1
|
Ge J, Li X, Xia Y, Chen Z, Xie C, Zhao Y, Chen K, Shen Y, Tong J. Recent advances in NLRP3 inflammasome in corneal diseases: Preclinical insights and therapeutic implications. Ocul Surf 2024; 34:392-405. [PMID: 39357820 DOI: 10.1016/j.jtos.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.
Collapse
Affiliation(s)
- Jiayun Ge
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Guo XB, Deng X, Wang J, Qi Y, Zhao W, Guan S. HAX-1 interferes in assembly of NLRP3-ASC to block microglial pyroptosis in cerebral I/R injury. Cell Death Discov 2024; 10:264. [PMID: 38811533 PMCID: PMC11136987 DOI: 10.1038/s41420-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Acute cerebral ischemia has a high rate of disability and death. Although timely recanalization therapy may rescue the ischemic brain tissue, cerebral ischemia-reperfusion injury has been shown to limit the therapeutic effects of vascular recanalization. Protein HAX-1 has been reported as a pro-survival protein that plays an important role in various disorders, particularly in association with the nervous system. However, the effects and mechanisms of HAX-1 in cerebral IR injury have yet to be elucidated. So, we aimed to investigate the effect of HAX-1 on microglial pyroptosis and explore its potential neuroprotective effects in ischemia-reperfusion injury. Our results show that the expression of HAX-1 decreased after cerebral IR injury, accompanied by an increase in pyroptosis pathway activation. In addition, HAX-1 could inhibit microglial pyroptosis both in vivo and in vitro and reduce the release of inflammatory mediators. The above neuroprotective effects might be partially mediated by inhibiting of interaction of NLRP3 and ASC through competitive binding, followed by the attenuation of NLRP3 inflammasome formation. In conclusion, Our findings support that HAX-1 exhibits a protective role in cerebral I/R injury, and further study on HAX-1 expression regulation will contribute to cerebral infarction therapy.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Jingjing Wang
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Yuruo Qi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China.
| | - Sheng Guan
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China.
| |
Collapse
|
3
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Wang Z, Yan H, He F, Wang J, Zhang Y, Sun L, Hao C, Wang W. Inhibition of herpes simplex virus by wedelolactone via targeting viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways. Int J Antimicrob Agents 2023; 62:107000. [PMID: 37838148 DOI: 10.1016/j.ijantimicag.2023.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fujie He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, PR China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
5
|
Song D, Zhao Y, Sun Y, Liang Y, Chen R, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. HSP90AB1 Is a Host Factor Required for Transmissible Gastroenteritis Virus Infection. Int J Mol Sci 2023; 24:15971. [PMID: 37958953 PMCID: PMC10649137 DOI: 10.3390/ijms242115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.
Collapse
Affiliation(s)
- Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Sun
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Zhong L, Wu Y, Huang C, Liu K, Ye CF, Ren Z, Wang Y. Acute toxicological evaluation of AT-533 and AT-533 gel in Sprague-Dawley rats. BMC Pharmacol Toxicol 2023; 24:54. [PMID: 37833798 PMCID: PMC10576390 DOI: 10.1186/s40360-023-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND AT-533 is a novel heat shock protein 90 inhibitor that exerting anti-inflammatory, antiviral, and antitumor efficacy. Furthermore, the gel made of AT-533 as raw material named AT-533 gel has the function of repairing keratitis and dermatitis caused by herpes virus infection. However, the acute safety evaluation of AT-533 and AT-533 gel has not been conducted. METHODS AND RESULTS Herein, we performed acute toxicological studies of AT-533 and AT-533 gel in Sprague-Dawley rats. Fifteen-day acute toxicity study of AT-533 was conducted in both male and female Sprague-Dawley rats at doses of 5, 50, 250 and 500 mg/kg and AT-533 gel at 5 g/kg in the study. During experiment, food consumption and mortality were observed and body weight, hematology, serum biochemistry and histopathological assessment of rats were carried out. No abnormal changes were observed in rats percutaneously treated with AT-533 at 5 mg/kg and 50 mg/kg and AT-533 gel. However, loss of appetite and body weight, adverse reactions, toxicologically relevant alterations in hematology and biochemistry were found in rats percutaneously treated with AT-533 at 250 mg/kg and 500 mg/kg during 15-day acute dermic toxicity study. CONCLUSIONS The aforementioned results suggested that the LD50 of AT-533 is 228.382 mg/kg and the LD50 of AT-533 gel is greater than 5 g/kg. These findings indicated that AT-533 is non-toxic in rats when the dose less than 50 mg/kg and AT-533 gel can be considered a gel with no toxicity at doses less than 5 g/kg.
