1
|
Farrim MI, Gomes A, Menezes R, Milenkovic D. (Poly)phenols and diabetes: From effects to mechanisms by systematic multigenomic analysis. Ageing Res Rev 2024; 102:102557. [PMID: 39490618 DOI: 10.1016/j.arr.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Diabetes is a chronic and multifactorial metabolic disease with increasing numbers of patients worldwide, characterized by loss of pancreatic β-cell mass and function with subsequent insulin deficiency. Thus, restoring functional β-cells could significantly impact disease management. The beneficial effects of natural compounds, namely (poly)phenols, in diabetes have gained increasing interest, due to their pleiotropic actions in several cellular processes, including in glucose homeostasis. These compounds are able to modulate nutri(epi)genomic mechanisms by interacting with cell signaling proteins and transcription factors (TFs). However, the underlying mechanisms of action, particularly of (poly)phenol metabolites resulting from digestion and colonic microbiota action, are yet to be elucidated. This study explored the multigenomic effects of (poly)phenols and their metabolites to uncover modulatory networks and mechanisms linked to diabetes. Published studies on gene expression alterations modulated by (poly)phenolic compounds or (poly)phenol-rich extracts were integrated, encompassing studies conducted on individuals with diabetes, animal models mimicking diabetes, and pancreatic β-cell lines. Bioinformatic analysis identified differentially expressed genes and potential regulatory factors, with roles in cell signaling pathways (FoxO, AMPK, p53), endocrine resistance, immune system pathways, apoptosis, and cellular senescence. Interestingly, in silico 3D docking analyses revealed potential interactions between key TFs (FOXO1, PPARG, SIRT1, and MAFA) and some metabolites. Apigenin, luteolin, and naringenin glucuronide forms showed the best binding capacity to SIRT1. The integrative analysis of (poly)phenol metabolites data highlights the potential of these molecules for nutraceutical/pharmaceutical development aimed at managing diabetes whose incidence increases with age.
Collapse
Affiliation(s)
- Maria Inês Farrim
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Universidad de Alcalá, Escuela de Doctorado, Madrid, Spain; Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Andreia Gomes
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Regina Menezes
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal.
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Chao CT, Kuo FC, Lin SH. Epigenetically regulated inflammation in vascular senescence and renal progression of chronic kidney disease. Semin Cell Dev Biol 2024; 154:305-315. [PMID: 36241561 DOI: 10.1016/j.semcdb.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Chronic kidney disease (CKD) and its complications, including vascular senescence and progressive renal fibrosis, are associated with inflammation. Vascular senescence, in particular, has emerged as an instrumental mediator of vascular inflammation that potentially worsens renal function. Epigenetically regulated inflammation involving histone modification, DNA methylation, actions of microRNAs and other non-coding RNAs, and their reciprocal reactions during vascular senescence and inflammaging are underappreciated. Their synergistic effects can contribute to CKD progression. Vascular senotherapeutics or pharmacological anti-senescent therapies based on epigenetic machineries can therefore be plausible options for ameliorating vascular aging and even halting the worsening of renal fibrosis. These include histone deacetylase modulators, histone methyltransferase modulators, other histone modification effectors, DNA methyltransferase inhibitors, telomerase reverse transcriptase enhancers, microRNA mimic delivery, and small molecules with microRNA-regulating potentials. Some of these molecules have already been tested and have shown anecdotal evidence for treating uremic vasculopathy and renal fibrosis, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Nephrology division, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhang B, Xi Y, Huang Y, Zhang Y, Guo F, Yang H. Integration of single-nucleus RNA sequencing and network disturbance to elucidate crosstalk between multicomponent drugs and trigeminal ganglia cells in migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117286. [PMID: 37838292 DOI: 10.1016/j.jep.