1
|
Xuan J, Deng C, Lu H, He Y, Zhang J, Zeng X, Sun Y, Chen S, Liu Y. Serum lipid profile in systemic lupus erythematosus. Front Immunol 2025; 15:1503434. [PMID: 39877363 PMCID: PMC11772162 DOI: 10.3389/fimmu.2024.1503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background Dyslipidemia presents in various autoimmune diseases, and the serum lipid profile in systemic lupus erythematosus (SLE) has not yet been clearly defined. This study aims to evaluate the level of serum lipids in patients with SLE. Methods A case-control study evaluated four conventional sera lipids-total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)-in patients with SLE compared to healthy controls (HCs). Correlations between serum lipids and clinical characteristics were analyzed in patients with SLE. A systematic review and meta-analysis were conducted to assess the epidemiology of lipid profiles in patients with SLE, and a random-effects meta-analysis was performed for data synthesis. Results TC and TG were elevated significantly, and HDL decreased in patients with SLE compared to HCs. Elevated lipids were associated with progressive disease activity. TC, TG, and HDL were elevated in patients with SLE and were associated with decreased IgG, increased 24-h proteinuria, white blood cells (WBCs), and neutrophils. Decreased HDL and increased TG were associated with an increase in the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Patients with SLE who took glucocorticoids (GCs) may have experienced increases in TC and TG, while those who took hydroxychloroquine (HCQ) may have experienced increases in TC and HDL. Eleven eligible studies including the present study on associations between serum lipids and SLE were reviewed by the meta-analysis. The results demonstrated elevated TC (MD = 0.85, 95% CI 0.82 to 0.89, p < 0.00001) and TG (MD = 0.96, 95% CI 0.94 to 0.99, p < 0.00001) levels in SLE, while HDL decreased (MD = -0.19, 95% CI -0.20 to -0.17, p < 0.00001). Conclusions Dyslipidemia is present in SLE. There was a significant association between SLE disease activity and TC, TG, and HDL. The exact pathogenesis of metabolic disorders in SLE needs to be further addressed.
Collapse
Affiliation(s)
- Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huiqin Lu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoli Zeng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Yuechi Sun
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| |
Collapse
|
2
|
Wilkinson MJ, Shapiro MD. Immune-Mediated Inflammatory Diseases, Dyslipidemia, and Cardiovascular Risk: A Complex Interplay. Arterioscler Thromb Vasc Biol 2024; 44:2396-2406. [PMID: 39479765 PMCID: PMC11602385 DOI: 10.1161/atvbaha.124.319983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Individuals with autoimmune inflammatory diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, are at increased risk for cardiovascular disease. While these diseases share common features of systemic inflammation, the impact of individual autoimmune inflammatory conditions on circulating lipids and lipoproteins varies by specific disease, disease activity, and the immune-suppressing medications used to treat these conditions. A common feature observed in many autoimmune inflammatory diseases is the development of a proatherogenic dyslipidemic state, characterized by dysfunctional HDLs (high-density lipoproteins) and increased oxidation of LDLs (low-density lipoproteins). Various disease-modifying antirheumatic drugs also have complex and variable effects on lipids, and it is critical to take this into consideration when evaluating lipid-related risk in individuals with immune-mediated inflammatory conditions. This review aims to critically evaluate the current understanding of the relationship between immune-mediated inflammatory diseases and dyslipidemia, the underlying mechanisms contributing to atherogenesis, and the impact of various pharmacotherapies on lipid profiles and cardiovascular risk. We also discuss the role of lipid-lowering therapies, particularly statins, in managing residual risk in this high-risk population and explore the potential of emerging therapies with complementary anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Michael J. Wilkinson
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Michael D. Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Liu S, Yang M, Liu H, Hao Y, Zhang D. Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2008. [PMID: 39532280 DOI: 10.1002/wnan.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
