1
|
Yu F, Guo J, Ren HL, Lu S, He Z, Chang J, Hu X, Shi R, Jin Y, Li Y, Liu Z, Wang X, Hu P. Tyrosol inhibits NF-κB pathway in the treatment of enterotoxigenic Escherichia coli-induced diarrhea in mice. Microb Pathog 2023; 176:105944. [PMID: 36526033 DOI: 10.1016/j.micpath.2022.105944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tyrosol is one of the main polyphenol compounds in white wine and extra virgin olive oil (EVOO), which plays an antioxidant and anti-inflammatory role in vitro. In the present study, we investigated the possible anti-inflammatory mechanism of tyrosol in Escherichia coli (ETEC)-induced diarrhea in mice. ICR mice were randomly divided into control group, ETEC group, and ETEC + Tyrosol group with 10 mice in each group. In addition to the control group, a bacterial diarrhea model was induced in mice by continuous administration of 0.2 ml × 109 CFU/ml ETEC. After 7 days, the ETEC + Tyrosol group was given tyrosol (20 mg/kg) once a day by gavage, during which the body weight of mice and the degree of diarrhea were measured daily. On the 15th day, all animals in this experiment were sacrificed, colon tissue was collected, and colon length was recorded. Our results indicate that tyrosol significantly attenuated the extent of ETEC-induced diarrhea, including inhibition of pro-inflammatory cytokine, repair of the intestinal epithelial mechanical barrier, and significant inhibition of NF-κB activation. This finding is helpful for the development and further application of tyrosol in the treatment of diarrhea.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hong Lin Ren
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhaoqi He
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, China.
| | - Pan Hu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Esquivel-García R, Seker A, Abu-Lail NI, García-Pérez M, Ochoa-Zarzosa A, García-Pérez ME. Ethanolic extract, solvent fractions, and bio-oils from Urtica subincisa: Chemical composition, toxicity, and anti-IL-17 activity on HaCaT keratinocytes. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
4
|
Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol 2022; 111:109058. [PMID: 35901530 DOI: 10.1016/j.intimp.2022.109058] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic relapsing inflammatory bowel disease. Honokiol is a major active component of the traditional Chinese medicinal herb Magnolia officinalis, which has been widely used in traditional prescriptions to treat tumors, inflammation, and gastrointestinal disorders. In this study, we investigated the ability of this polyphenolic compound to suppress UC in mice and the possible regulatory mechanism. A mouse model of UC induced with dextran sulfate sodium (DSS) in 40 male C57BL/6J mice was used for the in vivo study, and in vitro experiments were performed in mouse RAW264.7 macrophages. Lipopolysaccharide was used to induce the inflammatory response. The mouse bodyweights, stool consistency, and bleeding were determined and the disease activity indices calculated. RAW264.7 macrophages were cultured with or without either honokiol or lipopolysaccharide. Gene and protein expression was analyzed with RT-PCR and western blotting, respectively. GW6471 and GW9662 were used to interrupt the transcription of peroxisome proliferator activated receptor alpha (PPAR-α) and peroxisome proliferator activated receptor gamma (PPAR-γ). Both the in vivo and in vitro experimental results showed that the oral administration of honokiol markedly attenuated the severity of UC by reducing the inflammatory signals and restoring the integrity of the colon. Honokiol dramatically reduced the proinflammatory cytokines TNF-α, IL6, IL1β, and IFN-γ in mice with DSS-induced UC. It also upregulated PPAR-γ expression, and downregulated the TLR4-NF-κB signaling pathway. Moreover, honokiol inhibited gasdermin-D-mediated cell pyroptosis. These findings demonstrate for the first time that honokiol exerts a strong anti-inflammatory effect in a mouse model of UC, and that its underlying mechanism is associated with the activation of the PPAR-γ-TLR4-NF-κB signaling pathway and gasdermin-D-mediated macrophage pyroptosis. Therefore, honokiol may be a promising new drug for the clinical management of UC.