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Ren X, Yu C, Peng L, Gu H, Xiao Y, Tang Y, He H, Xiang L, Wang Y, Jiang Y. Compliance with the EAT-Lancet diet and risk of colorectal cancer: a prospective cohort study in 98,415 American adults. Front Nutr 2023; 10:1264178. [PMID: 37927505 PMCID: PMC10621045 DOI: 10.3389/fnut.2023.1264178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Background The EAT-Lancet diet (ELD) is a recommended dietary pattern for achieving simultaneous improvements in both individual health and environmental sustainability. While research on the association between ELD and colorectal cancer (CRC) remains scarce, the potential impact of nutrition on CRC prevention and progression is a topic of growing interest. This study aims to investigate the relationship between adherence to the ELD and the risk of CRC, shedding light on the role of nutrition in CRC prevention. Methods A total of 98,415 participants were included. A Diet History Questionnaire (DHQ) was used to collect dietary information, and an ELD score was used to assess adherence to ELD. Higher scores indicated greater adherence. Cox hazard regression analyses were conducted to examine whether there were associations between the ELD score and CRC risk. The restricted cubic spline (RCS) model was used to further explore the dose-response association between the ELD score and CRC incidence. Subgroup analyses were conducted to identify potential modifiers that interacted with ELD on CRC incidence, and sensitivity analyses were performed to evaluate the robustness of the established association. Results During a mean follow-up of 8.82 years, a total of 1,054 CRC cases were documented. We found a statistically significant correlation between the ELD score and CRC risk (Q4 vs. Q1: HR 0.81, 95% CI 0.67-0.98; P for trend = 0.034) after adjusting for potential confounders. No statistically significant associations were discovered between ELD adherence and CRC by anatomical site. Subgroup analyses found no interactional factor, sensitivity analyses, and the RCS model showed a robustness and linearity association (P-linearity >0.05). Conclusion We concluded that adherence to ELD contributes to the prevention of CRC.
Collapse
Affiliation(s)
- Xiaorui Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuanchuan Yu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Gu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Xiao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Xiang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yahui Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Saavedra D, Añé-Kourí AL, Barzilai N, Caruso C, Cho KH, Fontana L, Franceschi C, Frasca D, Ledón N, Niedernhofer LJ, Pereira K, Robbins PD, Silva A, Suarez GM, Berghe WV, von Zglinicki T, Pawelec G, Lage A. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing 2023; 20:25. [PMID: 37291596 PMCID: PMC10248980 DOI: 10.1186/s12979-023-00352-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.
Collapse
Affiliation(s)
- Danay Saavedra
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba.
| | - Ana Laura Añé-Kourí
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, United States
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
- Raydel Research Institute, Medical Innovation Complex, Seoul, Republic of Korea
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nuris Ledón
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | | | - Karla Pereira
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Paul D Robbins
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexa Silva
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Gisela M Suarez
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), University of Antwerp, Wilrijk, 2610, Belgium
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Agustín Lage
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| |
Collapse
|
8
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
9
|
Krga I, Ruskovska T, Milenkovic D. Editorial: Plant food bioactives, genomics, and health effects. Front Nutr 2023; 10:1166149. [PMID: 36969822 PMCID: PMC10031111 DOI: 10.3389/fnut.2023.1166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Affiliation(s)
- Irena Krga
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Geng Q, Liu B, Cao Z, Li L, Lu P, Lin L, Yan L, Lu C. Ethnobotany, phytochemistry and pharmacological properties of Fagopyri Dibotryis Rhizoma: A review. Front Pharmacol 2023; 14:1095554. [PMID: 36950009 PMCID: PMC10025315 DOI: 10.3389/fphar.2023.1095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Fagopyri Dibotryis Rhizoma (FDR) is an effective Chinese herbal medicine with a long history of use in China. FDR is effective in heat clearing and detoxifying, promotion of blood circulation, relieving carbuncles, dispelling wind, and removing dampness. Its seeds also have high nutritional value, are rich in protein, and contain a variety of mineral elements and vitamins. Therefore, FDR is considered a natural product with medical and economic benefits, and its chemical composition and pharmacological activity are of interest to scientists. The current review provides an overview of the available scientific information on FDR, particularly its botany, chemical constituents, and pharmacological activities. Various sources of valid and comprehensive relevant information were consulted, including