Collapse
Affiliation(s)
- Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
- Guangzhou (Jinan) Biomedical Research and Development Center Co. Ltd, Guangzhou, China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
- Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Cui-Fang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, China.
- Guangdong Provincial biotechnology drug and Engineering Technology Research Center, Guangzhou, China.
- Guangzhou (Jinan) Biomedical Research and Development Center Co. Ltd, Guangzhou, China.
| |
Collapse
|
7
|
Palacios-Luna JE, López-Marrufo MV, Bautista-Bautista G, Velarde-Guerra CS, Villeda-Gabriel G, Flores-Herrera O, Osorio-Caballero M, Aguilar-Carrasco JC, Palafox-Vargas ML, García-López G, Díaz-Ruíz O, Arechavaleta-Velasco F, Flores-Herrera H. Progesterone modulates extracellular heat-shock proteins and interlukin-1β in human choriodecidual after Escherichia coli infection. Placenta 2023; 142:85-94. [PMID: 37659254 DOI: 10.1016/j.placenta.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Chorioamnionitis is an adverse condition in human pregnancy caused by many bacterial pathogens including Escherichia coli (E. coli); which has been associated with higher risk of preterm birth. We recently reported that human maternal decidua (MDec) tissue responds to E. coli infection by secreting extracellular heat-shock proteins (eHsp)-60, -70 and interlukin-1β (IL-1β). Previous studies have shown that progesterone (P4) regulates the immune response, but it is unknown whether P4 inhibits the secretion of eHsp. The aim of this investigation was to determine the role of P4 on the secretion of eHsp-27, -60, -70 and IL-1β in MDec after 3, 6, and 24 h of E. coli infection. METHODS Nine human feto-maternal interface (HFMi) tissues were included and mounted in the Transwell culture system. Only the maternal decidua (MDec) was stimulated for 3, 6 and 24 h with E. coli alone or in combination with progesterone and RU486. After each treatment, the HFMi tissue was recovered to determine histological changes and the culture medium recovered to evaluate the levels of eHsp-27, -60, -70 and IL-1β by ELISA and mRNA expression by RT-PCR. RESULTS No structural changes were observed in the HFMi tissue treated with P4 and RU486. However, stimulation with E. coli produces diffuse inflammation and ischemic necrosis. E. coli induced infection decreases, in time- and dose-dependent manner, eHsp-27 and increases eHsp-60, eHsp-70 and IL-1β levels. In contrast, incubation of HFMi tissue with E. coli + P4 reversed eHsp and IL-1β secretion levels relative to E. coli stimulation group but not relative to the control group. The same profile was observed on the expression of eHsp-27 and eHsp-60. DISCUSSION we found that progesterone modulates the anti-inflammatory (eHsp-27) and pro-inflammatory (eHsp-60 and eHsp-70) levels of eHsp induced by E. coli infection in human choriodecidual tissue. eHsp-60 and eHsp-70 levels were not completely reversed; maintaining the secretion of IL-1β, which has been associated with adverse events during pregnancy.
Collapse
Affiliation(s)
- Janelly Estefania Palacios-Luna
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Mariana Victoria López-Marrufo
- Departamento de Ginecología y Obstetricia. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Cinthia Selene Velarde-Guerra
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e Infectología, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Jose Carlos Aguilar-Carrasco
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabián Arechavaleta-Velasco
- Unidad de Investigación en Medicina Reproductiva. Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala" Instituto Mexicano Del Seguro Social, Ciudad de México. Mexico.
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico.
| |
Collapse
|
8
|
Liu Y, Ye Y, Xie G, Xu Y, Cheng M, Li C, Qu M, Zhu F. Pharmacological Mechanism of Sancao Yuyang Decoction in the Treatment of Oral Mucositis Based on Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:55-74. [PMID: 36660249 PMCID: PMC9844144 DOI: 10.2147/dddt.s391978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose The network pharmacology analysis, molecular docking and experimental verification were performed to explore the pharmacological mechanisms of Sancao Yuyang Decoction (SCYYD) in the treatment of oral mucositis (OM). Methods Active ingredients in SCYYD and their potential targets, as well as OM-related targets were screened from public databases. The core targets and signaling pathways of SCYYD against OM were determined by protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The ingredient-target-disease network and target-pathway network were constructed. Subsequently, molecular docking was carried out to predict the binding activity between active ingredients and key targets. Moreover, in vivo experiment was conducted to further verify the core targets predicted by network pharmacology analysis. Results A total of 119 bioactive ingredients were screened from the corresponding databases. One hundred and eighty-six putative targets were retrieved and bioinformatics analysis was performed to reveal the top 5 potential candidate agents and 10 core targets. GO and KEGG enrichment analysis showed that SCYYD exerted excellent therapeutic effects on OM through several pathways, such as HIF-1 and Ras signaling pathway. Subsequently, molecular docking showed that main ingredients in SCYYD had optimal binding activities to the key protein targets. Moreover, the result of in vivo experiment indicated that SCYYD not only inhibited inflammation response and promoted wound healing of oral mucosa in OM rats, but also reversed high expressions of SRC, HSP90AA1, STAT3, HIF1α, mTOR, TLR4, MMP9, and low expression of ESR1. Conclusion This study preliminarily uncovered the multiple compounds and multiple targets of SCYYD against OM using network pharmacology, molecular docking and in vivo verification, which provided a new insight of the pharmacological mechanisms of SCYYD in treatment of OM.