Collapse
|
5
|
Chitosan Oligosaccharides Alleviate Colitis by Regulating Intestinal Microbiota and PPARγ/SIRT1-Mediated NF-κB Pathway. Mar Drugs 2022; 20:md20020096. [PMID: 35200626 PMCID: PMC8880253 DOI: 10.3390/md20020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan oligosaccharides (COS) have been shown to have potential protective effects against colitis, but the mechanism underlying this effect has not been fully elucidated. In this study, COS were found to significantly attenuate dextran sodium sulfate-induced colitis in mice by decreasing disease activity index scores, downregulating pro-inflammatory cytokines, and upregulating Mucin-2 levels. COS also significantly inhibited the levels of nitric oxide (NO) and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. Importantly, COS inhibited the activation of the NF-κB signaling pathway via activating PPARγ and SIRT1, thus reducing the production of NO and IL-6. The antagonist of PPARγ could abolish the anti-inflammatory effects of COS in LPS-treated cells. COS also activated SIRT1 to reduce the acetylation of p65 protein at lysine 310, which was reversed by silencing SIRT1 by siRNA. Moreover, COS treatment increased the diversity of intestinal microbiota and partly restored the Firmicutes/Bacteroidetes ratio. COS administration could optimize intestinal microbiota composition by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and Alistipes, while decreasing the abundance of Turicibacte. Furthermore, COS could also increase the levels of propionate and butyrate. Overall, COS can improve colitis by regulating intestinal microbiota and the PPARγ/SIRT1-mediated NF-κB pathway.
Collapse
|
6
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
7
|
Rashidian A, Akbarzadeh D, Asgarpanah J, Dehpour A. Bunium persicum essential oil reduced acetic acid-induced rat colitis through suppression of NF-κB pathway. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:505-514. [PMID: 34745922 PMCID: PMC8554278 DOI: 10.22038/ajp.2021.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
Objective: The aim of this study was to evaluate the anti-inflammatory effect of B. persicum essential oil on colonic inflammation and the role of suppression of NF-κB pathway in rat colitis induced by acetic acid solution. Materials and Methods: Induction of acute colitis was done by intra-luminal instillation of 2 ml of acetic acid (4%) diluted in normal saline. Two hours after colitis induction, 0.2% tween 80 in normal saline, prednisolone (4 mg/kg) or B. persicum essential oil (100, 200, and 400 mg/kg) were administered to the rats orally and continued for 5 consecutive days. The severity of macroscopic and microscopic damages was assessed. Myeloperoxidase and TNF-α activity was evaluated by biochemical analysis and ELISA respectively and protein expression of p-NF-κB was assessed by immunohistochemistry (IHC). Results: Prednisolone and B. persicum essential oil (100, 200, and 400 mg/kg) decreased macroscopic and microscopic injuries compared to the acetic acid group. On the other hand, prednisolone and B. persicum essential oil (200 and 400 mg/kg) decreased the activity of MPO and TNF-α in the colon tissue of rats compared with the acetic acid group. Furthermore, they suppressed the expression of p-NF-κB protein induced by acetic acid administration. Conclusion: It is suggested that the anti-inflammatory effect of B. persicum essential oil on acetic acid-induced colitis in rats may be due to the suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorna Akbarzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jinous Asgarpanah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Di Stasi LC. Coumarin Derivatives in Inflammatory Bowel Disease. Molecules 2021; 26:molecules26020422. [PMID: 33467396 PMCID: PMC7830946 DOI: 10.3390/molecules26020422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a non-communicable disease characterized by a chronic inflammatory process of the gut and categorized into Crohn’s disease and ulcerative colitis, both currently without definitive pharmacological treatment and cure. The unclear etiology of IBD is a limiting factor for the development of new drugs and explains the high frequency of refractory patients to current drugs, which are also related to various adverse effects, mainly after long-term use. Dissatisfaction with current therapies has promoted an increased interest in new pharmacological approaches using natural products. Coumarins comprise a large class of natural phenolic compounds found in fungi, bacteria, and plants. Coumarin and its derivatives have been reported as antioxidant and anti-inflammatory compounds, potentially useful as complementary therapy of the IBD. These compounds produce protective effects in intestinal inflammation through different mechanisms and signaling pathways, mainly modulating immune and inflammatory responses, and protecting against oxidative stress, a central factor for IBD development. In this review, we described the main coumarin derivatives reported as intestinal anti-inflammatory products and its available pharmacodynamic data that support the protective effects of these products in the acute and subchronic phase of intestinal inflammation.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
9
|
Song D, Huang C, Liang P, Zhu B, Liu X, Cao H. Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement. Org Chem Front 2021. [DOI: 10.1039/d1qo00224d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient, direct, and novel Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement under metal-free conditions has been documented.