the China National Knowledge Infrastructure, Web of Science, and PubMed. Among the keywords used were "Fagopyri Dibotryis Rhizoma", "botanical features", "chemical composition", and "pharmacological activity" in combination. Various ailments are treated with FDR, such as diabetes, tumor, sore throat, headache, indigestion, abdominal distension, dysentery, boils, carbuncles, and rheumatism. FDR is rich in organic acids, tannins, flavonoids, steroids, and triterpenoids. Experiments performed in vitro and in vivo showed that FDR extracts or fractions had a wide range of pharmacological activities, including antitumor, anti-inflammatory, immunomodulatory, antioxidant, antimicrobial, and antidiabetic. The current review provides an integrative perspective on the botany, phytochemistry and pharmacological activities of FDR. FDR may be used as a medicine and food. Based on its chemical composition and pharmacological effects, the main active ingredients of FDR are organic acids, tannins, and flavonoids, and it has obvious antitumor pharmacological activity against a variety of malignant tumors. Therefore, FDR is worthy of further study and application as a potential antitumor drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
12
|
Edwards SJ, Carter S, Nicholson T, Allen SL, Morgan PT, Jones SW, Rendeiro C, Breen L. (-)-Epicatechin and its colonic metabolite hippuric acid protect against dexamethasone-induced atrophy in skeletal muscle cells. J Nutr Biochem 2022; 110:109150. [PMID: 36049668 DOI: 10.1016/j.jnutbio.2022.109150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Cocoa flavanols have been shown to improve muscle function and may offer a novel approach to protect against muscle atrophy. Hippuric acid (HA) is a colonic metabolite of (-)-epicatechin (EPI), the primary bioactive compound of cocoa, and may be responsible for the associations between cocoa supplementation and muscle metabolic alterations. Accordingly, we investigated the effects of EPI and HA upon skeletal muscle morphology and metabolism within an in vitro model of muscle atrophy. Under atrophy-like conditions (24h 100μM dexamethasone (DEX)), C2C12 myotube diameter was significantly greater following co-incubation with either 25μM HA (11.19±0.39μm) or 25μM EPI (11.01±0.21μm) compared to the vehicle control (VC; 7.61±0.16μm, both P < .001). In basal and leucine-stimulated states, there was a significant reduction in myotube protein synthesis (MPS) rates following DEX treatment in VC (P = .024). Interestingly, co-incubation with EPI or HA abrogated the DEX-induced reductions in MPS rates, whereas no significant differences versus control treated myotubes (CTL) were noted. Furthermore, co-incubation with EPI or HA partially attenuated the increase in proteolysis seen in DEX-treated cells, preserving LC3 α/β II:I and caspase-3 protein expression in atrophy-like conditions. The protein content of PGC1α, ACC, and TFAM (regulators of mitochondrial function) were significantly lower in DEX-treated versus. CTL cells (all P < .050). However, co-incubation with EPI or HA was unable to prevent these DEX-induced alterations. For the first time we demonstrate that EPI and HA exert anti-atrophic effects on C2C12 myotubes, providing novel insight into the association between flavanol supplementation and favourable effects on muscle health.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Steven Carter
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Department for Health, University of Bath, Bath, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sophie Louise Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Simon Wyn Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK.
| |
Collapse
|
13
|
Milenkovic D, Rodriguez‐Mateos A, Lucosz M, Istas G, Declerck K, Sansone R, Deenen R, Köhrer K, Corral‐Jara KF, Altschmied J, Haendeler J, Kelm M, Berghe WV, Heiss C. Flavanol Consumption in Healthy Men Preserves Integrity of Immunological-Endothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Mol Nutr Food Res 2022; 66:e2100991. [PMID: 35094491 PMCID: PMC9787825 DOI: 10.1002/mnfr.202100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Indexed: 12/30/2022]
Abstract