Collapse
Affiliation(s)
- Shuhang Liu
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Han Liu
- Center of Emergency, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Bahap-Kara M, Sariyildiz E, Yardimci GK, Karadag O, Bayraktar-Ekincioglu A. Addressing Glucocorticoid-Related Problems with the Clinical Pharmacist Collaboration in Rheumatology Practice: A Prospective Follow-Up Study. Rheumatol Ther 2024; 11:1043-1055. [PMID: 38926304 PMCID: PMC11264585 DOI: 10.1007/s40744-024-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Glucocorticoids (GCs) play a crucial role in the treatment of many rheumatic diseases regarding their anti-inflammatory and immunosuppressive effects. Inappropriate use of GCs can exacerbate GC-related problems besides complex treatment regimens and miscellaneous well-established adverse events. Although several guidelines exist for managing these problems, there is lack of real-life studies evaluating the problems at the patient level. This study aims to identify GC-related problems among patients with rheumatic diseases and address how they have been solved. METHODS This prospective follow-up study was conducted between January 2021 and June 2022 at a university rheumatology outpatient clinic and included patients using GCs. A clinical pharmacist assessed patients for possible GC-related problems at baseline, 3 months, and 6 months. Identified problems, their causes, interventions to address these problems, and their outcomes were categorized using the Pharmaceutical Care Network Europe (PCNE v9.1) classification system. The resolution of the problems was evaluated at the patient's next follow-up visit. RESULTS A total of 156 patients were included, and 236 GC-related problems were identified in 66% of the patients. Adverse drug events (possible) accounted for the highest proportion of GC-related problems (94.1%), and the most common causes were lack of laboratory monitoring of GC-related adverse events (41.5%) and lack of drug treatment despite existing indications (39.8%). The median cumulative prednisolone dose was higher in patients with GC-related problems (3115 vs. 5455 mg, p = 0.007). The clinical pharmacist suggested 381 interventions: 47.7% (n = 182) at the 'prescriber level', 31.8% (n = 121) at the 'patient level', and 20.5% (n = 78) at the 'drug level'. Of those interventions, 98% were accepted, and 80.1% of the problems were solved. CONCLUSIONS This study showed that the prevalence of GC-related problems is high in patients with rheumatic diseases. Integrating clinical pharmacists into the multidisciplinary rheumatology team provides an advantage in effectively identifying and managing GC-related problems at an early stage.
Collapse
Affiliation(s)
- Melda Bahap-Kara
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey.
| | - Emine Sariyildiz
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde K Yardimci
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Omer Karadag
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
5
|
Naz S, Mazhar MU, Faiz S, Malik MN, Khan JZ, Haq IU, Zhu L, Tipu MK. In vivo evaluation of efficacy and safety of Coagulansin-A in treating arthritis. Toxicol Appl Pharmacol 2024; 489:117008. [PMID: 38908719 DOI: 10.1016/j.taap.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The current study aimed to determine the safety and efficacy of Coag-A through in vivo analysis in CFA induced mice model. Treatment of CFA induced arthritis in mice with Coagulansin-A (10 mg/kg i.p. daily for 28 days), a withanolide obtained from Withania coagulans, as well as standard drug treatment with Dexamethasone (5 mg/kg i.p) was provided. The effect of Coag-A on body weight, relative organ weight, hematology, serum biochemistry, survival rate, oxidative stress markers, and antioxidant enzymes was evaluated. The liver and kidney histopathology were also assessed to ascertain its safety profile. Treatment of arthritic mice with Coag-A considerably improved body weight, relative organ weight of liver, kidney, and spleen, ameliorated hematology and serum biochemistry, and increased survival and antioxidant potential. Coag-A was found to be safer with fewer adverse effects showing hepato-protective, nephroprotective, and anti-inflammatory effect. It also significantly (p < 0.001) improved histopathology of CFA-induced mice when compared with Dexa. In conclusion, compared to dexamethasone, Coag-A has demonstrated a greater therapeutic benefit and fewer side effects in the treatment of arthritis against the CFA-induced model.