Collapse
Affiliation(s)
- Dan Song
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Changfeng Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Peishi Liang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| |
Collapse
|
10
|
Zheng J, He X, Xu H, Liu H, Yang W. A formal [3 + 2] annulation reaction of propargyl sulfonium compounds and N-ylides: access to pyrrolo[2,1- a]quinolines, pyrrolo[2,1- a]phthalazines and indolizines. Org Biomol Chem 2020; 18:8867-8875. [PMID: 33094785 DOI: 10.1039/d0ob01739f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A sequential [3 + 2] annulation of prop-2-ynylsulfonium salt and N-ylides was developed, leading to the formation of a series of pyrrolo[2,1-a]quinolines, pyrrolo[2,1-a]phthalazines and indolizines. The protocol featured the simultaneous one-pot formation of three new C-C bonds in moderate yields under mild conditions. In this reaction, the prop-2-ynylsulfonium salts acted as the C2 synthons and sulfide served as the leaving group. The resultant products could serve as useful precursors for the synthesis of diverse chemical compounds.
Collapse
Affiliation(s)
- Jing Zheng
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang, 330031, China.
| | | | | | | | | |
Collapse
|
11
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
12
|
Zong S, Ye Z, Zhang X, Chen H, Ye M. Protective effect of Lachnum polysaccharide on dextran sulfate sodium-induced colitis in mice. Food Funct 2020; 11:846-859. [PMID: 31934694 DOI: 10.1039/c9fo02719j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammatory bowel disease (IBD) has been gradually considered as a public health challenge worldwide. This study determined the protective effect of Lachnum polysaccharide (LEP) on dextran sulfate sodium (DSS)-induced experimental colitis in mice and explored the underlying mechanism. Results showed that dietary LEP reduced DSS-induced disease activity index (DAI), colon shortening and colonic tissue damage. LEP treatment restored intestinal barrier integrity by regulating the expression of tight junction proteins and mucus layer protecting proteins. Moreover, pro-inflammatory cytokine production was inhibited by LEP through regulating PPARγ/NF-κB and IL-6/STAT3 pathways and inhibiting inflammatory cell infiltration. In addition, LEP also inhibited (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, endoplasmic reticulum (ER) stress and oxidative/nitrosative stress induced by DSS. These results provided a scientific basis for LEP as a potential natural agent for protecting mice from DSS-induced IBD.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China.
| | | | | | | | | |
Collapse
|
13
|
Abstract
INTRODUCTION Indolizines are structural isomers with indoles. Although several indole-based commercial drugs are available in the market, none of the indolizine-based drugs are available up-to-date. Natural and synthetic indolizines have a wide-range of pharmaceutical importance such as antitumor, antimycobacterial, antagonist, and antiproliferative activities. This prompted us to search and collect all possible data about the pharmacological importance of indolizine to open an avenue to the researchers in exploring more medicinal applications of such biologically important compounds. AREAS COVERED The current review article covers the advancements in the biological and pharmacological activities of indolizine-based compounds during the last decade. The covered areas of this work involved anticancer, anti-HIV-1, anti-inflammatory, antimicrobial, anti-tubercular, larvicidal, anti-schizophrenia, CRTh2 antagonist's activities in addition to enzymatic inhibitory activity. EXPERT OPINION The discovery of indolizine drugs will be a major breakthrough as compared with their widely available drug-containing indole isosteres. Major work collected here was focused on anticancer, anti-tubercular, anti-inflammatory, and enzymatic inhibitory activities. The SAR study of the reported biologically active indolizines is summarized throughout the review whenever highlighted to the rationale the behavior of inhibitory action. Several indolizines with certain functions provided great enhancement in the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University , Giza, Egypt
| |
Collapse
|
14
|
Goudarzi R, Partoazar A, Mumtaz F, Yousefi-Manesh H, Abdollahi A, Dehpour A, Rashidian A. Arthrocen, an avocado-soy unsaponifiable agent, improves acetic acid-induced colitis in rat by inhibition of NF-kB signaling pathway. J Food Biochem 2020; 44:e13244. [PMID: 32441355 DOI: 10.1111/jfbc.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The goal of the current study was to evaluate the anti-inflammatory effect of Arthrocen against acetic acid-induced colitis in rats. Acute inflammation was produced through intrarectal administration of 2 ml diluted acetic acid (4%) solution. All interventions were carried out for 5 days after colitis induction. Arthrocen was administered orally at doses of 30, 60, and 120 mg kg-1 day-1 . Then, macroscopic and microscopic studies were performed. Myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) activity were measured by biochemical and ELISA methods, respectively. Immunohistochemistry was done to investigate the expression of pNF-κB. The results of this study demonstrated that Arthrocen reduced macroscopic and microscopic damage compared to the acetic acid group. Furthermore, Arthrocen decreased the activity of MPO and TNF-α as well as the protein expression of pNF-kB in rat colon tissue. The results of the current study revealed the anti-inflammatory activity of Arthrocen in acetic acid mediated colon inflammation through suppressing the NF-κB pathway. PRACTICAL APPLICATIONS: Inflammatory bowel disease (IBD) is an immune-mediated chronic relapsing disorder affecting the gastrointestinal tract (GIT) characterized by chronic bowel inflammation. A plant-based dietary supplement containing avocado and soy unsaponifiable extracts in a ratio of 1:2 is known as Arthrocen. Arthrocen can be used as a complementary drug beside current drugs in clinical trials for the treatment of IBD.