SCOPE While cocoa flavanol (CF) consumption improves cardiovascular risk biomarkers, molecular mechanisms underlying their protective effects are not understood. OBJECTIVE To investigate nutri(epi)genomic effects of CF and identify regulatory networks potential mediating vascular health benefits. METHODS AND RESULTS Twenty healthy middle-aged men consume CF (bi-daily 450 mg) or control drinks for 1 month. Microarray analysis identifies 2235 differentially expressed genes (DEG) involved in processes regulating immune response, cell adhesion, or cytoskeleton organization. Distinct patterns of DEG correlate with CF-related changes in endothelial function, arterial stiffness, and blood pressure. DEG profile negatively correlates with expression profiles of cardiovascular disease patients. CF modulated DNA methylation profile of genes implicates in cell adhesion, actin cytoskeleton organization, or cell signaling. In silico docking analyses indicate that CF metabolites have the potential of binding to cell signaling proteins and transcription factors. Incubation of plasma obtained after CF consumption decrease monocyte to endothelial adhesion and dose-dependently increase nitric oxide-dependent chemotaxis of circulating angiogenic cells further validating the biological functions of CF metabolites. CONCLUSION In healthy humans, CF consumption may mediate vascular protective effects by modulating gene expression and DNA methylation towards a cardiovascular protective effect, in agreement with clinical results, by preserving integrity of immunological-endothelial barrier functions.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of NutritionUniversity of California DavisDavisCA95616USA
- INRAEUNHUniversité Clermont AuvergneClermont‐FerrandF‐63000France
| | - Ana Rodriguez‐Mateos
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margarete Lucosz
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Geoffrey Istas
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Ken Declerck
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Roberto Sansone
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - René Deenen
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | | | - Joachim Altschmied
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Judith Haendeler
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Wim Vanden Berghe
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Christian Heiss
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Clinical Medicine SectionDepartment of Clinical and Experimental MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Vascular MedicineSurrey and Sussex NHS Healthcare TrustEast Surrey HospitalRedhillUK
| |
Collapse
|
14
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
Bapir M, Untracht GR, Cooke D, McVey JH, Skene SS, Campagnolo P, Whyte MB, Dikaios N, Rodriguez-Mateos A, Sampson DD, Sampson DM, Heiss C. Cocoa flavanol consumption improves lower extremity endothelial function in healthy individuals and people with type 2 diabetes. Food Funct 2022; 13:10439-10448. [PMID: 36164983 DOI: 10.1039/d2fo02017c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: diabetes and age are major risk factors for the development of lower extremity peripheral artery disease (PAD). Cocoa flavanol (CF) consumption is associated with lower risk for PAD and improves brachial artery (BA) endothelial function. Objectives: to assess if femoral artery (FA) endothelial function and dermal microcirculation are impaired in individuals with type 2 diabetes mellitus (T2DM) and evaluate the acute effect of CF consumption on FA endothelial function. Methods: in a randomised, controlled, double-blind, cross-over study, 22 individuals (n = 11 healthy, n = 11 T2DM) without cardiovascular disease were recruited. Participants received either 1350 mg CF or placebo capsules on 2 separate days in random order. Endothelial function was measured as flow-mediated dilation (FMD) using ultrasound of the common FA and the BA before and 2 hours after interventions. The cutaneous microvasculature was assessed using optical coherence tomography angiography. Results: baseline FA-FMD and BA-FMD were significantly lower in T2DM (FA: 3.2 ± 1.1% [SD], BA: 4.8 ± 0.8%) compared to healthy (FA: 5.5 ± 0.7%, BA: 6.0 ± 0.8%); each p < 0.001. Whereas in healthy individuals FA-FMD did not significantly differ from BA-FMD (p = 0.144), FA-FMD was significantly lower than BA-FMD in T2DM (p = 0.003) indicating pronounced and additional endothelial dysfunction of lower limb arteries (FA-FMD/BA-FMD: 94 ± 14% [healthy] vs. 68 ± 22% [T2DM], p = 0.007). The baseline FA blood flow rate (0.42 ± 0.23 vs. 0.73 ± 0.35 l min-1, p = 0.037) and microvascular dilation in response to occlusion in hands and feet were significantly lower in T2DM subjects than in healthy ones. CF increased both FA- and BA-FMD at 2 hours, compared to placebo, in both healthy and T2DM subgroups (FA-FMD effect: 2.9 ± 1.4%, BA-FMD effect 3.0 ± 3.5%, each pintervention< 0.001). In parallel, baseline FA blood flow and microvascular diameter significantly increased in feet (3.5 ± 3.5 μm, pintervention< 0.001) but not hands. Systolic blood pressure and pulse wave velocity significantly decreased after CF in both subgroups (-7.2 ± 9.6 mmHg, pintervention = 0.004; -1.3 ± 1.3 m s-1, pintervention = 0.002). Conclusions: individuals with T2DM exhibit decreased endothelial function that is more pronounced in the femoral than in the brachial artery. CFs increase endothelial function not only in the BA but also the FA both in healthy individuals and in those with T2DM who are at increased risk of developing lower extremity PAD and foot ulcers.