Collapse
Affiliation(s)
- Yunxia Liu
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China,Correspondence: Yunxia Liu, Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China, Email
| | - Yun Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yefeng Xu
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China
| | - Miao Cheng
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China
| | - Chunling Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Mengqi Qu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Feiye Zhu, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
9
|
Yang P, Zhong C, Huang H, Li X, Du L, Zhang L, Bi S, Du H, Ma Q, Cao L. Potential pharmacological mechanisms of four active compounds of Macleaya cordata extract against enteritis based on network pharmacology and molecular docking technology. Front Physiol 2023; 14:1175227. [PMID: 37200837 PMCID: PMC10185776 DOI: 10.3389/fphys.2023.1175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Macleaya cordata extract (MCE) is effective in the treatment of enteritis, but its mechanism has not been fully elucidated. Therefore, this study combined network pharmacology and molecular docking technologies to investigate the potential pharmacological mechanism of MCE in the treatment of enteritis. Methods: The information of active compounds in MCE was accessed through the literature. Furthermore, PubChem, PharmMapper, UniProt, and GeneCards databases were used to analyze the targets of MCE and enteritis. The intersection of drug and disease targets was imported into the STRING database, and the analysis results were imported into Cytoscape 3.7.1 software to construct a protein-protein interaction (PPI) network and to screen core targets. The Metascape database was used for conducting Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. AutoDock Tools software was used for the molecular docking of active compounds with the core targets. Results: MCE has four active compounds, namely, sanguinarine, chelerythrine, protopine, and allocryptopine, and a total of 269 targets after de-duplication. Furthermore, a total of 1,237 targets were associated with enteritis, 70 of which were obtained by aiding the drug-disease intersection with the aforementioned four active compound targets of MCE. Five core targets including mitogen-activated protein kinase 1 (MAPK1) and AKT serine/threonine kinase 1 (AKT1) were obtained using the PPI network, which are considered the potential targets for the four active compounds of MCE in the treatment of enteritis. The GO enrichment analysis involved 749 biological processes, 47 cellular components, and 64 molecular functions. The KEGG pathway enrichment analysis revealed 142 pathways involved in the treatment of enteritis by the four active compounds of MCE, among which PI3K-Akt and MAPK signaling pathways were the most important pathways. The results of molecular docking showed that the four active compounds demonstrated good binding properties at the five core targets. Conclusion: The pharmacological effects of the four active compounds of MCE in the treatment of enteritis involve acting on signaling pathways such as PI3K-Akt and MAPK through key targets such as AKT1 and MAPK1, thus providing new indications for further research to verify its mechanisms.
Collapse
Affiliation(s)
- Pingrui Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chonghua Zhong
- College of Animal Science and Technology, Southwest University, Chongqing, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xifeng Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lifang Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Qi Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
- *Correspondence: Liting Cao,
| |
Collapse
|
10
|
Anti-inflammatory effects of Torin2 on lipopolysaccharide-treated RAW264.7 murine macrophages and potential mechanisms. Heliyon 2022; 8:e09917. [PMID: 35874059 PMCID: PMC9304722 DOI: 10.1016/j.heliyon.2022.e09917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Context Torin2 has various pharmacological properties. However, its anti-inflammatory activity has not been reported. Objective This study focused on the potential anti-inflammatory properties of Torin2 in lipopolysaccharide (LPS)-evoked RAW264.7 murine macrophages. The study aimed to shed light on the molecular mechanisms that ameliorate these effects. Methods Torin2 was applied to 100 ng/mL lipopolysaccharide-induced RAW 264.7 macrophages in vitro. Nitric oxide (NO) levels were detected using the Griess reagent kit. Prostaglandin E2 (PGE2), pro-inflammatory cytokines interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were tested using real-time quantitative polymerase chain reaction (qPCR). Cyclooxygenase-2 and inducible nitric oxide synthase proteins, phosphorylation of mitogen-activated protein kinase (MAPK) subgroups, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, I-kappa-B-alpha (IκBα), and nuclear factor-kappa-B (NF-κB), and activation in extracts were detected via western blotting. Nuclear factor-kappa-B/p65 nuclear translocation was tested using an immunofluorescence assay. Results The results demonstrated that pre-treatment with Torin2 profoundly attenuated the lipopolysaccharide-stimulated levels of nitric oxide and prostaglandin E2, pro-inflammatory cytokines, messenger ribonucleic acid (mRNA), and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Collectively, Torin2 pre-treatment notably weakened lipopolysaccharide-induced damage by reducing the phosphorylation of nuclear factor-kappa-B, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase proteins, and nuclear factor-kappa-B/p65 nuclear translocation. Conclusion Numerous pieces of evidence indicated that Torin2 reversed inflammatory activation by regulating nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways and provided a tentative potential candidate for preventing and treating inflammatory diseases.
