1
|
Yang Y, Tang N, Liu Y, Choi W, Kim JH, Kim HG, Yu T, Cho JY. PP2 suppresses proliferation and migration of C6 Glioma and MDA-MB-231 cells by targeting both fibroblast growth factor receptor 1 and Src. Chem Biol Interact 2024; 403:111252. [PMID: 39341487 DOI: 10.1016/j.cbi.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Fibroblast growth factor (FGF) is involved in the progression of glioma, a most common type of brain tumor, and breast tumors. In this study, we aim to evaluate the effects of the inhibitor PP2 on cell proliferation and migration in glioma and breast tumor cells, and to characterize the molecular mechanisms involved in these processes. The inhibitory effect of PP2 on the tumorigenic potential of C6 glioma and MDA-MB-231 cells was examined by proliferation, migration, and invasion assays, and apoptotic analysis. The molecular mechanism behind the anti-glioma activity of PP2 was investigated by immunoblotting, immunoprecipitation, phosphoprotein assay, cellular thermal shift assay (CETSA), and molecular docking modeling. PP2 suppressed the proliferation and migration of C6 glioma and MDA-MB-231 cells via FGF2. Moreover, PP2 directly blocked the enzyme activity of FGF receptor 1 (FGFR1) and Src, subsequently affecting the nuclear factor-κB and activator protein-1 signaling pathways. CETSA analysis and the docking model indicated that the TK1 domains (Val 492 ad Glu 486) of FGFR2 could be binding sites of PP2. Collectively, therefore, our findings suggest that PP2 mediates antitumor effects by targeting both FGFR1 and Src and may have applications as a therapeutic inhibitor for the treatment of glioma.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, 16 Jiangsu Road, Qingdao, 266071, PR China.
| | - Ningning Tang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, 266021, PR China.
| | - Yan Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, PR China.
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, 266021, PR China.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Kim HG, Kim JH, Yu T, Cho JY. Functional Involvement of TANK-Binding Kinase 1 in the MyD88-Dependent NF- κB Pathway Through Syk. Mediators Inflamm 2024; 2024:8634515. [PMID: 39493293 PMCID: PMC11531359 DOI: 10.1155/2024/8634515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Inflammation is a vital immune defense mechanism regulated by Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) pathway. TANK-binding kinase 1 (TBK1) is central to immunity and inflammation and influences antiviral responses and cellular processes. However, the precise role of TBK1 in modulating the NF-κB pathway through interactions with other proteins, such as spleen tyrosine kinase (Syk), remains poorly understood. As dysregulation of TBK1 and NF-κB can lead to a variety of diseases, they are important therapeutic targets. In this work, inflammatory processes involving the TBK1-Syk-NF-κB pathway were elucidated using lipopolysaccharide (LPS)-induced macrophages; human embryonic kidney 293 (HEK293) cells overexpressing MyD88, TBK1, and Syk proteins and their mutants; and real-time polymerase chain reaction (PCR), immunoblotting analyses, and kinase assays. TBK1 was activated in LPS-, poly I:C-, and Pam3CSK-stimulated macrophages. Transcript levels of TNF, NOS2, and IL1B were increased in cells overexpressing TBK1 but not in cells overexpressing TBK1 K38A. The transcription of TNF, NOS2, and IL1B and NF-κB luciferase activity were inhibited by silencing TBK1 in LPS-stimulated RAW264.7 cells and MyD88-transfected HEK293 cells. Syk was the key mediator of the TBK1-dependent NF-κB pathway and bound directly to the coiled coil domain of TBK1, which was necessary to activate Syk and the Syk-p85 pathway. This research advances the understanding of the role of TBK1 in NF-κB signaling, emphasizing Syk as a key mediator. The interaction between TBK1 and Syk has potential for precise immune modulation that can be applied to treat immune-related disorders.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Anti-inflammatory effects of Torin2 on lipopolysaccharide-treated RAW264.7 murine macrophages and potential mechanisms. Heliyon 2022; 8:e09917. [PMID: 35874059 PMCID: PMC9304722 DOI: 10.1016/j.heliyon.2022.e09917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Context Torin2 has various pharmacological properties. However, its anti-inflammatory activity has not been reported. Objective This study focused on the potential anti-inflammatory properties of Torin2 in lipopolysaccharide (LPS)-evoked RAW264.7 murine macrophages. The study aimed to shed light on the molecular mechanisms that ameliorate these effects. Methods Torin2 was applied to 100 ng/mL lipopolysaccharide-induced RAW 264.7 macrophages in vitro. Nitric oxide (NO) levels were detected using the Griess reagent kit. Prostaglandin E2 (PGE2), pro-inflammatory cytokines interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were tested using real-time quantitative polymerase chain reaction (qPCR). Cyclooxygenase-2 and inducible nitric oxide synthase proteins, phosphorylation of mitogen-activated protein kinase (MAPK) subgroups, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, I-kappa-B-alpha (IκBα), and nuclear factor-kappa-B (NF-κB), and activation in extracts were detected via western blotting. Nuclear factor-kappa-B/p65 nuclear translocation was tested using an immunofluorescence assay. Results The results demonstrated that pre-treatment with Torin2 profoundly attenuated the lipopolysaccharide-stimulated levels of nitric oxide and prostaglandin E2, pro-inflammatory cytokines, messenger ribonucleic acid (mRNA), and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Collectively, Torin2 pre-treatment notably weakened lipopolysaccharide-induced damage by reducing the phosphorylation of nuclear factor-kappa-B, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase proteins, and nuclear factor-kappa-B/p65 nuclear translocation. Conclusion Numerous pieces of evidence indicated that Torin2 reversed inflammatory activation by regulating nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways and provided a tentative potential candidate for preventing and treating inflammatory diseases.