Collapse
Affiliation(s)
- Mariam Bapir
- Department of Clinical and Experimental Medicine, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom.
| | - Gavrielle R Untracht
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Australia.,Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Debbie Cooke
- School of Health Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - John H McVey
- Department of Biochemical Sciences, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom
| | - Simon S Skene
- Department of Clinical and Experimental Medicine, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom.
| | - Paola Campagnolo
- Department of Biochemical Sciences, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom
| | - Martin B Whyte
- Department of Clinical and Experimental Medicine, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom.
| | | | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - David D Sampson
- Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Danuta M Sampson
- Department of Clinical and Experimental Medicine, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom. .,Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, United Kingdom.,University College London, Institute of Ophthalmology, London, United Kingdom
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, School of Bioscience & Medicine, University of Surrey, Guildford, United Kingdom. .,Surrey and Sussex NHS Healthcare Trust, Redhill, United Kingdom
| |
Collapse
|
16
|
Ta-Xi-San Suppresses Atopic Dermatitis Involved in Multitarget Mechanism Using Experimental and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8441938. [PMID: 35646146 PMCID: PMC9132654 DOI: 10.1155/2022/8441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
Abstract
Atopic dermatitis (AD) is a relapsing and chronic skin inflammation with a common incidence worldwide. Ta-Xi-San (TXS) is a Chinese herbal formula usually used for atopic dermatitis in clinic; however, its active compounds and mechanisms of action are still unclear. Our study was designed to reveal the pharmacological activities, the active compounds, and the pharmacological mechanisms of TXS for atopic dermatitis. Mice were induced by 2,4-dinitrocluorobenzene (DNCB) to build atopic dermatitis model. The pathological evaluation, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) assay were performed. The UPLC-Q-Exactive-MSE and network pharmacology analysis were performed to explore active ingredients and therapeutic mechanisms of TXS. TXS treatment decreased levels of immunoglobulin E (IgE), interleukin-4 (IL-4), and tumor necrosis factor-α (TNF-α) in serum induced by DNCB. TXS reduced scratching behavior and alleviated inflammatory pathology of skin and ear. Meanwhile, TXS decreased the spleen index and increased spleen index. The UPLC-Q-Exactive-MSE results showed that 65 compounds of TXS were detected and 337 targets were fished. We collected 1371 AD disease targets, and the compound-target gene network reveled that the top 3 active ingredients were (−)-epigallocatechin gallate, apigenin, and esculetin, and the core target genes were PTGS2, PTGS1, and HSP90AA1. The KEGG pathway and GO analysis showed that TXS remedied atopic dermatitis via PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and Toll-like receptor (TLR) signaling pathway with the regulation of inflammatory response and transcription. Further, we found that the targets of PTGS2 and HSP90AA1 were both elevated in ears and skin of AD model mouse; however, TXS decreased the elevated expressions of PTGS2 and HSP90AA1. Our study revealed that TXS ameliorated AD based on (−)-epigallocatechin gallate, apigenin, and esculetin via targeting PTGS2 and HSP90AA1.
Collapse
|
17
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
18
|
The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022; 14:nu14030545. [PMID: 35276904 PMCID: PMC8840535 DOI: 10.3390/nu14030545] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of this review was to explore existing evidence from studies conducted on humans and summarize the mechanisms of action of dietary polyphenols on vascular health, blood pressure and hypertension. There is evidence that some polyphenol-rich foods, including berry fruits rich in anthocyanins, cocoa and green tea rich in flavan-3-ols, almonds and pistachios rich in hydroxycinnamic acids, and soy products rich in isoflavones, are able to improve blood pressure levels. A variety of mechanisms can elucidate the observed effects. Some limitations of the evidence, including variability of polyphenol content in plant-derived foods and human absorption, difficulty disentangling the effects of polyphenols from other dietary compounds, and discrepancy of doses between animal and human studies should be taken into account. While no single food counteracts hypertension, adopting a plant-based dietary pattern including a variety of polyphenol-rich foods is an advisable practice to improve blood pressure.
