmid R. Mapping the Site of Action of Human P2X7 Receptor Antagonists AZ11645373, Brilliant Blue G, KN-62, Calmidazolium, and ZINC58368839 to the Intersubunit Allosteric Pocket. Mol Pharmacol 2019; 96:355-363. [PMID: 31263019 PMCID: PMC6701605 DOI: 10.1124/mol.119.116715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated ion channel activated by ATP. It is implicated in the cellular response to trauma/disease and considered to have significant therapeutic potential. Using chimeras and point mutants we have mapped the binding site of the P2X7R-selective antagonist AZ11645373 to the known allosteric binding pocket at the interface between two subunits, in proximity to, but separated from the ATP binding site. Our structural model of AZ11645373 binding is consistent with effects of mutations on antagonist sensitivity, and the proposed binding mode explains variation in antagonist sensitivity between the human and rat P2X7 receptors. We have also determined the site of action for the P2X7R-selective antagonists ZINC58368839, brilliant blue G, KN-62, and calmidazolium. The effect of intersubunit allosteric pocket “signature mutants” F88A, T90V, D92A, F103A, and V312A on antagonist sensitivity suggests that ZINC58368839 comprises a binding mode similar to AZ11645373 and other previously characterized antagonists. For the larger antagonists, brilliant blue G, KN-62, and calmidazolium, our data imply an overlapping but distinct binding mode involving the central upper vestibule of the receptor in addition to the intersubunit allosteric pocket. Our work explains the site of action for a series of P2X7R antagonists and establishes “signature mutants” for P2X7R binding-mode characterization.
Collapse
Affiliation(s)
- Anfal Bin Dayel
- Department of Molecular and Cell Biology (A.B.D., R.J.E., R.S.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology (A.B.D., R.J.E., R.S.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom
| | - Ralf Schmid
- Department of Molecular and Cell Biology (A.B.D., R.J.E., R.S.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Faria RX, de Jesus Hiller N, Salles JP, Resende JALC, Diogo RT, von Ranke NL, Bello ML, Rodrigues CR, Castro HC, de Luna Martins D. Arylboronic acids inhibit P2X7 receptor function and the acute inflammatory response. J Bioenerg Biomembr 2019; 51:277-290. [PMID: 31256283 DOI: 10.1007/s10863-019-09802-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1β release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.
Collapse
Affiliation(s)
- Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Noemi de Jesus Hiller
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Juliana Pimenta Salles
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil
| | | | - Roberta Tosta Diogo
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Natalia Lidmar von Ranke
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.,Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Murilo Lamim Bello
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
14
|
Gazzerro E, Baratto S, Assereto S, Baldassari S, Panicucci C, Raffaghello L, Scudieri P, De Battista D, Fiorillo C, Volpi S, Chaabane L, Malnati M, Messina G, Bruzzone S, Traggiai E, Grassi F, Minetti C, Bruno C. The Danger Signal Extracellular ATP Is Involved in the Immunomediated Damage of α-Sarcoglycan-Deficient Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:354-369. [PMID: 30448410 DOI: 10.1016/j.ajpath.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy; Charité Universität-Experimental and Clinical Research Center, Berlin, Germany.
| | - Serena Baratto
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy
| | - Stefania Assereto
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Baldassari
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy; Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Davide De Battista
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Stefano Volpi
- Pediatria II Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Linda Chaabane
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | - Mauro Malnati
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Fabio Grassi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy; Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy.
| |
Collapse
|
15
|
Young CNJ, Górecki DC. P2RX7 Purinoceptor as a Therapeutic Target-The Second Coming? Front Chem 2018; 6:248. [PMID: 30003075 PMCID: PMC6032550 DOI: 10.3389/fchem.2018.00248] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
The P2RX7 receptor is a unique member of a family of extracellular ATP (eATP)-gated ion channels expressed in immune cells, where its activation triggers the inflammatory cascade. Therefore, P2RX7 has been long investigated as a target in the treatment of infectious and inflammatory diseases. Subsequently, P2RX7 signaling has been documented in other physiological and pathological processes including pain, CNS and psychiatric disorders and cancer. As a result, a range of P2RX7 antagonists have been developed and trialed. Interestingly, the recent crystallization of mammalian and chicken receptors revealed that most widely-used antagonists may bind a unique allosteric site. The availability of crystal structures allows rational design of improved antagonists and modeling of binding sites of the known or presumed inhibitors. However, several unanswered questions limit the cogent development of P2RX7 therapies. Firstly, this receptor functions as an ion channel, but its chronic stimulation by high eATP causes opening of the non-selective large pore (LP), which can trigger cell death. Not only the molecular mechanism of LP opening is still not fully understood but its function(s) are also unclear. Furthermore, how can tumor cells take advantage of P2RX7 for growth and spread and yet survive overexpression of potentially cytotoxic LP in the eATP-rich environment? The recent discovery of the feedback loop, wherein the LP-evoked release of active MMP-2 triggers the receptor cleavage, provided one explanation. Another mechanism might be that of cancer cells expressing a structurally altered P2RX7 receptor, devoid of the LP function. Exploiting such mechanisms should lead to the development of new, less toxic anticancer treatments. Notably, targeted inhibition of P2RX7 is crucial as its global blockade reduces the immune and inflammatory responses, which have important anti-tumor effects in some types of malignancies. Therefore, another novel approach is the synthesis of tissue/cell specific P2RX7 antagonists. Progress has been aided by the development of p2rx7 knockout mice and new conditional knock-in and knock-out models are being created. In this review, we seek to summarize the recent advances in our understanding of molecular mechanisms of receptor activation and inhibition, which cause its re-emergence as an important therapeutic target. We also highlight the key difficulties affecting this development.
