1
|
Zhang Z, Shi J, Wu Q, Zhang Z, Liu X, Ren A, Zhao G, Dong G, Wu H, Zhao J, Zhao Y, Hu J, Li H, Zhang T, Zhou F, Zhu H. JUN mediates glucocorticoid resistance by stabilizing HIF1a in T cell acute lymphoblastic leukemia. iScience 2023; 26:108242. [PMID: 38026210 PMCID: PMC10661119 DOI: 10.1016/j.isci.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Dexamethasone (Dex) plays a critical role in T-ALL treatment, but the mechanisms of Dex resistance are poorly understood. Here, we demonstrated that the expression of JUN was regulated in Dex-resistant T-ALL cell lines and patient samples. JUN knockdown increased the sensitivity to Dex. Moreover, the survival data showed that high expression of JUN related to poor prognosis of T-ALL patients. Then, we generated dexamethasone-resistant clones and conducted RNA-seq and ATAC-seq. We demonstrated that the upregulation of JUN was most significant and regulated by JNK pathway in Dex-resistant cells. High-throughput screening showed that HIF1α inhibitors synergized with Dex could enhance Dex resistance cells death in vitro and in vivo. Additionally, JUN combined and stabilized HIF1α in Dex resistance cells. These results reveal a new mechanism of Dex resistance in T-ALL and provide experimental evidence for the potential therapeutic benefit of targeting the JNK-JUN-HIF1α axis for T-ALL treatment.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qifang Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anqi Ren
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Guanlin Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ge Dong
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Han Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaxuan Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Li
- Tianyou Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
3
|
Patel J, Gao X, Wang H. An Update on Clinical Trials and Potential Therapeutic Strategies in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:7201. [PMID: 37108359 PMCID: PMC10139433 DOI: 10.3390/ijms24087201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Current therapies for T-cell acute leukemia are based on risk stratification and have greatly improved the survival rate for patients, but mortality rates remain high owing to relapsed disease, therapy resistance, or treatment-related toxicities/infection. Patients with relapsed disease continue to have poor outcomes. In the past few years, newer agents have been investigated to optimize upfront therapies for higher-risk patients in the hopes of decreasing relapse rates. This review summarizes the progress of chemo/targeted therapies using Nelarabine/Bortezomib/CDK4/6 inhibitors for T-ALL in clinical trials and novel strategies to target NOTCH-induced T-ALL. We also outline immunotherapy clinical trials using monoclonal/bispecific T-cell engaging antibodies, anti-PD1/anti-PDL1 checkpoint inhibitors, and CAR-T for T-ALL therapy. Overall, pre-clinical studies and clinical trials showed that applying monoclonal antibodies or CAR-T for relapsed/refractory T-ALL therapy is promising. The combination of target therapy and immunotherapy may be a novel strategy for T-ALL treatment.
Collapse
Affiliation(s)
- Janisha Patel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatric Hematology/Oncology, Medical University of South Carolina-Shawn Jenkins Children’s Hospital, Charleston, SC 29425, USA
| | - Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; (J.P.); (X.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Estepa-Fernández A, García-Fernández A, Lérida-Viso A, Blandez JF, Galiana I, Sancenon-Galarza F, Orzáez M, Martínez-Máñez R. Combination of palbociclib with navitoclax based-therapies enhances in vivo antitumoral activity in triple-negative breast cancer. Pharmacol Res 2023; 187:106628. [PMID: 36566002 DOI: 10.1016/j.phrs.2022.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with a poor prognosis and limited effective therapeutic options. Induction of senescence, arrest of cell proliferation, has been explored as an effective method to limit tumor progression in metastatic breast cancer. However, relapses occur in some patients, possibly as a result of the accumulation of senescent tumor cells in the body after treatment, which promote metastasis. In this study, we explored the combination of senescence induction and the subsequent removal of senescent cells (senolysis) as an alternative approach to improve outcomes in TNBC patients. We demonstrate that a combination treatment, using the senescence-inducer palbociclib and the senolytic agent navitoclax, delays tumor growth and reduces metastases in a mouse xenograft model of aggressive human TNBC (hTNBC). Furthermore, considering the off-target effects and toxicity derived from the use of navitoclax, we propose a strategy aimed at minimizing the associated side effects. We use a galacto-conjugated navitoclax (nav-Gal) as a senolytic prodrug that can preferentially be activated by β-galactosidase overexpressed in senescent cells. Concomitant treatment with palbociclib and nav-Gal in vivo results in the eradication of senescent hTNBC cells with consequent reduction of tumor growth, while reducing the cytotoxicity of navitoclax. Taken together, our results support the efficacy of combination therapy of senescence-induction with senolysis for hTNBC, as well as the development of a targeted approach as an effective and safer therapeutic opportunity.