Collapse
Affiliation(s)
- Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, USA
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Güvenç M, Cellat M, Özkan H, Tekeli İO, Uyar A, Gökçek İ, İşler CT, Yakan A. Protective Effects of Tyrosol Against DSS-Induced Ulcerative Colitis in Rats. Inflammation 2020; 42:1680-1691. [PMID: 31115770 DOI: 10.1007/s10753-019-01028-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the effects of tyrosol were investigated in DSS-induced experimental ulcerative colitis model. For this purpose, rats were divided into five groups of seven rats in each: control group, colitis group (DSS-4%), tyrosol group (tyrosol 20 mg/kg), sulfasalazine (sulfasalazine+DSS 100 mg/kg), and treatment group (tyrosol+DSS 20 mg/kg). In the study, the active substances were administered to all animals for a period of 21 days. At the end of the study, malondialdehyde (MDA) levels increased (p < 0.001); GSH level (p < 0.05) along with GSH.Px (p < 0.01) and CAT (p < 0.001) activities decreased in the DSS-induced colitis group. However, with the administration of tyrosol, MDA and GSH levels along with GSH.Px and CAT activities came to the same levels as the control group. In the colitis group, an increase occurred in IL-6, COX-2, and NF-κB parameters, which created a significant difference compared to the control group (p < 0.001). Similarly, TNF-α levels also significantly increased with the administration of DSS (p < 0.05) which created a significant difference compared to the control group, while there was no difference among the other groups. As for the Nrf-2 data, it decreased with the administration of DSS which created a significant difference compared to the control group (p < 0.05), while there was no difference in other groups. In the colitis-induced group, IL-6, COX-2, and NF-κB gene expression levels also similarly increased but returned to the normal levels with the administration of tyrosol. In the histopathological scoring, the negativity that increased with the administration of DSS returned to the normal levels with the administration of tyrosol+DSS. In conclusion, according to the data obtained, tyrosol fixed the destruction picture in the DSS-induced colitis model, giving rise to thought that it has a protective effect.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Mustafa Cellat
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Uyar
- Faculty of Veterinary Medicine, Department of Pathology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İshak Gökçek
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cafer Tayer İşler
- Faculty of Veterinary Medicine, Department of Surgery, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Akın Yakan
- Faculty of Veterinary Medicine, Department of Zootechnics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
16
|
de Brito TV, Júnior GJD, da Cruz Júnior JS, Silva RO, da Silva Monteiro CE, Franco AX, Vasconcelos DFP, de Oliveira JS, da Silva Costa DV, Carneiro TB, Gomes Duarte AS, de Souza MHLP, Soares PMG, Barbosa ALDR. Gabapentin attenuates intestinal inflammation: Role of PPAR-gamma receptor. Eur J Pharmacol 2020; 873:172974. [PMID: 32027888 DOI: 10.1016/j.ejphar.2020.172974] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Gabapentin is an anticonvulsant drug that is also used for post-herpetic neuralgia and neuropathic pain. Recently, gabapentin showed anti-inflammatory effect. Nuclear factor kappa B (NFκB) is a regulator of the inflammatory process, and Peroxisome Proliferator-activated Receptor gamma (PPAR-gamma) is an important receptor involved in NFκB regulation. The aim of the present work was to study the potential role of PPAR-gamma receptor in gabapentin-mediated anti-inflammatory effects in a colitis experimental model. We induced colitis in rats using trinitrobenzenosulfonic acid and treated them with gabapentin and bisphenol A dicyldidyl ether (PPAR-gamma inhibitor). Macroscopic lesion scores, wet weight, histopathological analysis, mast cell count, myeloperoxidase, malondialdehyde acid, glutathione, nitrate/nitrite, and interleukin levels in the intestinal mucosa were determined. In addition, western blots were performed to determine the expression of Cyclooxygenase-2 (COX-2) and NFκB; Nitric Oxide Inducible Synthase (iNOS) and Interleukin 1 beta (IL-1β) levels were also determined. Gabapentin was able to decrease all inflammatory parameters macroscopic and microscopic in addition to reducing markers of oxidative stress and cytokines such as IL-1β and Tumor Necrosis Factor alpha (TNF-α) as well as enzymes inducible nitric oxide synthase and cyclooxygenase 2 and inflammatory genic regulator (NFκB). These effect attributed to gabapentin was observed to be lost in the presence of the specific inhibitor of PPAR-gamma. Gabapentin inhibits bowel inflammation by regulating mast cell signaling. Furthermore, it activates the PPAR-gamma receptor, which in turn inhibits the activation of NFκB, and consequently results in reduced activation of inflammatory genes involved in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tarcisio Vieira de Brito