Collapse
Affiliation(s)
- Chris N. J. Young
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Health and Life Sciences, The School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Dariusz C. Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
16
|
Al-Khalidi R, Panicucci C, Cox P, Chira N, Róg J, Young CNJ, McGeehan RE, Ambati K, Ambati J, Zabłocki K, Gazzerro E, Arkle S, Bruno C, Górecki DC. Zidovudine ameliorates pathology in the mouse model of Duchenne muscular dystrophy via P2RX7 purinoceptor antagonism. Acta Neuropathol Commun 2018; 6:27. [PMID: 29642926 PMCID: PMC5896059 DOI: 10.1186/s40478-018-0530-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.
Collapse
|
17
|
Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, Li C, Chalon S, Emond P, Belzung C, Li D, Lu C, Roger S, Jiang LH. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 2018; 87:192-205. [PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
Collapse
Affiliation(s)
- Linyu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Faculty of Medicine and Health Science, University Putra Malaysia, Selangor, Malaysia
| | - Jing Yan
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Libin Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Sylvie Chalon
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | - Patrick Emond
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | - Dongliang Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Sebastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, France; Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Institut Universitaire de France, Paris Cedex 05, France.
| |
Collapse
|
18
|
Liu CL, Deng ZY, Du ER, Xu CS. Long non‑coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid‑induced expression of P2X7 receptors in satellite glial cells. Mol Med Rep 2018; 17:5851-5859. [PMID: 29436679 PMCID: PMC5866030 DOI: 10.3892/mmr.2018.8601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling contributes to inflammatory and immune responses. The activation of the P2X purinoceptor 7 (P2X7) in satellite glial cells (SGCs) may be an essential component in the promotion of inflammation and neuropathic pain. Long non-coding RNAs (lncRNAs) are involved in multiple physiological and pathological processes. The aim of the present study was to investigate the effects of a small interfering RNA for the lncRNA BC168687 on SGC P2X7 expression in a high glucose and high free fatty acids (HGHF) environment. It was demonstrated that BC168687 small interfering (si)RNA downregulated the co-expression of the P2X7 and glial fibrillary acidic protein and P2X7 mRNA expression. Additionally, HGHF may activate the mitogen-activated protein kinase signaling pathway by increasing the release of nitric oxide and reactive oxygen species in SGCs. Taken together, these results indicate that silencing BC168687 expression may downregulate the increased expression of P2X7 receptors in SGCs induced by a HGHF environment.
Collapse
Affiliation(s)
- Cheng-Long Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ze-Yu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Er-Rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang-Shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Pasqualetto G, Brancale A, Young MT. The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors. Front Pharmacol 2018; 9:58. [PMID: 29456508 PMCID: PMC5801290 DOI: 10.3389/fphar.2018.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP—their physiological ligand—is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2′-(3′)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mark T Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Gonzaga DTG, Ferreira LBG, Moreira Maramaldo Costa TE, von Ranke NL, Anastácio Furtado Pacheco P, Sposito Simões AP, Arruda JC, Dantas LP, de Freitas HR, de Melo Reis RA, Penido C, Bello ML, Castro HC, Rodrigues CR, Ferreira VF, Faria RX, da Silva FDC. 1-Aryl-1 H - and 2-aryl-2 H -1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo. Eur J Med Chem 2017; 139:698-717. [DOI: 10.1016/j.ejmech.2017.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
|
21
|
Platania CBM, Giurdanella G, Di Paola L, Leggio GM, Drago F, Salomone S, Bucolo C. P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochem Pharmacol 2017; 138:130-139. [PMID: 28479300 DOI: 10.1016/j.bcp.2017.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Luisa Di Paola
- School of Engineering, University Campus BioMedico, Roma, Italy
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
22
|
Allsopp RC, Dayl S, Schmid R, Evans RJ. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep 2017; 7:725. [PMID: 28389651 PMCID: PMC5429621 DOI: 10.1038/s41598-017-00732-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023] Open
Abstract
The P2X7 receptor (P2X7R) for ATP is a therapeutic target for pathophysiological states including inflammation, pain management and epilepsy. This is facilitated by the predicted low side effect profile as the high concentrations of ATP required to activate the receptor are usually only found following cell damage/disease and so P2X7Rs respond to a "danger" signal and are not normally active. AZ10606120 is a selective antagonist for P2X7Rs (IC50 of ~10 nM) and ineffective at the P2X1R (at 10 μM). To determine the molecular basis of selectivity we generated a series of P2X7/1R chimeras and mutants. Two regions that are unique to the P2X7R, a loop insertion (residues 73-79) and threonine residues T90 and T94, are required for high affinity antagonist action. Point mutations ruled out an orthosteric antagonist site. Mutations and molecular modelling identified an allosteric binding site that forms at the subunit interface at the apex of the receptor. Molecular dynamics simulations indicated that unique P2X7R features regulate access of AZ10606120 to the allosteric site. The characterisation of the allosteric pocket provides a new and novel target for rational P2X7R drug development.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sudad Dayl
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|