Collapse
Affiliation(s)
- Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Araceli Lérida-Viso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Juan F Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Félix Sancenon-Galarza
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe. C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, 46026 Valencia, Spain.
| |
Collapse
|
5
|
Lalonde ME, Sasseville M, Gélinas AM, Milanese JS, Béland K, Drouin S, Haddad E, Marcotte R. Genome-wide CRISPR screens identify ferroptosis as a novel therapeutic vulnerability in acute lymphoblastic leukemia. Haematologica 2022; 108:382-393. [PMID: 36134452 PMCID: PMC9890019 DOI: 10.3324/haematol.2022.280786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children. Despite the great progress achieved over the last 40 years, with cure rates now exceeding 85%, refractory or relapsed ALL still exhibit a dismal prognosis. This poor outcome reflects the lack of treatment options specifically targeting relapsed or refractory ALL. In order to address this gap, we performed whole-genome CRISPR/Cas drop-out screens on a panel of seven B-ALL cell lines. Our results demonstrate that while there was a significant overlap in gene essentiality between ALL cell lines and other cancer types survival of ALL cell lines was dependent on several unique metabolic pathways, including an exquisite sensitivity to GPX4 depletion and ferroptosis induction. Detailed molecular analysis of B-ALL cells suggest that they are primed to undergo ferroptosis as they exhibit high steady-state oxidative stress potential, a low buffering capacity, and a disabled GPX4-independent secondary lipid peroxidation detoxification pathway. Finally, we validated the sensitivity of BALL to ferroptosis induction using patient-derived B-ALL samples.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Marc Sasseville
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Anne-Marie Gélinas
- Human Health Therapeutics Research Center, National Research Council Canada
| | | | - Kathie Béland
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Simon Drouin
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Elie Haddad
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Richard Marcotte
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2.
| |
Collapse
|
6
|
Víctor GG, Nerea M, Beatriz RC, Paula VS, Bárbara OF, Pilar GG, Alicia PS, Jordi M, Berta G, Isabel MR, Sonsoles SRP, Pablo EM, Adrián IN, Antonio PM, Adela EL. Advanced Molecular Characterisation in Relapsed and Refractory Paediatric Acute Leukaemia, the Key for Personalised Medicine. J Pers Med 2022; 12:881. [PMID: 35743666 PMCID: PMC9224967 DOI: 10.3390/jpm12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.
