1
|
Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, Xu F, Liu B. Ethyl cinnamate suppresses tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117913. [PMID: 38360380 DOI: 10.1016/j.jep.2024.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated. AIM OF THE STUDY To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis. MATERIALS AND METHODS The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model. RESULTS EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor. CONCLUSIONS EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.
Collapse
Affiliation(s)
- Siyu Wang
- School of Traditional Chinese Medicine and Health, Nanfang College Guangzhou, Guangzhou, 510970, China
| | - Jianzhan Yang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaolan Kuang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haoxiang Li
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haifang Du
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yunshan Wu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Fangfang Xu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Huang W, Zheng N, Niu N, Tan Y, Li Y, Tian H. Potent anti-angiogenic component in Kaempferia galanga L. and its mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117811. [PMID: 38286156 DOI: 10.1016/j.jep.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, the roots of Kaempferia galanga has been used to treat high blood pressure, chest pain, headache, toothache, rheumatism, indigestion, cough, inflammation and cancer in Asia. Nevertheless, most of its pharmacological studies were focused on ethanolic extracts and volatile oils. The exact active chemical constituents and their underlying mechanisms are still poorly understood, especially towards its anti-cancer treatment. Inhibition of angiogenesis is an important atrategy to inhibit tumor growth. It has been reported that the low polar component of the plant possessed anti-angiogenic activity. Yet, the potent compound which is responsible for the effect and its molecular mechanism has not been reported. AIM OF THE STUDY To determine the potent anti-angiogenic component in K.galanga and its mechanism of action. MATERIAL AND METHODS The low polar components of the plant were concentrated using the methods of supercritical fluid extraction (SFE), subcritical extraction (SCE) and steam distillation (SD). The anti-angiogenic activity of the three extracts was evaluated using a zebrafish model. The content of the active compound in those extracts was determined with HPLC analysis. The in-vitro and in-vivo activity of the isolated compound was evaluated using human umbilical vein endothelial cells (HUVECs) model, the aortic ring assay and the matrigel plug assay, respectively. Its molecular mechanism was further studied by the western blotting assay and computer-docking experiments. Besides, its cytotoxicity on cancer and normal cell lines was evaluated using the cell-counting kit. RESULTS HPLC results showed that trans-ethyl p-methoxycinnamate (TEM) was the major component of the extracts. The extract of SFE showed the best effect as it has the highest content of TEM. TEM could inhibit vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Mechanistic study showed that it could suppress tyrosine kinase activity of the receptor of VEGF (VEGFR2) and alter its downstream signaling pathways. In addition, the molecular docking showed that the binding of TEM and VEGFR2 is stable, which mainly attributed to the non-covalent binding interaction. Beside, TEM possessed little toxicity to both cancer and normal cells. CONCLUSION TEM is the major anti-angiogenic component present in K. galanga and its anti-angiogenic property rather than toxicity provides scientific basis for the traditional use of K. galanga in cancer treatment.
Collapse
Affiliation(s)
- Weihuan Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China.
| | - Nianjue Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Naxin Niu
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Ying Tan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Liang SB, Wang F, Luo M, Zhang H, Wu SC, Chen Z, Fu LW. PBA2, a novel compound, enhances radiosensitivity in various carcinoma cells by activating the p53 pathway in vitro and in vivo. Free Radic Biol Med 2020; 161:224-233. [PMID: 33080341 DOI: 10.1016/j.freeradbiomed.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
Abstract
Radiotherapy is the main method used to treat human carcinoma; however, certain types of carcinomas are radiation-insensitive. The present study aimed to explore whether a novel compound, PBA2, could enhance the radiosensitivity of various carcinoma cells in vitro and in vivo, and investigate its underlying mechanism. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess the cytotoxicity of PBA2. Colony formation assays were used to observe the radiosensitivity effect of PBA2 in vitro. Cell cycle distributions and cell apoptosis were estimated using flow cytometry. Comet assays and Immunofluorescence assays were used to analyze DNA damage. The intracellular RNA was extracted and analyzed by sequencing. Western blotting was used to determine protein levels. A stable cell line with TP53 (encoding p53) knockdown was constructed by cell transfection. A mouse xenograft model was used to assess the radiosensitivity effect of PBA2 in vivo. We found that PBA2 at a low concentration (0.1 μM) enhanced radiosensitivity in various carcinoma cells, including CNE1, MG63, KB, HEP2, GLC82, and SMMC7221, in vitro. Combined with PBA2, radiation induced significant cell apoptosis in CNE1 and MG63 cells, accompanied by increased DNA damage, but did not affect cell cycle arrest. Mechanistically, PBA2 promoted p53 expression significantly; however, when p53 was mutated, functionally impaired, or knocked down, PBA2 could not enhance the radiosensitivity of these cells. Additionally, the combination of PBA2 and radiation reduced the tumor volume and tumor weight in CNE1 xenograft models significantly, without obvious toxicities. Our results demonstrated that PBA2 enhanced the radiosensitivity of various carcinoma cells in vitro and in vivo. The underlying mechanism might involve increasing DNA damage and cell apoptosis via activating the p53 pathway.