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Genilson José Dias Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - José Simião da Cruz Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Renan Oliveira Silva
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | | | - Alvaro Xavier Franco
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- LAPHIS - Laboratory of Analysis and Histological Processing, Department of Biomedicine, Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry and Biology of Microorganisms and Plants (BIOMIC), Federal University of Piauí, Campus Minister Reis Velloso. Av. São Sebastião, 2819, CEP: 64202-020, Parnaíba, Piauí, Brazil
| | - Deiziane Viana da Silva Costa
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Theides Batista Carneiro
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Antoniella Souza Gomes Duarte
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Dos Reis Barbosa
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil.
| |
Collapse
|
17
|
Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, Tang C, Chatterjee S, Singh UP, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 2020; 5:127551. [PMID: 31941837 PMCID: PMC7030851 DOI: 10.1172/jci.insight.127551] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Colitis, an inflammatory bowel disease, is caused by a variety of factors, but luminal microbiota are thought to play crucial roles in disease development and progression. Indole is produced by gut microbiota and is believed to protect the colon from inflammatory damage. In the current study, we investigated whether indole-3-carbinol (I3C), a naturally occurring plant product found in numerous cruciferous vegetables, can prevent colitis-associated microbial dysbiosis and attempted to identify the mechanisms. Treatment with I3C led to repressed colonic inflammation and prevention of microbial dysbiosis caused by colitis, increasing a subset of gram-positive bacteria known to produce butyrate. I3C was shown to increase production of butyrate, and when mice with colitis were treated with butyrate, there was reduced colonic inflammation accompanied by suppression of Th17 and induction of Tregs, protection of the mucus layer, and upregulation in Pparg expression. Additionally, IL-22 was increased only after I3C but not butyrate administration, and neutralization of IL-22 prevented the beneficial effects of I3C against colitis, as well as blocked I3C-mediated dysbiosis and butyrate induction. This study suggests that I3C attenuates colitis primarily through induction of IL-22, which leads to modulation of gut microbiota that promote antiinflammatory butyrate.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lorenzo Menzel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chaunbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia, South Carolina, USA
| | - Udai P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
18
|
Metal-free synthesis of novel indolizines from chromones and pyridinium salts via 1,3-dipolar cycloaddition, ring-opening and aromatization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Tian X, Peng Z, Luo S, Zhang S, Li B, Zhou C, Fan H. Aesculin protects against DSS-Induced colitis though activating PPARγ and inhibiting NF-кB pathway. Eur J Pharmacol 2019; 857:172453. [PMID: 31202807 DOI: 10.1016/j.ejphar.2019.172453] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/19/2023]
Abstract
Aesculin, a natural product from the traditional and widely-used Chinese medicine named Cortex fraxini, has attracted attention as a novel therapeutic modulator of inflammation. However, little is known about its effect on ulcerative colitis (UC). This study aimed to investigate the protective effects and mechanisms of aesculin on colitis. The results showed that, few cytotoxicity of aesculin were shown in vivo and in the RAW264.7 macrophages, while aesculin significantly relieved the symptoms of DSS-induced colitis and restrained the expression of inflammatory factors including iNOS, IL-1β, TNF-α in both peritoneal macrophages and colonic tissues from DSS-induced mice and RAW264.7 macrophages. Of note, aesculin attenuated the activity of NF-κB signaling while promoted the nuclear localization of PPAR-γ in both rectal tissues from DSS-induced mice and LPS-stimulated macrophages. These findings demonstrated that the protection of aesculin against ulcerative colitis might be due to its regulation on the PPAR-γ and NF-κB pathway. Thus, aesculin could serve as a potential therapeutic agent for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xinlei Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhonglu Peng