Collapse
Affiliation(s)
- Galán-Gómez Víctor
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Matamala Nerea
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Ruz-Caracuel Beatriz
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Valle-Simón Paula
- Clinical Pharmacology Department, La Paz University Hospital, 28046 Madrid, Spain;
| | - Ochoa-Fernández Bárbara
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Guerra-García Pilar
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Pernas-Sánchez Alicia
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Minguillón Jordi
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - González Berta
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Martínez-Romera Isabel
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - San Román-Pacheco Sonsoles
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Estival-Monteliú Pablo
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Ibáñez-Navarro Adrián
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Pérez-Martínez Antonio
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Escudero-López Adela
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| |
Collapse
|
7
|
Sun X, Guan G, Dai Y, Zhao P, Liu L, Wang Q, Li X. microRNA-155-5p initiates childhood acute lymphoblastic leukemia by regulating the IRF4/CDK6/CBL axis. J Transl Med 2022; 102:411-421. [PMID: 34775495 DOI: 10.1038/s41374-021-00638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common malignancy in children. In this study, we aimed to explore putative mechanisms of microRNA-155-5p (miR-155-5p) involvement in childhood ALL (cALL) via interactions with casitas B-lineage lymphoma (CBL), interferon regulatory factor 4 (IRF4), and cyclin-dependent kinase 6 (CDK6). Bioinformatic analysis was performed initially to identify differentially expressed genes in cALL. The expression levels of miR-155-5p, CBL, IRF4, and CDK6 in peripheral blood lymphocytes from clinical ALL samples were determined using RT-qPCR and Western blot assays. A dual-luciferase reporter gene assay was used to ascertain a possible targeting relationship between miR-155-5p and CBL, CCK-8 assay and flow cytometry were used to measure cell activity and apoptosis of ALL cells. Co-IP was performed to investigate the interaction between CBL and IRF4 and the ubiquitination level of IRF4. Furthermore, in vivo validation was performed inducing xenograft tumor models with ALL cells in nude mice. As indicated by bioinformatic analysis, miR-155-5p and CDK6 were upregulated and CBL was downregulated in ALL. miR-155-5p was found to target CBL to inhibit CBL expression. miR-155-5p promoted the proliferation of ALL cells and inhibited their apoptosis by inhibiting the expression of CBL, which otherwise degraded IRF4 protein through ubiquitination, leading to inhibited CDK6 expression. Collectively, the results show that miR-155-5p can promote the development of cALL via the regulation on CBL-mediated IRF4/CDK6 axis.
Collapse
Affiliation(s)
- Xiaojun Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Guotao Guan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yunpeng Dai
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Ping Zhao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Liying Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Qi Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Xiuli Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.
| |
Collapse
|
8
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
9
|
Li C, Zhao X, He Y, Li Z, Qian J, Zhang L, Ye Q, Qiu F, Lian P, Qian M, Zhang H. The functional role of inherited CDKN2A variants in childhood acute lymphoblastic leukemia. Pharmacogenet Genomics 2022; 32:43-50. [PMID: 34369425 PMCID: PMC8694244 DOI: 10.1097/fpc.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Genetic alterations in CDKN2A tumor suppressor gene on chromosome 9p21 confer a predisposition to childhood acute lymphoblastic leukemia (ALL). Genome-wide association studies have identified missense variants in CDKN2A associated with the development of ALL. This study systematically evaluated the effects of CDKN2A coding variants on ALL risk. METHODS We genotyped the CDKN2A coding region in 308 childhood ALL cases enrolled in CCCG-ALL-2015 clinical trials by Sanger Sequencing. Cell growth assay, cell cycle assay, MTT-based cell toxicity assay, and western blot were performed to assess the CDKN2A coding variants on ALL predisposition. RESULTS We identified 10 novel