Collapse
|
11
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Qi S, Deng S, Lian Z, Yu K. Novel Drugs with High Efficacy against Tumor Angiogenesis. Int J Mol Sci 2022; 23:6934. [PMID: 35805939 PMCID: PMC9267017 DOI: 10.3390/ijms23136934] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is involved in physiological and pathological processes in the body. Tumor angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore, there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF), angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used for cancer treatment, or are still in various stages of clinical development or preclinical evaluation. This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein 90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream signaling molecules depend on the function of HSP90. This article also briefly introduces the role of HSP90 in angiogenesis and some HSP90 inhibitors.
Collapse
Affiliation(s)
- Shiyu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shoulong Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
13
|
Combining the HSP90 inhibitor TAS-116 with metformin effectively degrades the NLRP3 and attenuates inflammasome activation in rats: A new management paradigm for ulcerative colitis. Biomed Pharmacother 2022; 153:113247. [PMID: 35724510 DOI: 10.1016/j.biopha.2022.113247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Ulcerative colitis (UC) is a prevalent type of inflammatory bowel diseases that may predispose patients to acquire colitis-related cancer if treatment was not effective. Despite the presence of an array of established treatment options, current modalities are not successful for a substanial number of patients. The activation of the NLRP3 inflammasome is critical in the development of inflammatory processes in the colon. Additionally, the regulation of NLRP3 via HSP90 inhibition is a potential target to treat UC. Moreover, during inflammation, autophagy allows the turnover of malfunctioning proteins and therefore stands as a viable strategy for inactivating NLRP3 inflammasomes and halting hyperinflammation. Herein, we evaluated the effect of autophagy induction using metformin in the context of HSP90 inhibition by TAS-116 in the dextran sodium sulfate (DSS)-induced UC in rats. We revealed that TAS-116-induced interruption of the protein complex containing HSP90 and NLRP3 might hamper and delay the start of the inflammatory cascade ensued by the NLRP3 inflammasome oligomerization. In such circumstances, the unprotected NLRP3 is subjected to autophagic degradation in an environment of metformin-promoted autophagic signaling. As a result, such dynamic synergy was efficient in combating colon damage and immune-cell infiltration. This was confirmed by the macroscopic and microscopic investigations. Further, biochemical analysis revealed subdued inflammation cascade and oxidative injury. Therefore, simultaneous administration of TAS-116 and metformin is a new management paradigm aimed at inducing malfunction in the NLRP3 followed by augmenting its autophagic degradation, respectively. However, further studies should be conducted to assess the reliability and consistency of this novel approach.