Collapse
Affiliation(s)
- Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sidra Faiz
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan
| | - Maria Nawaz Malik
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
6
|
Nguyen NT, Nguyen BPT, Ho TN, Tran CND, Tran THH, Nguyen HPH, Nguyen HP, Huynh NT, Li Y, Phan VHG, Thambi T. Orally ingestible medication utilizing layered double hydroxide nanoparticles strengthened alginate and hyaluronic acid-based hydrogel bead for bowel disease management. Int J Biol Macromol 2024; 269:132122. [PMID: 38718992 DOI: 10.1016/j.ijbiomac.2024.132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
In the treatment of bowel diseases such as ulcerative colitis through oral administration, an effective drug delivery system targeting the colon is crucial for enhancing efficacy and minimizing side effects of therapeutic agents. This study focuses on the development of a novel nanocomposite hydrogel bead comprising a synergistic blend of biological macromolecules, namely sodium alginate (ALG) and hyaluronic acid (HA), reinforced with layered double hydroxide nanoparticles (LDHs) for the oral delivery of dual therapeutics. The synthesized hydrogel bead exhibits significantly enhanced gel strength and controllable release of methylprednisolone (MP) and curcumin (CUR), serving as an anti-inflammatory drug and a mucosal healing agent, compared to native ALG or ALG/HA hydrogel beads without LDHs. The physicochemical properties of the synthesized LDHs and hydrogel beads were characterized using various techniques, including scanning electron microscopy, zeta potential measurement, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In vitro release studies of MP and CUR under simulated gastrointestinal tract (GIT) conditions demonstrate the superior controlled release property of the nanocomposite hydrogel bead, particularly in minimizing premature drug release in the upper GIT environment while sustaining release of over 82 % of drugs in the colonic environment. Thus, the modularly engineered carrier designed for oral colon targeting holds promise as a potential candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ngoc Tuan Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Bich-Phuong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tuyet-Nhung Ho
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cam-Nhung Dinh Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Hong-Phuc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Thuy Huynh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China.
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Fang Z, Sun H, Wang Y, Sun Z, Yin M. Discovery of WD-890: A novel allosteric TYK2 inhibitor for the treatment of multiple autoimmune diseases. Biomed Pharmacother 2023; 167:115611. [PMID: 37778274 DOI: 10.1016/j.biopha.2023.115611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Tyrosine kinase 2 (TYK2) as a member of Janus kinase (JAK) family, mainly mediates the signaling of type I interferons (IFN), interleukin-12 (IL-12) and interleukin-23 (IL-23), which has become an attractive target for treatment of immune and inflammatory diseases. However, the development of selective TYK2 inhibitors is challenging due to the high homology of the catalytic kinase domain among the JAK family members. Here, we report a novel and potent allosteric inhibitor, WD-890, which binds to the pseudokinase domain of TYK2 with high selectivity and inhibits its function. We accomplished a series of preclinical studies to demonstrate the therapeutic efficacy of WD-890 in four animal models: systemic lupus erythematosus (SLE), psoriasis, psoriatic arthritis (PsA), and inflammatory bowel disease (IBD). The pharmacokinetic and toxicology results further indicate that WD-890 has favorable absorption, distribution, metabolism, and excretion (ADME) properties and tolerable toxicity. In conclusion, our study shows that WD-890 could be a promising oral TYK2 inhibitor for future treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Zhiqin Fang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyin Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yutong Wang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China; Translational Medicine Research Center (TMRC), School of Medicine Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
8
|
Huovinen J, Palosaari S, Pesonen P, Huhtakangas JA, Lehenkari P. 1,25(OH) 2D 3 and its analogue calcipotriol inhibit the migration of human synovial and mesenchymal stromal cells in a wound healing model - A comparison with glucocorticoids. J Steroid Biochem Mol Biol 2023; 233:106373. [PMID: 37558005 DOI: 10.1016/j.jsbmb.2023.106373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Vitamin D analogue calcipotriol is currently used in the local treatment of psoriasis. However, it also has antiproliferative and anti-inflammatory effects in the cells of the joint - suggesting a possible benefit in local treatment of arthritis. In this study, calcipotriol was studied in different in vitro methods to find out its effect on synovial and mesenchymal stromal cells. Primary human cell lines of osteoarthritis or rheumatoid arthritis patients (five mesenchymal stromal cells, MSC, and four synovial stromal cells, SSC) were cultured to study migration and proliferation of the cells in a wound healing model. The media was supplemented with calcipotriol, 1,25(OH)2D3, dexamethasone, betamethasone, methylprednisolone or control solution in 1-100 nM concentrations. To see possible toxic effects of calcipotriol, concentrations up to 10 µM in SSCs and MSCs were studied in apoptosis and necrosis assays in four cell lines. Calcipotriol and 1,25(OH)2D3, as well as the three glucocorticoids, reduced the migration of both SSCs and MSCs. In SSCs, the effect of calcipotriol and 1,25(OH)2D3 was at least as effective as with glucocorticoids, while with MSCs, the glucocorticoids were stronger inhibitors of migration. The antimigratory of calcipotriol and 1,25(OH)2D3 was consistently maintained in 10 µM and 1 µM. Calcipotriol was not toxic to MSCs and SSCs up to concentrations of 10 µM. Calcipotriol, as well as 1,25(OH)2D3, exerts antimigratory and antiproliferative effects on human SSCs and MSCs of the joint. These effects are not caused by apoptosis or necrosis. Both calcipotriol and 1,25(OH)2D3 have similar effects as glucocorticoids without apparent toxicity, suggesting that calcipotriol might be an eligible candidate to the local treatment of arthritis with a broad therapeutic window.