exonic germline variants, including 6 missense mutations (p.A21V, p.G45A and p.V115L of p16INK4A; p.T31R, p.R90G, and p.R129L of p14ARF) and 1 nonsense mutation and 1 heterozygous termination codon mutation in exon 2 (p16INK4A p.S129X). Functional studies indicate that five novel variants resulted in reduced tumor suppressor activity of p16INK4A, and increased the susceptibility to the leukemic transformation of hematopoietic progenitor cells. Compared to other variants, p.H142R contributes higher sensitivity to CDK4/6 inhibitors. CONCLUSION These findings provide direct insight into the influence of inherited genetic variants at the CDKN2A coding region on the development of ALL and the precise clinical application of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Chunjie Li
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Xinying Zhao
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | | | - Ziping Li
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Jiabi Qian
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Li Zhang
- Department of Hematology/Oncology
| | - Qian Ye
- Department of Hematology/Oncology
| | - Fei Qiu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
| | - Peng Lian
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, National Children’s Medical Center, the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
10
|
Hui PY, Chen YH, Qin J, Jiang XH. PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology 2021; 27:32-42. [PMID: 34957927 DOI: 10.1080/16078454.2021.2009643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The high frequency of chemotherapy resistance is ultimately responsible for clinical relapse in acute lymphoblastic leukemia (ALL). Nevertheless, the molecular mechanism relevant to glucocorticoid (GC) resistance remains ambiguous. METHODS Quantitative real-time polymerase chain reaction and Western blot were performed to detect the expressions of paraoxonase 2 (PON2), Bcl-2 and Bax. shRNA was used to knockdown PON2 expression in SUP-B15 and REH cell. CCK-8 and flow cytometry assay were conducted to monitor the changes of proliferation and apoptosis in ALL cells. The growth of ALL REH cells in vivo was determined using transplanted tumor model. RESULTS This study was designed to identify GC resistance-associated genes by means of the transcriptome chip from the public Gene Expression Omnibus database, and preliminarily investigation of dexamethasone (DEX)-resistance mechanism in ALL. We disclosed that PON2 expression was elevated in ALL patients and especially higher in DEX-resistance ALL patients. Then, cell apoptosis assay suggested that silencing of PON2 dramatically promoted in DEX-resistant ALL cells apoptosis and the activity of Caspase 3 induced by DEX administration. In xenograft tumor model, PON2 knockdown significantly reduced DEX-resistant ALL cells growth in immunodeficient mice. CONCLUSIONS Collectively, inhibition of PON2 may represent a novel method to restore the sensitivity of treatment-resistant ALL to GC-induced cell death.
Collapse
Affiliation(s)
- Pei-Ye Hui
- Pharmacy Department, Shandong Weifang Maternal and Child Health Hospital, Weifang, People's Republic of China
| | - Yan-Hua Chen
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Jing Qin
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Xiao-Hua Jiang
- Department of Pediatrics, 970 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Yantai, People's Republic of China
| |
Collapse
|
11
|
Hoff FW, Horton TM, Kornblau SM. Reverse phase protein arrays in acute leukemia: investigative and methodological challenges. Expert Rev Proteomics 2021; 18:1087-1097. [PMID: 34965151 PMCID: PMC9148717 DOI: 10.1080/14789450.2021.2020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, UT Southwestern Medical Center, TX, USA
| | - Terzah M. Horton
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Boldrin E, Gaffo E, Niedermayer A, Boer JM, Zimmermann M, Weichenhan D, Claus R, Münch V, Sun Q, Enzenmüller S, Seyfried F, Demir S, Zinngrebe J, Cario G, Schrappe M, Den Boer ML, Plass C, Debatin KM, Te Kronnie G, Bortoluzzi S, Meyer LH. MicroRNA-497/195 is tumor suppressive and cooperates with CDKN2A/B in pediatric acute lymphoblastic leukemia. Blood 2021; 138:1953-1965. [PMID: 34098582 DOI: 10.1182/blood.2020007591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)- and cyclin-D3 (CCND3)-mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195-mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.