- Key Laboratory of Universities in Hunan Province on Cardiovascular and Cerebrovascular Natural Drugs Research, Department of Pharmacology, Xiangnan University, Chenzhou, 423000, PR China
| | - Shangpeng Luo
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Shaolong Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Baohui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
20
|
Chamanara M, Abdollahi A, Rezayat SM, Ghazi-Khansari M, Dehpour A, Nassireslami E, Rashidian A. Thymol reduces acetic acid-induced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology 2019; 27:1275-1283. [PMID: 30903350 DOI: 10.1007/s10787-019-00583-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
AIM The aim of the present study was to evaluate the anti-inflammatory effect of thymol in acetic acid-induced rat colitis through inhibiting the NF-κB signaling pathway. METHODS Colitis was induced by intra-rectal administration of 2 mL of diluted acetic acid (4%) solution using a flexible plastic rubber catheter in Wistar rats. Colitis was induced on the first day and all treatments were applied 5 days after the induction of colitis. Thymol was dissolved in 0.2% tween 80 in saline and administered orally at doses of 10, 30, and 100 mg/kg per day. Macroscopic and histopathologic investigations were done. The expression of myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) was determined by immunohistochemistry (IHC) assay. The protein expression level of pNF-κB p65 was measured by the Western blot technique. RESULTS Treatment with thymol reduced mucosal and histological damages compared to the acetic acid group. Our results showed that thymol markedly inhibited the production of MPO and TNF-α in the colon tissue of the acetic acid-induced group. In addition, thymol decreased acetic acid-induced up-regulation of pNFκB p65 protein. CONCLUSIONS The results of our study suggest that thymol exerts an anti-inflammatory effect in acetic acid-induced rat colitis by inhibiting the NF-κB signaling pathway and downregulating TNF-α and MPO expressions.
Collapse
Affiliation(s)
- Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mamoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Yao K, Yuan Q, Qu X, Liu Y, Liu D, Zhang W. Pd-catalyzed asymmetric allylic substitution cascade using α-(pyridin-1-yl)-acetamides formed in situ as nucleophiles. Chem Sci 2019; 10:1767-1772. [PMID: 30842843 PMCID: PMC6369409 DOI: 10.1039/c8sc04626c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022] Open
Abstract
A Pd-catalyzed asymmetric allylic substitution cascade reaction, using α-(pyridin-1-yl)-acetamides (formed in situ) as nucleophiles, has been developed, generating chiral piperidine-containing amino acid derivatives via a one-pot procedure in high yields and with up to 96% ee. The products can be easily converted into potential bioactive compounds, unnatural chiral amino acids and dipeptides.
Collapse
Affiliation(s)
- Kun Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Qianjia Yuan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Xingxin Qu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
22
|
Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13133-13140. [PMID: 30472831 DOI: 10.1021/acs.jafc.8b03942] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important member of the nuclear receptor superfamily. Previous studies have shown the satisfactory anti-inflammatory role of PPARγ in experimental colitis models, mainly through negatively regulating several transcription factors such as nuclear factor-κB (NF-κB). Therefore, regulating PPARγ and PPARγ-related pathways has great promise for treating ulcerative colitis (UC). In the present study, our objective was to explore the potential effect of naringin on dextran sulfate sodium (DSS) induced UC in mice and its involved potential mechanism. We found that naringin significantly relieved DSS-induced disease activities index (DAI), colon length shortening, and colonic pathological damage. Exploration of the potential mechanisms demonstrated that naringin significantly activated DSS-induced PPARγ and subsequently suppressed NF-κB activation. PPARγ inhibitor GW9662 largely abrogated the roles of naringin in vitro. Moreover, DSS induced the activation of mitogen-activated protein kinase (MAPK) and (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was inhibited by naringin. Tight junction (TJ) architecture in naringin groups was also maintained by regulating zonula occludens-1 (ZO-1) expression. These results suggested that naringin may be a potential natural agent for protecting mice from DSS-induced UC.