Collapse
Affiliation(s)
- Jere Huovinen
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland.
| | - Sanna Palosaari
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland
| | - Paula Pesonen
- Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Johanna A Huhtakangas
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland; Kuopio University Hospital, Division of Rheumatology, KYS, BOX 100, 70029 Kuopio, Finland
| | - Petri Lehenkari
- Research Unit of Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O.Box 5000, FI-90014 Oulu, Finland; Division of Operative Care, Oulu University Hospital and University of Oulu, Finland
| |
Collapse
|
9
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
10
|
Yang L, Zhao W, Gong X, Yue D, Liu Y, Tian Y, Dong K. Exploring potential network pharmacology-and molecular docking-based mechanism of melittin in treating rheumatoid arthritis. Medicine (Baltimore) 2023; 102:e34728. [PMID: 37565866 PMCID: PMC10419517 DOI: 10.1097/md.0000000000034728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a type of difficult-to-cure arthralgia with a worldwide prevalence. It severely affects people's living standards. For a long time, bee venom has been used to treat RA and has shown good results. Melittin is the main active component of bee venom used for RA treatment, but the molecular mechanism of melittin in RA treatments remains unclear. METHODS Potential melittin and RA targets were obtained from relevant databases, and common targets of melittin and RA were screened. The STRING database was used to build the PPI network and screen the core targets after visualization. The core targets were enriched by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Finally, the binding of melittin to target proteins was evaluated through simulated molecular docking, which verified the reliability of the prediction results of network pharmacology. RESULTS In total, 138 melittin targets and 5795 RA targets were obtained from relevant databases, and 90 common targets were obtained through intersection. Eighteen core targets, such as STAT3, AKT1, tumor necrosis factor, and JUN, were screened out. Enrichment analysis results suggested that melittin plays an anti-RA role mainly through tumor necrosis factor, interleukin-17, toll-like receptors, and advanced glycation end products-RAGE signaling pathways, and pathogenic bacterial infection. Molecular docking results suggested that melittin has good docking activity with core target proteins. CONCLUSION RA treatment with melittin is the result of a multi-target and multi-pathway interaction. This study offers a theoretical basis and scientific evidence for further exploring melittin in RA therapy.
Collapse
Affiliation(s)
- Linfu Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenzheng Zhao
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dan Yue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yiqiu Liu
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Li W, Li R, Chen R, Ai S, Zhu H, Huang L, Lin W. Activatable Fluorescent-Photoacoustic Integrated Probes with Deep Tissue Penetration for Pathological Diagnosis and Therapeutic Evaluation of Acute Inflammation in Mice. Anal Chem 2022; 94:7996-8004. [PMID: 35604398 DOI: 10.1021/acs.analchem.2c01048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is associated with many diseases, so the development of an excellent near infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for the accurate diagnosis and efficacy evaluation of inflammation. However, most of the current NIRF/PA scaffolds are based on repurposing existing fluorescent dye platforms that exhibit non-optimal properties for both NIRF and PA signal outputs. Herein, we developed a novel dye scaffold QL-OH by optimizing the NIRF and PA signal of classical hemicyanine dyes. Based on this optimized dye, we developed the first NIRF/PA dual-mode carbon monoxide (CO) probe QL-CO for noninvasive and sensitive visualization of CO levels in deep inflammatory lesions in vivo. The novel probe QL-CO exhibited rapid and sensitive NIRF775/PA730 dual activation responses toward CO. In addition, the CO-activated probe QL-CO was successfully used for the diagnosis of inflammation and evaluation of anti-inflammation drug efficacy in living mice though the NIRF/PA dual-mode imaging technology for the first time. More importantly, the probe QL-CO could accurately locate the deep inflammatory lesion tissues (≈1 cm) in mice and obtain 3D PA diagnostic images with deep penetration depth and spatial resolution. Therefore, the new NIRF/PA dual-mode probe QL-CO has high potential for deep-tissue diagnosis imaging of CO in vivo. These findings may provide a new tool and approach for future research and diagnosis of CO-associated diseases.