Collapse
Affiliation(s)
- Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of Biology, University of Padua, Padua, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, Padua University, Padua, Italy
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Claus
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
- Department of Hematology/Oncology, Augsburg University Medical Center, Augsburg, Germany
| | - Vera Münch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Qian Sun
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Salih Demir
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Gunnar Cario
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Martin Schrappe
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Monique L Den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Geertruij Te Kronnie
- Department of Women's and Children's Health, Padua University, Padua, Italy; and
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, Padua University, Padua, Italy
- Interdepartmental Research Center for Innovative Biotechnologies, Padua University, Padua, Italy
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
13
|
Porazzi P, De Dominici M, Salvino J, Calabretta B. Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12091355. [PMID: 34573335 PMCID: PMC8467343 DOI: 10.3390/genes12091355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Ph+ ALL is a poor-prognosis leukemia subtype driven by the BCR-ABL1 oncogene, either the p190- or the p210-BCR/ABL isoform in a 70:30 ratio. Tyrosine Kinase inhibitors (TKIs) are the drugs of choice in the therapy of Ph+ ALL. In combination with standard chemotherapy, TKIs have markedly improved the outcome of Ph+ ALL, in particular if this treatment is followed by bone marrow transplantation. However, resistance to TKIs develops with high frequency, causing leukemia relapse that results in <5-year overall survival. Thus, new therapies are needed to address relapsed/TKI-resistant Ph+ ALL. We have shown that expression of cell cycle regulatory kinase CDK6, but not of the highly related CDK4 kinase, is required for the proliferation and survival of Ph+ ALL cells. Comparison of leukemia suppression induced by treatment with the clinically-approved dual CDK4/6 inhibitor palbociclib versus CDK6 silencing revealed that the latter treatment was markedly more effective, probably reflecting inhibition of CDK6 kinase-independent effects. Thus, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that preferentially degrade CDK6 over CDK4. One compound termed PROTAC YX-2-107, which degrades CDK6 by recruiting the Cereblon ubiquitin ligase, markedly suppressed leukemia burden in mice injected with de novo or TKI-resistant Ph+ ALL. The effect of PROTAC YX-2-107 was comparable or superior to that of palbociclib. The development of CDK6-selective PROTACs represents an effective strategy to exploit the “CDK6 dependence” of Ph+ ALL cells while sparing a high proportion of normal hematopoietic progenitors that depend on both CDK6 and CDK6 for their survival. In combination with other agents, CDK6-selective PROTACs may be valuable components of chemotherapy-free protocols for the therapy of Ph+ ALL and other CDK6-dependent hematological malignancies.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
14
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
15
|
Zhou B, Qin Y, Zhou J, Ruan J, Xiong F, Dong J, Huang X, Yu Z, Gao S. Bortezomib suppresses self-renewal and leukemogenesis of leukemia stem cell by NF-ĸB-dependent inhibition of CDK6 in MLL-rearranged myeloid leukemia. J Cell Mol Med 2021; 25:3124-3135. [PMID: 33599085 PMCID: PMC7957264 DOI: 10.1111/jcmm.16377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) with chromosomal rearrangements involving the H3K4 methyltransferase mixed‐lineage leukaemia (MLL) is an aggressive subtype with low overall survival. Bortezomib (Bort) is first applied in multiple myeloma. However, whether bort possesses anti‐self‐renewal and leukemogenesis of leukaemia stem cell (LSC) in AML with MLL rearrangements is still unclear. Here, we found that bort suppressed cell proliferation and decreased colony formation in human and murine leukaemic blasts. Besides, bort reduced the frequency and function of LSC, inhibited the progression, and extended the overall survival in MLL‐AF9 (MF9) ‐transformed leukaemic mice. Furthermore, bort decreased the percentage of human LSC (CD34+CD38‐) cells and extended the overall survival in AML blasts‐xenografted NOD/SCID‐IL2Rγ (NSG) mice. Mechanistically, cyclin dependent kinase 6 (CDK6) was identified as a bort target by RNA sequencing. Bort reduced the expressions of CDK6 by inhibiting NF ĸB recruitment to the promoter of CDK6, leading to the abolishment of NF ĸB DNA‐binding activity for CDK6 promoter. Overexpression of CDK6 partially rescued bort‐induced anti‐leukemogenesis. Most importantly, bort had little side‐effect against the normal haematological stem and progenitor cell (HSPC) and did not affect CDK6 expression in normal HSPC. In conclusion, our results suggest that bort selectively targets LSC in MLL rearrangements. Bort might be a prospective drug for AML patients bearing MLL rearrangements.