Collapse
|
14
|
Interleukin-6-white matter network differences explained the susceptibility to depression after stressful life events. J Affect Disord 2022; 305:122-132. [PMID: 35271870 DOI: 10.1016/j.jad.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Stressful life events (SLEs) are well-established proximal predictors of the onset of depression. However, the fundamental causes of interindividual differences in depression outcomes are poorly understood. This study addressed this depression susceptibility mechanism using a well-powered sample of adults living in China. METHODS Healthy participants with SLEs (n = 185; mean = 47.51 years, 49.73% female), drawn from a longitudinal study on the development of depression, underwent diffusion tensor imaging, interleukin-6 (IL-6) level measurement, and trimonthly standardized clinical and scale evaluations within a two-year period. RESULTS Receiver operating characteristic analyses indicated that reduced feeder connection and HIP.R nodal efficiency improved the predictive accuracy of post-SLEs depression (ORfeeder = 0.623, AUC = 0.869, P < 0.001; ORHIP = 0.459, AUC = 0.855, P < 0.001). The successfully established path analysis model confirmed the significant partial effect of SLEs-IL-6-white matter (WM) network differences-depression (onset and severity) (x2/8 = 1.453, goodness-of-fit [GFI] = 0.935, standard root-mean-square error of approximation [SRMR] = 0.024). Females, individuals with lower exercise frequency (EF) or annual household income (AHI) were more likely to have higher IL-6 level after SLEs (βint-female⁎SLEs = -0.420, P < 0.001; βint-exercise⁎SLEs = -0.412, P < 0.001; βint-income⁎SLEs = -0.302, P = 0.005). LIMITATIONS The sample size was restricted due to the limited incidence rate and prospective follow-up design. CONCLUSIONS Our results suggested that among healthy adults after SLEs, those who exhibited abnormal IL-6-WM differences were susceptible to developing depression. Females, lower AHI or EF might account for an increased risk of developing these abnormal IL-6-WM differences.
Collapse
|
15
|
Zhao Y, Chen R, Xiao D, Zhang L, Song D, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. A Comparative Transcriptomic Analysis Reveals That HSP90AB1 Is Involved in the Immune and Inflammatory Responses to Porcine Deltacoronavirus Infection. Int J Mol Sci 2022; 23:ijms23063280. [PMID: 35328701 PMCID: PMC8953809 DOI: 10.3390/ijms23063280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-180-4845-1618
| |
Collapse
|
16
|
Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, Song X, Liu K, Ren Z, Wang Y. Hsp90 Inhibitors Prevent HSV-1 Replication by Directly Targeting UL42-Hsp90 Complex. Front Microbiol 2022; 12:797279. [PMID: 35185822 PMCID: PMC8851068 DOI: 10.3389/fmicb.2021.797279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type I (HSV-1) is a member of the Alphaherpesvirinae family, which could initiate labial herpes caused by the reactivation of HSV-1 primary infection, and secondary infection even causes herpes encephalitis. The study presented here demonstrates that Hsp90 inhibitors (AT-533 and 17-AAG) directly targeted the HSV-1 UL42-Hsp90 complex, and Hsp90 interacted with HSV-1 UL42 in silicon and experiment. Interestingly, Hsp90 inhibitors also reduced virus titers of ACV-resistant clinical HSV-1 strains (153 and blue strain), revealing that HSV-1 UL42 would be a new target against ACV-resistant HSV-1 strains. Altogether, this present study indicates that Hsp90 inhibitors prevent HSV-1 proliferation by regulating the interaction between Hsp90 and HSV-1 UL42, suggesting a promising target for anti-HSV-1 therapies in the replication.
Collapse
Affiliation(s)
- Shurong Qin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Hu
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shimin Lin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhe Ren
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Wu Y, Li M, Guo Y, Liu T, Zhong L, Huang C, Ye C, Liu Q, Ren Z, Wang Y. The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:345-352. [PMID: 35137361 DOI: 10.1007/s13318-022-00757-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES AT-533 is a novel heat shock protein 90 inhibitor, which exhibits various biological activities in vitro and in vivo. Cytochrome P450 (CYP) enzymes in the liver are involved in the biotransformation of drugs and considered to be essential indicators of liver toxicity. The aim of this study was to assess the effect of AT-533, either as active pharmaceutical ingredient or in gel form, on liver CYP enzymes. METHODS The effect of AT-533 or AT-533 gel on rat liver cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, was analyzed using LC-MS/MS. RESULTS AT-533 and AT-533 gel did not significantly increase or reduce the enzymatic activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 at any treatment dose. CONCLUSIONS AT-533 and AT-533 gel did not have any effect on CYP activity and may be considered safe for external use in gel form, as an alternative to conventional treatment.
Collapse
Affiliation(s)
- Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Menghe Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yuying Guo
- Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China
| | - Tao Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Cuifang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Qiuying Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China.,Department of pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China. .,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China. .,Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China.
