1
|
Ma Q, Wu F, Liu X, Zhao C, Sun Y, Li Y, Zhang W, Ju H, Wang Y. 20-hydroxyecdysone suppresses bladder cancer progression via inhibiting USP21: A mechanism associated with deubiquitination and degradation of p65. Transl Oncol 2024; 45:101958. [PMID: 38663220 PMCID: PMC11059137 DOI: 10.1016/j.tranon.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and a prevalent cancer worldwide, still requiring efficient therapeutic agents and approaches. 20-Hydroxyecdysone (20-HE), a steroid hormone, can be found in insects and few plants and mediate numerous biological events to control the progression of varying diseases; however, its impacts on bladder cancer remain unclear. In the study, we found that 20-HE treatments effectively inhibited the viability and proliferation of bladder cancer cells and induced apoptosis by activating Caspase-3. The migratory and invasive potential of bladder cancer cells was markedly repressed by 20-HE in a dose-dependent manner. The inhibitory effects of 20-HE on bladder cancer were confirmed in an established xenograft mouse model, as indicated by the markedly reduced tumor growth rates and limited lung and lymph node metastasis. High-throughput RNA sequencing was performed to explore dysregulated genes in bladder cancer cells after 20-HE treatment. We identified ubiquitin-specific protease 21 (USP21) as a key deubiquitinating enzyme for bladder cancer progression and a positive correlation between USP21 and nuclear factor-κB (NF-κB)/p65 in patients. Furthermore, 20-HE treatments markedly reduced USP21 expression, NF-κB/p65 mRNA, stability and phosphorylated NF-κB/p65 expression levels in bladder cancer cells, which were validated in animal tumor tissues. Mechanistic studies showed that USP21 directly interacted with and stabilized p65 by deubiquitinating its K48-linked polyubiquitination in bladder cancer cells, which could be abolished by 20-HE treatment, contributing to p65 degradation. Finally, we found that USP21 overexpression could not only facilitate the proliferation, migration, and invasion of bladder cancer cells, but also significantly eliminated the suppressive effects of 20-HE on bladder cancer. Notably, 20-HE could still perform its anti-tumor role in bladder cancer when USP21 was knocked down with decreased NF-κB/p65 expression and activation, revealing that USP21 suppression might not be the only way for 20-HE during bladder cancer treatment. Collectively, all our results clearly demonstrated that 20-HE may function as a promising therapeutic strategy for bladder cancer treatment mainly through reducing USP21/p65 signaling expression.
Collapse
Affiliation(s)
- Qiang Ma
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Fei Wu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Xiaohui Liu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Cuifang Zhao
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yang Sun
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuanyuan Li
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Wei Zhang
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Hongge Ju
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Yukun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Chen Z, Ou Y, Ye F, Li W, Jiang H, Liu S. Machine learning identifies the role of SMAD6 in the prognosis and drug susceptibility in bladder cancer. J Cancer Res Clin Oncol 2024; 150:264. [PMID: 38767747 PMCID: PMC11106122 DOI: 10.1007/s00432-024-05798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bladder cancer (BCa) is among the most prevalent malignant tumors affecting the urinary system. Due to its highly recurrent nature, standard treatments such as surgery often fail to significantly improve patient prognosis. Our research aims to predict prognosis and identify precise therapeutic targets for novel treatment interventions. METHODS We collected and screened genes related to the TGF-β signaling pathway and performed unsupervised clustering analysis on TCGA-BLCA samples based on these genes. Our analysis revealed two novel subtypes of bladder cancer with completely different biological characteristics, including immune microenvironment, drug sensitivity, and more. Using machine learning classifiers, we identified SMAD6 as a hub gene contributing to these differences and further investigated the role of SMAD6 in bladder cancer in the single-cell transcriptome data. Additionally, we analyzed the relationship between SMAD6 and immune checkpoint genes. Finally, we performed a series of in vitro assays to verify the function of SMAD6 in bladder cancer cell lines. RESULTS We have revealed two novel subtypes of bladder cancer, among which C1 exhibits a worse prognosis, lower drug sensitivity, a more complex tumor microenvironment, and a 'colder' immune microenvironment compared to C2. We identified SMAD6 as a key gene responsible for the differences and further explored its impact on the molecular characteristics of bladder cancer. Through in vitro experiments, we found that SMAD6 promoted the prognosis of BCa patients by inhibiting the proliferation and migration of BCa cells. CONCLUSION Our study reveals two novel subtypes of BCa and identifies SMAD6 as a highly promising therapeutic target.