Collapse
|
19
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
20
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
21
|
Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular Docking Analysis of Flavonoid Compounds with Matrix Metalloproteinase- 8 for the Identification of Potential Effective Inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200831094703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Matrix metalloproteinase-8 (MMP-8) participates in the degradation of different
types of collagens in the extracellular matrix and basement membrane. Up-regulation of the
MMP-8 has been demonstrated in many disorders including cancer development, tooth caries, periodontal/
peri-implant soft and hard tissue degeneration, and acute/chronic inflammation. Therefore,
MMP-8 has become an encouraging target for therapeutic procedures for scientists. We carried out a
molecular docking approach to study the binding affinity of 29 flavonoids, as drug candidates, with
the MMP-8. Pharmacokinetic and toxicological properties of the compounds were also studied.
Moreover, it was attempted to identify the most important amino acids participating in ligand binding
based on the degree of each of the amino acids in the ligand-amino acid interaction network for
MMP-8.
Methods:
Three-dimensional structure of the protein was gained from the RCSB database (PDB ID: 4QKZ).
AutoDock version 4.0 and Cytoscape 3.7.2 were used for molecular docking and network analysis,
respectively. Notably, the inhibitor of the protein in the crystalline structure of the 4QKZ was considered
as a control test. Pharmacokinetic and toxicological features of compounds were predicted
using bioinformatics web tools. Post-docking analyses were performed using BIOVIA Discovery
Studio Visualizer version 19.1.0.18287.
Results and Discussions:
According to results, 24 of the studied compounds were considered to be
top potential inhibitors for MMP-8 based on their salient estimated free energy of binding and inhibition
constant as compared with the control test: Apigenin-7-glucoside, nicotiflorin, luteolin,
glabridin, taxifolin, apigenin, licochalcone A, quercetin, isorhamnetin, myricetin, herbacetin,
kaemferol, epicatechin, chrysin, amentoflavone, rutin, orientin, epiafzelechin, quercetin-3-
rhamnoside, formononetin, isoliquiritigenin, vitexin, catechine, and isoquercitrin. Moreover, His-
197 was found to be the most important amino acid involved in the ligand binding for the enzyme.
Conclusion:
The results of the current study could be used in the prevention and therapeutic procedures
of a number of disorders such as cancer progression and invasion, oral diseases, and
acute/chronic inflammation. Although, in vitro and in vivo tests are inevitable in the future.
Collapse
Affiliation(s)
- Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Athena Orangi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Khamverdi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, Fong R, Gray N, Grace PB, Mawson DH, Tym A, Wierzbicki A, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep 2020; 10:17964. [PMID: 33087825 PMCID: PMC7578063 DOI: 10.1038/s41598-020-74863-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Flavan-3-ols are a group of bioactive compounds that have been shown to improve vascular function in intervention studies. They are therefore of great interest for the development of dietary recommendation for the prevention of cardio-vascular diseases. However, there are currently no reliable data from observational studies, as the high variability in the flavan-3-ol content of food makes it difficult to estimate actual intake without nutritional biomarkers. In this study, we investigated cross-sectional associations between biomarker-estimated flavan-3-ol intake and blood pressure and other CVD risk markers, as well as longitudinal associations with CVD risk in 25,618 participants of the European Prospective Investigation into Cancer (EPIC) Norfolk cohort. High flavan-3-ol intake, achievable as part of an habitual diet, was associated with a significantly lower systolic blood pressure (- 1.9 (- 2.7; - 1.1) mmHg in men and - 2.5 (- 3.3; - 1.8) mmHg in women; lowest vs highest decile of biomarker), comparable to adherence to a Mediterranean Diet or moderate salt reduction. Subgroup analyses showed that hypertensive participants had stronger inverse association between flavan-3-ol biomarker and systolic blood pressure when compared to normotensive participants. Flavanol intake could therefore have a role in the maintenance of cardiovascular health on a population scale.