| |
Collapse
|
18
|
Song X, Wang Y, Li F, Cao W, Zeng Q, Qin S, Wang Z, Jia J, Xiao J, Hu X, Liu K, Wang Y, Ren Z. Hsp90 Inhibitors Inhibit the Entry of Herpes Simplex Virus 1 Into Neuron Cells by Regulating Cofilin-Mediated F-Actin Reorganization. Front Microbiol 2022; 12:799890. [PMID: 35082770 PMCID: PMC8785254 DOI: 10.3389/fmicb.2021.799890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common neurotropic virus, the herpes simplex encephalitis (HSE) caused by which is considered to be the most common sporadic but fatal encephalitis. Traditional antiviral drugs against HSV-1 are limited to nucleoside analogs targeting viral factors. Inhibition of heat shock protein 90 (Hsp90) has potent anti-HSV-1 activities via numerous mechanisms, but the effects of Hsp90 inhibitors on HSV-1 infection in neuronal cells, especially in the phase of virus entry, are still unknown. In this study, we aimed to investigate the effects of the Hsp90 inhibitors on HSV-1 infection of neuronal cells. Interestingly, we found that Hsp90 inhibitors promoted viral adsorption but inhibited subsequent penetration in neuronal cell lines and primary neurons, which jointly confers the antiviral activity of the Hsp90 inhibitors. Mechanically, Hsp90 inhibitors mainly impaired the interaction between Hsp90 and cofilin, resulting in reduced cofilin membrane distribution, which led to F-actin polymerization to promote viral attachment. However, excessive polymerization of F-actin inhibited subsequent viral penetration. Consequently, unidirectional F-actin polymerization limits the entry of HSV-1 virions into neuron cells. Our research extended the molecular mechanism of Hsp90 in HSV-1 infection in neuron cells and provided a theoretical basis for developing antiviral drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Wenyan Cao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Zhao Y, Xiao D, Zhang L, Song D, Chen R, Li S, Liao Y, Wen Y, Liu W, Yu E, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. HSP90 inhibitors 17-AAG and VER-82576 inhibit porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 265:109316. [PMID: 34954542 DOI: 10.1016/j.vetmic.2021.109316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is highly pathogenic to piglets, and no specific drugs or vaccines are available for the prevention and treatment of PDCoV infection, the need for antiviral therapies is pressing. HSP90 inhibitors have potent inhibitory effects against the replication of numerous viruses, hence we evaluated three HSP90 inhibitors, 17-AAG, VER-82576, and KW-2478, for their effects on PDCoV infection in vitro. We evaluated their effectivenesses at suppressing PDCoV by qRT-PCR, western blot, and TCID50 assay, and found that 17-AAG and VER-82576 inhibited PDCoV at the early stage of replication, while KW-2478 showed no significant antiviral activity at any stage of infection. These results indicated that the PDCoV-inhibitory effects of 17-AAG and VER-82576 might be exerted by targeting host cell factor HSP90AB1 but not HSP90AA1. Further study showed that HSP90AB1 mRNA and protein levels were not significantly different in 17-AAG and VER-82576-treated cells versus control cells. 17-AAG and VER-82576 were also evaluated for their effects on the expressions of TNF-α, IL-6, and IL-12, which are PDCoV-induced proinflammatory cytokines. We found that both 17-AAG and VER-82576 inhibited the expressions of TNF-α, IL-6, and IL-12 to varying degrees, but in a dose dependent manner. From our data we can conclude that the HSP90 inhibitors 17-AAG and VER-82576 are promising candidates for the treatment of PDCoV infection.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
20
|
TAS-116, a Well-Tolerated Hsp90 Inhibitor, Prevents the Activation of the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22094875. [PMID: 34062977 PMCID: PMC8125426 DOI: 10.3390/ijms22094875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/27/2023] Open
Abstract
Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1β. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1α-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1β were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1β. TAS-116 has a better in vitro therapeutic index than geldanamycin. In summary, TAS-116 appears to be a well-tolerated Hsp90 inhibitor, with the capability to prevent the activation of the NLRP3 inflammasome in human RPE cells.
Collapse
|
21
|
Wu Y, Song X, Qin S, Chen P, Huang L, Wang Q, Shan T, Liang F, Liao X, Liu Q, Huang Y, Wang Y. Subacute toxicological evaluation of AT-533 and AT-533 gel in Sprague-Dawley rats. Exp Ther Med 2021; 21:632. [PMID: 33968163 PMCID: PMC8097234 DOI: 10.3892/etm.2021.10064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
As a novel heat shock protein 90 inhibitor, AT-533 exhibits various biological activities in vitro, including anti-viral, anti-tumor and anti-inflammatory activities. Moreover, AT-533 gel, a gel dosage form of AT-533, has been suggested to have anti-keratitis and herpes simplex virus type-1 infection-induced effects on the skin lesions of animals. However, the safety evaluation of AT-533 and AT-533 gel has, to the best of our knowledge, not been examined in in vivo toxicological tests. Therefore, these toxicological tests were carried out in the present study. A 30-day subacute toxicity test for AT-533 was conducted at doses of 1, 2 and 4 mg/kg in Sprague-Dawley rats, while that for AT-533 gel was conducted using a single dose of 5 g/kg. The toxicological tests showed that a high-dose of AT-533 caused lethality and side effects in Sprague-Dawley rats. However, no mortality, loss of appetite and body weight, adverse reactions, or toxicologically relevant alterations in hematology, biochemistry and macroscopic findings (except for skin) occurred in rats exposed to low-dose AT-533 and single-dose AT-533 gel (5 g/kg) during a 30-day subacute dermic toxicity study. The aforementioned results suggested that AT-533 gel is non-toxic for Sprague-Dawley rats, as shown by a dermic subacute toxicity test and that except for slight skin irritation, AT-533 gel had almost no side effects when administered percutaneously for 30 days.