Collapse
Affiliation(s)
- Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rui Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Sixin Ai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Huayong Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
12
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
13
|
Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021; 13:nu13103376. [PMID: 34684377 PMCID: PMC8539185 DOI: 10.3390/nu13103376] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral Scool of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (S.G.B.); (T.B.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
- Correspondence: (S.G.B.); (T.B.)
| | - Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suprava Das
- Deprtment of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamilnadu, India;
| |
Collapse
|
14
|
Yoshikawa N, Yamamoto M, Kuribara-Souta A, Uehara M, Yamazaki H, Tanaka H. Amino Acid Profile in 18 Patients with Rheumatic Diseases Treated with Glucocorticoids and BCAAs. J Nutr Sci Vitaminol (Tokyo) 2021; 67:180-188. [PMID: 34193677 DOI: 10.3177/jnsv.67.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The administration of glucocorticoids to patients with rheumatic diseases often results in glucocorticoid-induced myopathy. We previously found that administration of branched-chain amino acids (BCAA) to such patients improves the loss of skeletal muscle, however, their individual differences were often observed. The present study, therefore, aims to identify specific parameters associated with BCAA-induced increases in skeletal muscle mass. Eighteen patients with rheumatic diseases treated with prednisolone were randomly assigned to receive additional BCAAs for 12 wk. Serum biochemistry, plasma fibroblast growth factor (FGF) 19 and 21, and plasma and urinary amino acid concentrations were assessed. The relationship between these parameters and the cross-sectional area (CSA) of the biceps femoris (slow-twitch muscle) and rectus femoris (fast-twitch muscle) was assessed using computed tomography. BCAA supplementation increased serum levels of creatinine and albumin and decreased ammonia and urinary 3-methylhistidine levels. With or without BCAA supplementation, each plasma amino acid concentration decreased during the study period, but the decrease was lower in patients receiving BCAA. Interestingly, a positive correlation was observed between plasma isoleucine, aspartate, and glutamate concentrations and improvement in the biceps femoris muscle atrophy. Plasma amino acid concentrations in patients with rheumatic diseases treated with glucocorticoids decreased despite tapering the dose of glucocorticoids, with a smaller decrease in the BCAA-treated group. Plasma BCAA, aspartic acid, and glutamate concentrations correlated positively with the rate of improvement in biceps femoris muscle atrophy, suggesting that these amino acids are associated with the BCAA-induced increase in muscle mass.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Akiko Kuribara-Souta
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Masaaki Uehara
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| |
Collapse
|
15
|
Robin F, Lescoat A, Jego P, Guggenbuhl P. [Is it (really) necessary to treat all postmenopausal women receiving corticosteroid therapy with bone preventive therapy?]. Rev Med Interne 2021; 42:597-599. [PMID: 34353612 DOI: 10.1016/j.revmed.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- F Robin
- Department of Rheumatology, CHU Rennes, France; Inserm, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), 35033 Rennes, France.
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, University of Rennes 1, Rennes, France; University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - P Jego
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, University of Rennes 1, Rennes, France; University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - P Guggenbuhl
- Department of Rheumatology, CHU Rennes, France; Inserm, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), 35033 Rennes, France
| |
Collapse
|
16
|
Ma Q, Yao C, Shi H, Xu J, Dai H, Fei Z, Wu Y, Lu T, Wang C. Targeted delivery of dexamethasone in acute pneumonia. Biomater Sci 2021; 9:5569-5576. [PMID: 34240731 DOI: 10.1039/d1bm00924a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pneumonia has contributed to significant mortality owing to the irreversible injury to the lungs and severe inflammation of the tissue. Dexamethasone (DEX) is regarded as an effective drug to relieve the level of pneumonia, while the adverse effect of which is non-negligible. Here, we developed a targeted delivery strategy based on platelet-derived extracellular vesicles (PEVs), which are naturally occurring nanoparticles released by platelets, for DEX delivery in acute pneumonia, aiming to reduce the side effects and improve the therapeutic efficacy. Our strategy may shed light on the problems in DEX-based acute pneumonia therapy clinically.