Collapse
Affiliation(s)
| | - Abigail Britten
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicola Gray
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | | | - Amy Tym
- LGC, Newmarket Road, Fordham, UK
| | | | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| |
Collapse
|
23
|
Silva J, Vanat P, Marques-da-Silva D, Rodrigues JR, Lagoa R. Metal alginates for polyphenol delivery systems: Studies on crosslinking ions and easy-to-use patches for release of protective flavonoids in skin. Bioact Mater 2020; 5:447-457. [PMID: 32280834 PMCID: PMC7139165 DOI: 10.1016/j.bioactmat.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Incorporation of bioactive natural compounds like polyphenols is an attractive approach for enhanced functionalities of biomaterials. In particular flavonoids have important pharmacological activities, and controlled release systems may be instrumental to realize the full potential of these phytochemicals. Alginate presents interesting attributes for dermal and other biomaterial applications, and studies were carried here to support the development of polyphenol-loaded alginate systems. Studies of capillary viscosity indicated that ionic medium is an effective strategy to modulate the polyelectrolyte effect and viscosity properties of alginates. On gelation, considerable differences were observed between alginate gels produced with Ca2+, Ba2+, Cu2+, Fe2+, Fe3+ and Zn2+ as crosslinkers, especially concerning shrinkage and morphological regularity. Stability assays with different polyphenols in the presence of alginate-gelling cations pointed to the choice of calcium, barium and zinc as safer crosslinkers. Alginate-based films loaded with epicatechin were prepared and the kinetics of release of the flavonoid investigated. The results with calcium, barium and zinc alginate matrices indicated that the release dynamics is dependent on film thicknesses, but also on the crosslinking metal used. On these grounds, an alginate-based system of convenient use was devised, so that flavonoids can be easily loaded at simple point-of-care conditions before dermal application. This epicatechin-loaded patch was tested on an ex-vivo skin model and demonstrated capacity to deliver therapeutically relevant concentrations on skin surface. Moreover, the flavonoid released was not modified and retained full antioxidant bioactivity. The alginate-based system proposed offers a multifunctional approach for flavonoid controllable delivery and protection of skin injured or under risk.
Collapse
Affiliation(s)
- João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | - Pavlo Vanat
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | | | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
- Laboratório Associado LSRE-LCM, School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
- UCIBIO-Faculty of Science and Technology, NOVA University of Lisbon, Portugal
| |
Collapse
|
24
|
Dynamics of the Level of Myeloperoxidase and Serum Calprotectin in Local Cold Injury. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Relevance. Cold injury is defined as a complex of pathophysiological and pathomorphological changes arising as a result of local or general cooling of the human body. Endothelial dysfunction provokes a powerful cascade of cellular interactions with expressed excretory activity, which ultimately leads to a pronounced remodeling of microcirculation and a protracted process of inflammation in the focus of alterations. Aim of the study. To establish the dynamics of the level of myeloperoxidase and calprotectin in the serum of patients with local cold injury. Materials and methods. The study included 80 patients with III–IV degree lesions in the late reactive period and the period of granulation and epithelialization. The average age of patients was 38 ± 8 years. The myeloperoxidase level was measured on the 5th and 30th days from the moment of cryopreservation using multiplex analysis of blood serum. Results. The level of myeloperoxidase and serum calprotectin increases. In late reactive period (day 5), MPO level in patients with frostbite is 7.25 times higher in comparison with control values, in the period of granulation and epithelialization (day 30), it remains elevated, but only 3.63 times higher than in the control group. In the late reactive period, the level of calprotectin in the blood serum of patients with local cold injury was 4.6 times higher in comparison with control values, and on the 30th day of cryopreservation, the value of calprotectin was 4.5 times higher than in the control group. Changes in the level of myeloperoxidase and serum calprotectin reflect the flow of destructive and reparative mechanisms in tissues during local cold trauma and can be used in predicting an unfavorable prolonged course of the wound process.