Collapse
Affiliation(s)
- Yanting Wu
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaowei Song
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pengxiao Chen
- Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China
| | - Lianzhou Huang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiaoli Wang
- Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China
| | - Tianhao Shan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Feng Liang
- Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaofeng Liao
- Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China
| | - Qiuying Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Yunsheng Huang
- Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou (Jinan) Biomedicine Research and Development Center Co. Ltd, Guangzhou, Guangdong 510632, P.R. China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
22
|
Peng YF, Lin H, Liu DC, Zhu XY, Huang N, Wei YX, Li L. Heat shock protein 90 inhibitor ameliorates pancreatic fibrosis by degradation of transforming growth factor-β receptor. Cell Signal 2021; 84:110001. [PMID: 33812911 DOI: 10.1016/j.cellsig.2021.110001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Pancreatic fibrosis increases pancreatic cancer risk in chronic pancreatitis (CP). Pancreatic stellate cells (PSCs) play a critical role in pancreatic fibrosis by transforming growth factor-β (TGFβ) has been shown to inhibit transforming growth factor-β receptor (TGFβR)-mediated Smad and no-Smad signaling pathways. Thus, the effects of Hsp90 inhibitor on pancreatic fibrosis are evaluated in CP mice, and the association between Hsp90 and biological functions of PSCs is further investigated in vitro. METHODS The effects of Hsp90 inhibitor 17AAG on pancreatic fibrosis were assessed in caerulein-induced CP mice, and primary PSCs were used to determine the role of Hsp90 inhibitor 17AAG in vitro. RESULTS We observed increased expression of Hsp90 in pancreatic tissues of caerulein-induced CP mice. Hsp90 inhibitor 17AAG ameliorated pancreatic inflammation and fibrosis in caerulein-induced CP mice. In vitro, Hsp90 inhibitor 17AAG inhibited TGFβ1-induced activation and extracellular matrix accumulation of PSCs by blocking TGFβR-mediated Smad2/3 and PI3K /Akt/GSK-3β signaling pathways.Hsp90 inhibitor 17AAG degraded TGFβRII by a ubiquitin-proteasome pathway, co-immunoprecipitation showed an interaction between Hsp90 and TGFβRII in PSCs. CONCLUSIONS The study suggests that an Hsp90 inhibitor 17AAG remarkable prevents the development of pancreatic fibrosis in caerulein-induced CP mice, and suppresses activation and extracellular matrix accumulation of PSCs in vitro. The current results provide a potential treatment strategy based on Hsp90 inhibition for pancreatic fibrosis in CP.
Collapse
Affiliation(s)
- You-Fan Peng
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Pancreatic Research Institute, Southeast University, Nanjing, China
| | - Hao Lin
- Pancreatic Research Institute, Southeast University, Nanjing, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - De-Chen Liu
- Pancreatic Research Institute, Southeast University, Nanjing, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiang-Yun Zhu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Pancreatic Research Institute, Southeast University, Nanjing, China
| | - Nan Huang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Pancreatic Research Institute, Southeast University, Nanjing, China
| | - Ying-Xiang Wei
- Department of Ultrasonic Diagnosis, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Pancreatic Research Institute, Southeast University, Nanjing, China.
| |
Collapse
|
23
|
Carnosol inhibits inflammasome activation by directly targeting HSP90 to treat inflammasome-mediated diseases. Cell Death Dis 2020; 11:252. [PMID: 32312957 PMCID: PMC7170921 DOI: 10.1038/s41419-020-2460-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant activation of inflammasomes, a group of protein complexes, is pathogenic in a variety of metabolic and inflammation-related diseases. Here, we report that carnosol inhibits NLRP3 inflammasome activation by directly targeting heat-shock protein 90 (HSP90), which is essential for NLRP3 inflammasome activity, thereby treating inflammasome-mediated diseases. Our data demonstrate that carnosol inhibits NLRP3 inflammasome activation in primary mouse bone marrow-derived macrophages (BMDMs), THP-1 cells and human peripheral blood mononuclear cells (hPBMCs). Mechanistically, carnosol inhibits inflammasome activation by binding to HSP90 and then inhibiting its ATPase activity. In vivo, our results show that carnosol has remarkable therapeutic effects in mouse models of NLRP3 inflammasome-mediated diseases, including endotoxemia and nonalcoholic steatohepatitis (NASH). Our data also suggest that intraperitoneal administration of carnosol (120 mg/kg) once daily for two weeks is well tolerated in mice. Thus, our study reveals the inhibitory effect of carnosol on inflammasome activation and demonstrates that carnosol is a safe and effective candidate for the treatment of inflammasome-mediated diseases.