Collapse
Affiliation(s)
- Hongyang Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiapei Cai
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yuchang Han
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis , Jilin University , Changchun 130062 , People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| |
Collapse
|
23
|
Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation. Int Immunopharmacol 2018; 59:76-85. [DOI: 10.1016/j.intimp.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
|
24
|
Park S, Kim EH, Kim J, Kim SH, Kim I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur J Med Chem 2018; 144:435-443. [DOI: 10.1016/j.ejmech.2017.12.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
25
|
Chromofungin (CHR: CHGA47-66) is downregulated in persons with active ulcerative colitis and suppresses pro-inflammatory macrophage function through the inhibition of NF-κB signaling. Biochem Pharmacol 2017; 145:102-113. [DOI: 10.1016/j.bcp.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022]
|
26
|
Lima JB, Araújo-Santos T, Lázaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, Luz NF, Pontes SDM, Entringer PF, Descoteaux A, Bozza PT, Soares RP, Borges VM. Leishmania infantum lipophosphoglycan induced-Prostaglandin E 2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2. Sci Rep 2017; 7:14321. [PMID: 29084985 PMCID: PMC5662570 DOI: 10.1038/s41598-017-14229-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.
Collapse
Affiliation(s)
- Jonilson Berlink Lima
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Milena Lázaro-Souza
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Alan Brito Carneiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Izabela Coimbra Ibraim
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil
| | - Flávio Henrique Jesus-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Nívea Farias Luz
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil
| | - Sara de Moura Pontes
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Petter Franco Entringer
- Federal University of Rio de Janeiro (UFRJ), NUPEM, Campus Macaé, 27933-378, Macaé, RJ, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, H7V 1B7, Laval, Canada
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Pedro Soares
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil.
| | - Valéria Matos Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil.
| |
Collapse
|
27
|
Rezayat SM, Dehpour AR, Motamed SM, Yazdanparast M, Chamanara M, Sahebgharani M, Rashidian A. Foeniculum vulgare essential oil ameliorates acetic acid-induced colitis in rats through the inhibition of NF-kB pathway. Inflammopharmacology 2017; 26:851-859. [PMID: 29067571 DOI: 10.1007/s10787-017-0409-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
AIM The aim of the present study is to investigate the protective effects of Foeniculum vulgare essential oil on intestinal inflammation through the inhibition of NF-kB pathway in acetic acid-induced rat colitis. METHODS Acute colitis was induced by intra-rectal administration of 2 mL of diluted acetic acid (4%) solution. Two hours after the induction of colitis, 0.2% tween 80 in normal saline, dexamethasone (2 mg/kg) and F. vulgare essential oil (100, 200, 400 mg/kg) were administered to the animals by oral gavage and continued for 5 consecutive days. Assessment of macroscopic and microscopic lesions was done. MPO activity was evaluated by biochemical method. Furthermore, TNF-α activity was detected by immunohistochemistry (IHC) and the expression level of p-NF-kB p65 protein was measured by western blot analysis. RESULTS Dexamethasone and F. vulgare essential oil (200, 400 mg/kg) reduced the macroscopic and microscopic lesions compared to the acetic acid group (p < 0.01, p < 0.001). In addition, these agents decreased the activity of MPO (p < 0.01, p < 0.001) and the expression of TNF-α positive cells (p < 0.05, p < 0.01, p < 0.001) in the colon tissue compared to acetic acid group. Furthermore, they inhibited acetic acid-induced expression of p-NF-kB p65 protein (p < 0.05, p < 0.001). CONCLUSION It is proposed that the anti-inflammatory activity of F. vulgare essential oil on acetic acid-induced colitis in rats may involve the inhibition of NF-kB pathway.
Collapse
Affiliation(s)
- Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi Motamed
- Department of Pharmacognosy, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Maryam Yazdanparast
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|