Collapse
Affiliation(s)
- Shao-Bo Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Min Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shao-Cong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Li-Wu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Shi X, Sun J, Li H, Lin H, Xie W, Li J, Tan W. Antitumor efficacy of interferon-γ-modified exosomal vaccine in prostate cancer. Prostate 2020; 80:811-823. [PMID: 32427375 DOI: 10.1002/pros.23996] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exosomes secreted by tumor cells can be regarded as carriers of tumor-associated antigens and have potential value in tumor immunotherapy. The aim of this study was to evaluate the antitumor efficacy of a novel exosomal vaccine (interferon-γ [IFN-γ]-modified exosomal vaccine) in prostate cancer. METHODS Prostate cancer cell-derived exosomes were used to prepare the exosomal vaccine using our protein-anchoring technique. The immunogenicity and therapeutic efficacy of the exosomes was evaluated by measuring the effects of the exosomal vaccine on M1 macrophage differentiation, the ability of macrophages to engulf the exosomes, the production of antibodies against exosomes, and tumor angiogenesis and metastasis, and tumor growth. RESULTS The IFN-γ fusion protein was efficiently anchored on the surface of prostate cancer cell-derived exosomes and retained its bioactivity. The IFN-γ-exosomal vaccine increased the number of M1 macrophages, enhanced the ability of M1 macrophages to engulf RM-1 cell-derived exosomes, and induced the production of specific antibodies against exosomes. The exosomal vaccine downregulated the expression of vascular endothelial growth factor receptor 2 and attenuated the effect of exosomes in promoting tumor metastasis. The proportions of CD4+ , CD8+ , and IFN-γ+ CD8+ T cells in the exosomal vaccine group were the highest among the four groups. Interestingly, the IFN-γ-exosomal vaccine decreased the percentage of Tregs and downregulated the expression of programed death-ligand 1 and indoleamine 2, 3-dioxygenase 1 in the tumor environment. The exosomal vaccine significantly inhibited tumor growth and prolonged the survival time of mice with prostate cancer. The exosomal and tumor cell vaccines had a good synergistic effect in promoting tumor immunity. CONCLUSIONS The novel exosomal vaccine induced an immune response that cleared prostate cancer cell-derived exosomes, thereby eliminating the regulatory effect of the exosomes. This study may provide experimental evidence for the use of exosomes as a therapeutic tool or target in immunotherapy for human prostate cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Sun
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoran Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlong Li
- Department of Institute of Biotherapy, Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Huang W, Liang Y, Chung HY, Wang G, Huang JJ, Li Y. Cyperenoic acid, a sesquiterpene derivative from Croton crassifolius, inhibits tumor growth through anti-angiogenesis by attenuating VEGFR2 signal pathway in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153253. [PMID: 32531699 DOI: 10.1016/j.phymed.2020.153253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cyperenoic acid, one of the main chemical constituents of the root of Croton crassifolius, exhibited potent anti-angiogenic property on the zebrafish embryo model with little cytotoxicity. Nevertheless, its anti-angiogenic mechanism and anti-tumor effect have not been investigated. PURPOSE To investigate the anti-angiogenic mechanisms of cyperenoic acid and evaluate it whether could exert anti-tumor effect by inhibiting angiogenesis. STUDY DESIGN Targeting vascular endothelial growth factor receptor-2 (VEGFR2) pathway to inhibit tumor angiogenesis is a significant strategy for cancer treatment. Initially, the anti-angiogenic effect of cyperenoic acid as well as the mechanisms of the action was studied using both in-vitro and in-vivo methodologies. Then, its anti-tumor effect through anti-angiogenesis by attenuating VEGFR2 signaling pathway was evaluated. METHODS The in-vitro inhibitory effect of cyperenoic acid on the vascular endothelial growth factor (VEGF)-induced angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) model. Moreover, its ex-vivo and in-vivo effects were evaluated using the aortic ring assay and the matrigel plug assay. The influence of the cyperenoic acid on tyrosine phosphorylation of VEGFR2 was studied by western blotting assay and the influence on downstream signaling pathway of VEGFR2 also be detected. Computer-docking simulations were carried out to study the interaction between cyperenoic acid and VEGFR2. Finally, its inhibitory effect on tumor growth was studied using breast cancer xenograft model. RESULTS Cyperenoic acid possessed little toxicity to HUVECs, but it significantly inhibited VEGF-induced proliferation, invasion, migration and tube formation of HUVECs. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Further mechanistic study showed that cyperenoic acid could suppress VEGFR2 tyrosine kinase activity and alter its downstream signaling pathways in VEGF-induced HUVECs. In addition, it could form two hydrogen bonds with the ATP binding pocket of the VEGFR2 kinase domain by docking. For breast cancer xenograft model, cyperenoic acid suppressed tumor growth, but no obvious toxic pathologic changes were observed in mice. Besides, it suppressed the phosphorylation of VEGFR2 in tumor, demonstrating its anti-angiogenic ability in vivo partly targeting the VEGFR2. CONLUSION Cyperenoic acid could exert anti-tumor effect in breast cancer by inhibiting angiogenesis via VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Weihuan Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Yeyin Liang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jim Junhui Huang
- Environmental Research Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
| | - Yaolan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Lv K, Ren Q, Zhang X, Zhang K, Fei J, Li T. Study of pro-angiogenic activity of astilbin on human umbilical vein endothelial cells in vitro and zebrafish in vivo. RSC Adv 2019; 9:22921-22930. [PMID: 35514508 PMCID: PMC9067144 DOI: 10.1039/c9ra01673b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/08/2019] [Indexed: 12/23/2022] Open
Abstract
Astilbin is a dihydroflavonol natural product isolated from a variety of food and medicinal herbs (e.g. Smilax glabra Roxb.), and its mechanism of action in vascular pharmacology remains unclear. The aim of this study was to investigate the pro-angiogenic effects of astilbin and its putative mechanism of action. Briefly, our in vitro studies showed a dose-dependent ability of astilbin to increase the ability of HUVECs to proliferate and migrate, and undergo cell invasion and tube formation. Moreover, astilbin significantly increased the expression levels of several major proteins involved in the angiogenesis pathway, e.g. PI3K, Akt, p38 and ERK1/2. Our in vivo studies demonstrated the ability of astilbin to significantly restore the blood vessel loss induced by VRI in a VRI-induced vascular insufficiency zebrafish model. In conclusion, in this study we first demonstrate that astilbin exhibits pro-angiogenic activity in HUVECs and VRI-induced vascular insufficient zebrafish, possibly through the activation of the PI3K/Akt and MAPK/ERK dependent signaling pathways. These findings suggest that astilbin could be further developed as a potential agent in the prevention or treatment of insufficient angiogenesis related diseases in the future. Pro-angiogenic activity of astilbin on endothelial cells in vitro and zebrafish in vivo.![]()
Collapse
Affiliation(s)
- Kongpeng Lv
- Shenzhen Infectious Disease Medicine Engineering Center, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University Shenzhen 518120 Guangdong Province China +86-755-25618998 +86-755-25618998.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University Guangzhou 510632 Guangdong Province China +86-20-85221343 +86-20-85220256
| | - Qin Ren
- Shenzhen Infectious Disease Medicine Engineering Center, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University Shenzhen 518120 Guangdong Province China +86-755-25618998 +86-755-25618998
| | - Xingyan Zhang
- Shenzhen Infectious Disease Medicine Engineering Center, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University Shenzhen 518120 Guangdong Province China +86-755-25618998 +86-755-25618998
| | - Keda Zhang
- Shenzhen Infectious Disease Medicine Engineering Center, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University Shenzhen 518120 Guangdong Province China +86-755-25618998 +86-755-25618998.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University Guangzhou 510632 Guangdong Province China +86-20-85221343 +86-20-85220256
| | - Jia Fei
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University Guangzhou 510632 Guangdong Province China +86-20-85221343 +86-20-85220256
| | - Tiyuan Li
- Shenzhen Infectious Disease Medicine Engineering Center, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University Shenzhen 518120 Guangdong Province China +86-755-25618998 +86-755-25618998
| |
Collapse
|
7
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|