Collapse
|
24
|
Zhang PC, Liu X, Li MM, Ma YY, Sun HT, Tian XY, Wang Y, Liu M, Fu LS, Wang YF, Chen HY, Liu Z. AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol 2019; 172:113771. [PMID: 31863779 DOI: 10.1016/j.bcp.2019.113771] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The inhibition of angiogenesis is suggested to be an attractive strategy for cancer therapeutics. Heat shock protein 90 (Hsp90) is closely related to tumorigenesis as it regulates the stabilization and activated states of many client proteins that are essential for cell survival and tumor growth. Here, we investigated the mechanism whereby AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and tumor angiogenesis. Based on our results, AT-533 suppressed the tube formation, cell migration, and invasion of human umbilical vein endothelial cells (HUVECs), and was more effective than the Hsp90 inhibitor, 17-AAG. Furthermore, AT-533 inhibited angiogenesis in the aortic ring, Matrigel plug, and chorioallantoic membrane (CAM) models. Mechanically, AT-533 inhibited the activation of VEGFR-2 and the downstream pathways, including Akt/mTOR/p70S6K, Erk1/2 and FAK, in HUVECs, and the viability of breast cancer cells and the HIF-1α/VEGF signaling pathway under hypoxia. In vivo, AT-533 also inhibited tumor growth and angiogenesis by inducing apoptosis and the HIF-1α/VEGF signaling pathway in breast cancer cells. Taken together, our findings indicate that the Hsp90 inhibitor, AT-533, suppresses breast cancer growth and angiogenesis by blocking the HIF-1α/VEGF/VEGFR-2 signaling pathway. AT-533 may thus be a potentially useful drug candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Peng-Chao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao Liu
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510632, China
| | - Man-Mei Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yan-Yan Ma
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Tao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xu-Yan Tian
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510632, China
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang-Shun Fu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Fei Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Yuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510632, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Bohush A, Bieganowski P, Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20204976. [PMID: 31600883 PMCID: PMC6834326 DOI: 10.3390/ijms20204976] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Paweł Bieganowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
26
|
Heat Shock Proteins and Inflammasomes. Int J Mol Sci 2019; 20:ijms20184508. [PMID: 31547225 PMCID: PMC6771073 DOI: 10.3390/ijms20184508] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
Heat shock proteins (HSP) regulate inflammation in many physiological contexts. However, inflammation is a broad process, involving numerous cytokines produced by different molecular pathways with multiple functions. In this review, we focused on the particular role of HSP on the inflammasomes intracellular platforms activated by danger signals and that enable activation of inflammatory caspases, mainly caspase-1, leading to the production of the pro-inflammatory cytokine IL-1β. Interestingly, some members of the HSP family favor inflammasomes activation whereas others inhibit it, suggesting that HSP modulators for therapeutic purposes, must be carefully chosen.
Collapse
|
27
|
The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci 2019; 20:ijms20133328. [PMID: 31284572 PMCID: PMC6651423 DOI: 10.3390/ijms20133328] [Citation(s) in RCA: 1985] [Impact Index Per Article: 397.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome is a critical component of the innate immune system that mediates caspase-1 activation and the secretion of proinflammatory cytokines IL-1β/IL-18 in response to microbial infection and cellular damage. However, the aberrant activation of the NLRP3 inflammasome has been linked with several inflammatory disorders, which include cryopyrin-associated periodic syndromes, Alzheimer's disease, diabetes, and atherosclerosis. The NLRP3 inflammasome is activated by diverse stimuli, and multiple molecular and cellular events, including ionic flux, mitochondrial dysfunction, and the production of reactive oxygen species, and lysosomal damage have been shown to trigger its activation. How NLRP3 responds to those signaling events and initiates the assembly of the NLRP3 inflammasome is not fully understood. In this review, we summarize our current understanding of the mechanisms of NLRP3 inflammasome activation by multiple signaling events, and its regulation by post-translational modifications and interacting partners of NLRP3.
Collapse
|