Collapse
|
4
|
Kim HG, Lee C, Yoon JH, Kim JH, Cho JY. BN82002 alleviated tissue damage of septic mice by reducing inflammatory response through inhibiting AKT2/NF-κB signaling pathway. Pharmacotherapy 2022; 148:112740. [DOI: 10.1016/j.biopha.2022.112740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/20/2023]
|
5
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Jeong D, Park JG, Aziz N, Kim S, Parameswaran N, Cho JY. Syk-MyD88 Axis Is a Critical Determinant of Inflammatory-Response in Activated Macrophages. Front Immunol 2022; 12:767366. [PMID: 35003083 PMCID: PMC8733199 DOI: 10.3389/fimmu.2021.767366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background Inflammation, a vital immune response to infection and injury, is mediated by macrophage activation. While spleen tyrosine kinase (Syk) and myeloid differentiation primary response 88 (MyD88) are reportedly involved in inflammatory responses in macrophages, their roles and underlying mechanisms are largely unknown. Methods Here, the role of the MyD88-Syk axis and the mechanism by which Syk and MyD88 cooperate during macrophage-mediated inflammatory responses are explored using knockout conditions of these proteins and mutation strategy as well as flowcytometric and immunoblotting analyses. Results Syk rapidly activates the nuclear factor-kappa B (NF-κB) signaling pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the activation of the NF-κB signaling pathway is abolished in Syk−/− RAW264.7 cells. MyD88 activates Syk and Syk-induced activation of NF-κB signaling pathway in LPS-stimulated RAW264.7 cells but Syk-induced inflammatory responses are significantly inhibited in MyD88−/− RAW264.7 cells. MyD88 interacts with Syk through the tyrosine 58 residue (Y58) in the hemi-immunoreceptor tyrosine-based activation motif (ITAM) of MyD88, leading to Syk activation and Syk-induced activation of the NF-κB signaling pathway. Src activates MyD88 by phosphorylation at Y58 via the Src kinase domain. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) activation and Rac1-induced formation of filamentous actin (F actin) activate Src in LPS-stimulated RAW264.7 cells. Conclusions These results suggest that the MyD88-Syk axis is a critical player in macrophage-mediated inflammatory responses, and its function is promoted by an upstream Src kinase activated by Rac1-generated filamentous actin (F-actin).
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Department of Life Sciences, Kyonggi University, Suwon, South Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Suk Kim
- Institute of Animal Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
6
|
Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, Choung ES, Woo BY, Hong YD, Lee S, Lee BH, Bach TT, Kim JH, Kim JH, Cho JY. Syk/NF-κB-targeted anti-inflammatory activity of Melicope accedens (Blume) T.G. Hartley methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113887. [PMID: 33539951 DOI: 10.1016/j.jep.2021.113887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | | | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin, 17074, Republic of Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Hong YH, Song C, Shin KK, Choi E, Hwang SH, Jang YJ, Taamalli A, Yum J, Kim JH, Kim E, Cho JY. Tunisian Olea europaea L. leaf extract suppresses Freund's complete adjuvant-induced rheumatoid arthritis and lipopolysaccharide-induced inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113602. [PMID: 33246116 DOI: 10.1016/j.jep.2020.113602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology-Technopole of Borj-Cedria, BP 901, Hammam-Lif, 2050, Tunisia; Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 39524, Saudi Arabia.
| | - Jinwhoa Yum
- National Institute of Biological Resources, Ministry of Environment, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Chen H, Jang J, Kopalli SR, Yum J, Yoon K, Cho JY. Anti-photoaging activities of Sorbaria kirilowii ethanol extract in UVB-damaged cells. Cytotechnology 2021; 73:127-138. [PMID: 33505120 DOI: 10.1007/s10616-020-00449-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Sorbaria kirilowii (Regel) Maxim, a plant found in China, Korea, Japan, and east of Europe, is a common herb used for traditional medicinal purposes. However, its ability to prevent photoaging has not been studied. In this study, we investigated the anti-photoaging functions of an ethanol extract (Sk-EE) of S. kirilowii (Regel) Maxim using human keratinocytes exposed to UVB. First, we analyzed the cytotoxicity of Sk-EE. Then, we determine the expression of genes related to inflammation, collagen degradation, and moisture retention. We also explored the anti-photoaging mechanism of Sk-EE by determining correlated signaling pathways and target molecules using reporter gene assays and immunoblotting analyses. Sk-EE treatment of cells increased hyaluronic acid synthase (HAS), filaggrin (FLG), and collagen type I alpha 1 (COL1A1) expression. Sk-EE dose-dependently inhibited the UVB-induced expression of matrix metalloproteinases (MMPs) 1, 2, 9 and cyclooxygenase (COX)-2 by blocking the activator protein (AP)-1 signaling pathway, in particular the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular response kinase (ERK). In addition, c-Fos and c-Jun were targeted by Sk-EE. Our results indicate that Sk-EE has anti-inflammatory and skin-protective properties, and could be a candidate to treat signs of photoaging.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience, and Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jinwhoa Yum
- Ministry of Environment, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
| | - Keejung Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|
9
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
10
|
Sorbaria kirilowii Ethanol Extract Exerts Anti-Inflammatory Effects In Vitro and In Vivo by Targeting Src/Nuclear Factor (NF)-κB. Biomolecules 2020; 10:biom10050741. [PMID: 32397672 PMCID: PMC7277364 DOI: 10.3390/biom10050741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.
Collapse
|
11
|
Xuan NT, Toan NL, Mao CV, Vuong NB, Giang NT, Hoang NH. Regulation of dendritic cell function by A20 through high glucose-induced Akt2 signaling. J Recept Signal Transduct Res 2019; 39:434-441. [DOI: 10.1080/10799893.2019.1690511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Ba Vuong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|