Collapse
Affiliation(s)
- Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Haoliang Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yi Wu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-Driven Alterations to Inflammatory Protein Landscape of Lipopolysaccharide-Activated Macrophages In Vitro May Be Mediated by Autophagy and Oxidative Stress. Cannabis Cannabinoid Res 2021; 6:253-263. [PMID: 33998893 PMCID: PMC8217602 DOI: 10.1089/can.2020.0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The nonpsychotropic phytocannabinoid cannabidiol (CBD) presents itself as a potentially safe and effective anti-inflammatory treatment relative to clinical standards. In this present study, we compare the capacity of CBD to the corticosteroid dexamethasone (Dex) in altering the secreted protein landscape of activated macrophages and speculate upon the mechanism underpinning these alterations. Materials and Methods: Human THP-1 monocytes were differentiated into macrophages (THP-1 derived macrophages [tMACs]), activated with lipopolysaccharide (LPS), and then treated with 5, 10, 25, 50, or 100 μM CBD or 10 μM Dex for 24 h. Following treatment, cytotoxicity of CBD and protein expression levels from culture supernatants and from whole cell lysates were assessed for secreted and intracellular proteins, respectively. Results: High concentration (50 and 100 μM) CBD treatments exhibit a cytotoxic effect on LPS-activated tMACs following the 24-h treatment. Relative to the LPS-activated and untreated control (M[LPS]), both 25 μM CBD and 10 μM Dex reduced expression of pro-inflammatory markers-tumor necrosis factor alpha, interleukin 1 beta, and regulated on activation, normal T cell expressed and secreted (RANTES)-as well as the pleiotropic marker interleukin-6 (IL-6). A similar trend was observed for anti-inflammatory markers interleukin-10 and vascular endothelial growth factor (VEGF). Dex further reduced secreted levels of monocyte chemoattractant protein-1 in addition to suppressing IL-6 and VEGF beyond treatments with CBD. The anti-inflammatory capacity of 25 μM CBD was concurrent with reduction in levels of phosphorylated mammalian target of rapamycin Ser 2448, endothelial nitric oxide synthase, and induction of cyclooxygenase 2 relative to M(LPS). This could suggest that the observed effects on macrophage immune profile may be conferred through inhibition of mammalian target of rapamycin complex 1 and ensuing induction of autophagy. Conclusion: Cumulatively, these data demonstrate cytotoxicity of high concentration CBD treatment. The data reported herein largely agree with other literature demonstrating the anti-inflammatory effects of CBD. However, there is discrepancy within literature surrounding efficacious concentrations and effects of CBD on specific secreted proteins. These data expand upon previous work investigating the effects of CBD on inflammatory protein expression in macrophages, as well as provide insight into the mechanism by which these effects are conferred.
Collapse
Affiliation(s)
- Daniel J. Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
18
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
19
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
20
|
Hadwen B, Stranges S, Barra L. Risk factors for hypertension in rheumatoid arthritis patients-A systematic review. Autoimmun Rev 2021; 20:102786. [PMID: 33609791 DOI: 10.1016/j.autrev.2021.102786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Rheumatoid arthritis is frequently associated with hypertension, which has been shown to increase the risk of cardiovascular disease in these patients. The aim of this systematic review was to explore demographic, behavioural or clinical factors including medication use, associated with incident hypertension in rheumatoid arthritis. METHODS MEDLINE and Scopus were searched for eligible studies that longitudinally investigated incident hypertension or changes in blood pressure (BP) in rheumatoid arthritis patients. Publications were screened by two reviewers according to predetermined inclusion and exclusion criteria. The quality of included studies was assessed via the Newcastle Ottawa Scale and Cochrane Risk of Bias Tool. RESULTS Fourteen studies were deemed eligible and included in this review. The proportion of female subjects ranged from 12 to 87% and the mean age ranged from 47 to 61 years. Regular exercise was associated with a decrease in systolic BP, p = 0.021. Methotrexate was associated with decreased risk of hypertension in two studies. LEF was associated with increased BP in two studies. COX-2 inhibitors were associated with systolic BP and diastolic BP variability (p = 0.009, 0.039, respectively) in one study. Prednisone was found to increase BP and risk of hypertension in three studies. The risk of hypertension in patients taking biologic disease modifying anti-rheumatic drugs (DMARDs) is unclear as some studies report increased BP while others report no difference for biologic compared to conventional DMARDs. CONCLUSION Despite limited longitudinal studies exploring this topic, methotrexate and exercise were shown to protect against risk of hypertension in RA patients, while prednisone and COX-2 inhibitors may increase risk of hypertension.