Collapse
|
25
|
Semen KO, Weseler AR, Janssen MJW, Drittij-Reijnders MJ, le Noble JLML, Bast A. Effects of Monomeric and Oligomeric Flavanols on Kidney Function, Inflammation and Oxidative Stress in Runners: A Randomized Double-Blind Pilot Study. Nutrients 2020; 12:E1634. [PMID: 32492913 PMCID: PMC7353060 DOI: 10.3390/nu12061634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs are frequently used by athletes in order to prevent musculoskeletal pain and improve performance. In combination with strenuous exercise, they can contribute to a reduction of renal blood flow and promote development of kidney damage. We aimed to investigate whether monomeric and oligomeric flavanols (MOF) could reduce the severity of kidney injuries associated with the intake of 400-mg ibuprofen followed by the completion of a half-marathon in recreational athletes. In this double-blind, randomized study, the original MOF blend of extracts from grape seeds (Vitis vinifera L.) and pine bark (Pinus pinaster L.) or placebo were taken for 14 days preceding the ibuprofen/half-marathon. Urine samples were collected before and after the ibuprofen/half-marathon, and biomarkers of kidney injury, inflammation and oxidative stress were assessed. Intake of MOF significantly reduced the incidence of post-race hematuria (p = 0.0004) and lowered concentrations of interleukin (IL)-6 in the urine (p = 0.032). Urinary neutrophil-associated lipocalin, creatine, albumin, IL-8 and malondialdehyde tended to decrease. The supplementation with MOF in recreational runners appears to safely preserve kidney function, reduce inflammation and promote antioxidant defense during strenuous exercise and intake of a single dose of ibuprofen.
Collapse
Affiliation(s)
- Khrystyna O. Semen
- Campus Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| | - Antje R. Weseler
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.R.W.); (M.-J.D.-R.); (J.L.M.L.l.N.)
| | - Marcel J. W. Janssen
- Department of Clinical Chemistry and Haematology, VieCuri Medical Center Noord Limburg, 5912 BL Venlo, The Netherlands;
| | - Marie-José Drittij-Reijnders
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.R.W.); (M.-J.D.-R.); (J.L.M.L.l.N.)
| | - Jos L. M. L. le Noble
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.R.W.); (M.-J.D.-R.); (J.L.M.L.l.N.)
- Department of Intensive Care, VieCuri Medical Center Noord Limburg, 5912 BL Venlo, The Netherlands
| | - Aalt Bast
- Campus Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.R.W.); (M.-J.D.-R.); (J.L.M.L.l.N.)
| |
Collapse
|
26
|
Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020; 12:nu12051265. [PMID: 32365576 PMCID: PMC7281972 DOI: 10.3390/nu12051265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The individual response to nutrients and non-nutrient molecules can be largely affected by three important biological layers. The gut microbiome can alter the bioavailability of nutrients and other substances, the genome can influence molecule kinetics and dynamics, while the epigenome can modulate or amplify the properties of the genome. Today the use of omic techniques and bioinformatics, allow the construction of individual multilayer networks and thus the identification of personalized strategies that have recently been considered in all medical fields, including sports medicine. The composition of each athlete’s microbiome influences sports performance both directly by acting on energy metabolism and indirectly through the modulation of nutrient or non-nutrient molecule availability that ultimately affects the individual epigenome and the genome. Among non-nutrient molecules polyphenols can potentiate physical performances through different epigenetic mechanisms. Polyphenols interact with the gut microbiota, undergoing extensive metabolism to produce bioactive molecules, which act on transcription factors involved in mitochondrial biogenesis, antioxidant systems, glucose and lipid homeostasis, and DNA repair. This review focuses on polyphenols effects in sports performance considering the individual microbiota, epigenomic asset, and the genomic characteristics of athletes to understand how their supplementation could potentially help to modulate muscle inflammation and improve recovery.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence:
| | - Stefano Fortinguerra
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| | - Giada Caudullo
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
| | - Alessandro Buriani
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| |
Collapse
|
27
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
28
|
Morales-Prieto N, Huertas-Abril PV, López de Lerma N, Pacheco IL, Pérez J, Peinado R, Abril N. Pedro Ximenez sun-dried grape must: a dietary supplement for a healthy longevity. Food Funct 2020; 11:4387-4402. [DOI: 10.1039/d0fo00204f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sun-dried Pedro Ximénez white grapes must (PXM) is a potent antioxidant that regularizes apoptosis, proliferation, and regeneration of the structure and the function of aged mice liver. PXM consumption contributes to a healthy aging process.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Paula V. Huertas-Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | | | - Isabel. L. Pacheco
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Rafael Peinado
- Departamento de Química Agrícola
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| |
Collapse
|