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaqian Qin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xiong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinglai Dong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingzhou Huang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
17
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Basati G, Saffari-Chaleshtori J, Abbaszadeh S, Asadi-Samani M, Ashrafi-Dehkordi K. Molecular Dynamics Mechanisms of the Inhibitory Effects of Abemaciclib, Hymenialdisine, and Indirubin on CDK-6. Curr Drug Res Rev 2019; 11:135-141. [PMID: 31875784 DOI: 10.2174/2589977511666191018180001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cyclin-Dependent Kinases-6 (CDK-6) is a serine/threonine protein kinase with regular activity in the cell cycle. Some inhibitors, such as abemaciclib, hymenialdisine, and indirubin, cause cell arrest by decreasing its activity. OBJECTIVES The purpose of this study was to evaluate the Molecular Dynamic (MD) effects of abemaciclib, hymenialdisine, and indirubin on the structure of CDK-6. METHODS The PDB file of CDK-6 was obtained from the Protein Data Bank (http://www.rcsb.org). After the simulation of CDK-6 in the Gromacs software, 200 stages of molecular docking were run on CDK-6 in the presence of the inhibitors using AutoDock 4.2. The simulation of CDK-6 in the presence of inhibitors was performed after docking. RESULTS Abemaciclib showed the greatest tendency to bind CDK-6 via binding 16 residues in the binding site with hydrogen bonds and hydrophobic bonding. CDK-6 docked to hymenialdisine and indirubin increased the Total Energy (TE) and decreased the radius of gyration (Rg). CDK-6 docked to hymenialdisine significantly decreased the coil secondary structure. CONCLUSION CDK-6 is inhibited via high binding affinity to abemaciclib, hymenialdisine, and indirubin inhibitors and induces variation in the secondary structure and Rg in the CDK-6 docked to the three inhibitors. It seems that developing a drug with a binding tendency to CDK6 that is similar to those of abemaciclib, indirubin, and hymenialdisine can change the secondary structure of CDK6, possibly more potently, and can be used to develop anticancer drugs. However, additional studies are needed to confirm this argument.
Collapse
Affiliation(s)
- Gholam Basati
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Saber Abbaszadeh
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Jin D, Tran N, Thomas N, Tran DD. Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity. PLoS One 2019; 14:e0223555. [PMID: 31600301 PMCID: PMC6786609 DOI: 10.1371/journal.pone.0223555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) play critical roles in the G1 to S checkpoint of the cell cycle and have been shown to be overactive in several human cancers. Small-molecule inhibitors of CDK4/6 have demonstrated significant efficacy against many solid tumors. Since CDK4/6 inhibition is thought to induce cell cycle arrest at the G1/S checkpoint, much interest has been focused on combining CDK4/6 inhibitors with cytotoxic agents active against the S or M phase of the cell cycle to enhance therapeutic efficacy. However, it remains unclear how best to combine these two classes of drugs to avoid their potentially antagonistic effects. Here, we test various combinations of highly selective and potent CDK4/6 inhibitors with commonly used cytotoxic drugs in several cancer cell lines derived from lung, breast and brain cancers, for their cell-killing effects as compared to monotherapy. All combinations, either concurrent or sequential, failed to enhance cell-killing effects. Importantly, in certain schedules, especially pre-treatment with a CDK4/6 inhibitor, combining these drugs resulted in reduced cytotoxicity of cytotoxic agents. These findings urge cautions when combining these two classes of agents in clinical settings.