Collapse
Affiliation(s)
- Brook Hadwen
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada; Department of Family Medicine, The University of Western Ontario, London, Canada; Lawson Health Research Institute, London, Canada; Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Lillian Barra
- Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Canada; Lawson Health Research Institute, London, Canada; Department of Medicine, Division of Rheumatology, The University of Western Ontario, London, Canada.
| |
Collapse
|
21
|
Lesovaya EA, Savinkova AV, Morozova OV, Lylova ES, Zhidkova EM, Kulikov EP, Kirsanov KI, Klopot A, Baida G, Yakubovskaya MG, Gordon LI, Readhead B, Dudley JT, Budunova I. A Novel Approach to Safer Glucocorticoid Receptor-Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Mol Cancer Ther 2020; 19:1898-1908. [PMID: 32546661 PMCID: PMC7875139 DOI: 10.1158/1535-7163.mct-19-1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.
Collapse
Affiliation(s)
- Ekaterina A Lesovaya
- N.N. Blokhin NMRCO, Moscow, Russia
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | | | | | | | | | | | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | | | - Leo I Gordon
- Division of Hematology Oncology; Northwestern University; Chicago, Illinois
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
22
|
Longitudinal Analysis of Disease Burden in Refractory and Nonrefractory Generalized Myasthenia Gravis in the United States. J Clin Neuromuscul Dis 2020; 22:11-21. [PMID: 32833720 PMCID: PMC7447171 DOI: 10.1097/cnd.0000000000000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: To compare temporal trends in clinical and health care resource utilization (HRU) outcomes in people with refractory and nonrefractory generalized myasthenia gravis (gMG). Methods: A retrospective analysis of data from adults with gMG in the Myasthenia Gravis Foundation of America Patient Registry. gMG status (ever-refractory or always nonrefractory) and clinical (Myasthenia Gravis—Activities of Daily Living [MG-ADL] scores, exacerbations) and HRU outcomes were determined from questionnaires self-completed 6-monthly for up to 4 years. The probability of each outcome was compared for the 2 groups over time. Results: The mean MG-ADL score and the probability of experiencing each outcome were significantly greater in the ever-refractory versus nonrefractory groups during each year of follow-up. Between-group differences in time trends were statistically significant for intensive care and feeding-tube use. Conclusions: People who have ever had refractory gMG may have worse functional status, more exacerbations, and higher HRU than people with consistently nonrefractory disease.
Collapse
|
23
|
Nasonov EL, Avdeeva AS, Lila AM. Efficacy and safety of tofacitinib for immune-mediated inflammatory rheumatic diseases (Part I). RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.14412/1995-4484-2020-62-79] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| |
Collapse
|
24
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
25
|
Sun X, Dong S, Li X, Yu K, Sun F, Lee RJ, Li Y, Teng L. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102017. [PMID: 31128293 DOI: 10.1016/j.nano.2019.102017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Systemic delivery of siRNA to target tissues is difficult to achieve owing to its limited cellular uptake and poor serum stability. Herein, polymeric nanoparticles were developed for systemic administration of siRNA to inflamed tissues. The polymeric nanoparticles were composed of PK3 as a pH-sensitive polymer, folate-polyethyleneglycol-poly(lactide-co-glycolide) as a targeting ligand, and a DOTAP/siRNA core. The polymeric nanoparticles had a mean particle size of 142.6 ± 0.61 nm and a zeta potential of 3.6 ± 0.43 mV. In vitro studies indicated pH-dependent siRNA release from polymeric nanoparticles, with accelerated release at pH 5.0. Cellular uptake was efficient and gene silencing was confirmed by Western blot. In vivo, polymeric nanoparticles were shown to have inflammation-targeting activity and potent therapeutic effects in an adjuvant-induced arthritis rat model. These results suggest that pH-sensitive and folate receptor-targeted nanoparticles are a promising drug carrier for siRNA delivery for rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiangshi Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Kongtong Yu
- School of Life Sciences, Jilin University, Changchun, China
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, China; Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|