Collapse
Affiliation(s)
- Dan Jin
- Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Nguyen Tran
- Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Nagheme Thomas
- Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - David D Tran
- Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States of America
| |
Collapse
|
20
|
Ribera J, Zamora L, Morgades M, Vives S, Granada I, Montesinos P, Gómez‐Seguí I, Mercadal S, Guàrdia R, Nomdedeu J, Pratcorona M, Tormo M, Martínez‐Lopez J, Hernández‐Rivas J, Ciudad J, Orfao A, González‐Campos J, Barba P, Escoda L, Esteve J, Genescà E, Solé F, Feliu E, Ribera J. Molecular profiling refines minimal residual disease‐based prognostic assessment in adults with Philadelphia chromosome‐negative B‐cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2019; 58:815-819. [DOI: 10.1002/gcc.22788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jordi Ribera
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Lurdes Zamora
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Mireia Morgades
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Susana Vives
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Isabel Granada
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | | | | | | | - Ramon Guàrdia
- Institut Català d'OncologiaHospital Josep Trueta Girona Spain
| | - Josep Nomdedeu
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Sant Pau Barcelona Spain
| | - Marta Pratcorona
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Sant Pau Barcelona Spain
| | - Mar Tormo
- Hematology Department, Hospital Clínico Valencia Spain
| | | | - Jesús‐María Hernández‐Rivas
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | - Juana Ciudad
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | - Alberto Orfao
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | | | - Pere Barba
- Hematology Department, Hospital Vall d'Hebron Barcelona Spain
| | - Lourdes Escoda
- Institut Català d'OncologiaHospital Joan XXIII Tarragona Spain
| | - Jordi Esteve
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Clínic Barcelona Spain
| | - Eulàlia Genescà
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Francesc Solé
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Evarist Feliu
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Josep‐Maria Ribera
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | | | | |
Collapse
|
21
|
Liu S, Wang L, Li Y, Cui Y, Wang Y, Liu C. Long non-coding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up-regulating microRNA-10b. Biol Chem 2019; 400:1035-1045. [PMID: 30844757 DOI: 10.1515/hsz-2018-0380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023]
Abstract
Despite the advance of diagnosis and treatment for prostate cancer, the prognosis of metastatic prostate cancer is poor. We aimed to explore the functional role of long non-coding RNA cardiac hypertrophy-related factor (lncRNA CHRF) in prostate cancer cells (PC3) as well as the molecular mechanisms. LncRNA CHRF silence repressed cell number (%), down-regulated expression of cyclinD1, CDK4 and CDK6, and promoted apoptosis along with activation of the casapse-3 and caspase-9. LncRNA CHRF promoted mesenchymal transition (EMT), showing down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin and ZEB1. Afterwards, we found miR-10b expression was positively correlated with lncRNA CHRF expression, and miR-10b inhibition could reverse the effects of lncRNA CHRF on PC3 and LNCaP cell proliferation and EMT. Finally, lncRNA CHRF was found to activate the GSK3β/AKT and NF-κB pathways via up-regulation of miR-10b. LncRNA CHRF silence repressed proliferation and EMT while promoted apoptosis in PC3 cells via positive regulation of miR-10b. The GSK3β/AKT and NF-κB pathways were activated by lncRNA CHRF, possibly through up-regulation of miR-10b.
Collapse
Affiliation(s)
- Shuang Liu
- School of Rehabilitation Medicine, Binzhou Medical University, No. 346 Guanhai Road, Yantai 264003, China.,Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lin Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongwei Li
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yuanshan Cui
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongqiang Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Chu Liu
- Department of Urology, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Yantai 264000, China
| |
Collapse
|
22
|
Kuhlen M, Klusmann JH, Hoell JI. Molecular Approaches to Treating Pediatric Leukemias. Front Pediatr 2019; 7:368. [PMID: 31555628 PMCID: PMC6742719 DOI: 10.3389/fped.2019.00368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, striking progress has been made in the treatment of pediatric leukemia, approaching 90% overall survival in children with acute lymphoblastic leukemia (ALL) and 75% in children with acute myeloid leukemia (AML). This has mainly been achieved through multiagent chemotherapy including CNS prophylaxis and risk-adapted therapy within collaborative clinical trials. However, prognosis in children with refractory or relapsed leukemia remains poor and has not significantly improved despite great efforts. Hence, more effective and less toxic therapies are urgently needed. Our understanding of disease biology, molecular drivers, drug resistance and, thus, the possibility to identify children at high-risk for treatment failure has significantly improved in recent years. Moreover, several new drugs targeting key molecular pathways involved in leukemia development, cell growth, and proliferation have been developed and approved. These striking achievements are linked to the great hope to further improve survival in children with refractory and relapsed leukemia. This review gives an overview on current molecularly targeted therapies in children with leukemia, including kinase, and proteasome inhibitors, epigenetic and enzyme targeting, as well as apoptosis regulators among others.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica I Hoell
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|