Collapse
Affiliation(s)
- Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Xu J, Pang B, Lan Y, Dou R, Wang S, Kang S, Zhang W, Liu Y, Zhang Y, Ping Y. Identifying the personalized driver gene sets maximally contributing to abnormality of transcriptome phenotype in glioblastoma multiforme individuals. Mol Oncol 2023; 17:2472-2490. [PMID: 37491836 PMCID: PMC10620122 DOI: 10.1002/1878-0261.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
High heterogeneity in genome and phenotype of cancer populations made it difficult to apply population-based common driver genes to the diagnosis and treatment of cancer individuals. Characterizing and identifying the personalized driver mechanism for glioblastoma multiforme (GBM) individuals were pivotal for the realization of precision medicine. We proposed an integrative method to identify the personalized driver gene sets by integrating the profiles of gene expression and genetic alterations in cancer individuals. This method coupled genetic algorithm and random walk to identify the optimal gene sets that could explain abnormality of transcriptome phenotype to the maximum extent. The personalized driver gene sets were identified for 99 GBM individuals using our method. We found that genomic alterations in between one and seven driver genes could maximally and cumulatively explain the dysfunction of cancer hallmarks across GBM individuals. The driver gene sets were distinct even in GBM individuals with significantly similar transcriptomic phenotypes. Our method identified MCM4 with rare genetic alterations as previously unknown oncogenic genes, the high expression of which were significantly associated with poor GBM prognosis. The functional experiments confirmed that knockdown of MCM4 could significantly inhibit proliferation, invasion, migration, and clone formation of the GBM cell lines U251 and U118MG, and overexpression of MCM4 significantly promoted the proliferation, invasion, migration, and clone formation of the GBM cell line U87MG. Our method could dissect the personalized driver genetic alteration sets that are pivotal for developing targeted therapy strategies and precision medicine. Our method could be extended to identify key drivers from other levels and could be applied to more cancer types.
Collapse
Affiliation(s)
- Jinyuan Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Bo Pang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yujia Lan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Renjie Dou
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Shuai Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Shaobo Kang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Wanmei Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yuanyuan Liu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yijing Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yanyan Ping
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| |
Collapse
|
4
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
5
|
Korkmaz IN, Güller U, Kalın R, Özdemir H, Küfrevioğlu Öİ. Structure-Activity Relationship of Methyl 4-Aminobenzoate Derivatives as Being Drug Candidate Targeting Glutathione Related Enzymes: in Vitro and in Silico Approaches. Chem Biodivers 2023; 20:e202201220. [PMID: 37043708 DOI: 10.1002/cbdv.202201220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, 76100, Türkiye
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Türkiye
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| |
Collapse
|
6
|
Miller HA, Rai SN, Yin X, Zhang X, Chesney JA, van Berkel VH, Frieboes HB. Lung cancer metabolomic data from tumor core biopsies enables risk-score calculation for progression-free and overall survival. Metabolomics 2022; 18:31. [PMID: 35567637 PMCID: PMC9724684 DOI: 10.1007/s11306-022-01891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Metabolomics has emerged as a powerful method to provide insight into cancer progression, including separating patients into low- and high-risk groups for overall (OS) and progression-free survival (PFS). However, survival prediction based mainly on metabolites obtained from biofluids remains elusive. OBJECTIVES This proof-of-concept study evaluates metabolites as biomarkers obtained directly from tumor core biopsies along with covariates age, sex, pathological stage at diagnosis (I/II vs. III/VI), histological subtype, and treatment vs. no treatment to risk stratify lung cancer patients in terms of OS and PFS. METHODS Tumor core biopsy samples obtained during routine lung cancer patient care at the University of Louisville Hospital and Norton Hospital were evaluated with high-resolution 2DLC-MS/MS, and the data were analyzed by Kaplan-Meier survival analysis and Cox proportional hazards regression. A linear equation was developed to stratify patients into low and high risk groups based on log-transformed intensities of key metabolites. Sparse partial least squares discriminant analysis (SPLS-DA) was performed to predict OS and PFS events. RESULTS Univariable Cox proportional hazards regression model coefficients divided by the standard errors were used as weight coefficients multiplied by log-transformed metabolite intensity, then summed to generate a risk score for each patient. Risk scores based on 10 metabolites for OS and 5 metabolites for PFS were significant predictors of survival. Risk scores were validated with SPLS-DA classification model (AUROC 0.868 for OS and AUROC 0.755 for PFS, when combined with covariates). CONCLUSION Metabolomic analysis of lung tumor core biopsies has the potential to differentiate patients into low- and high-risk groups based on OS and PFS events and probability.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
| | - Shesh N Rai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, USA
| | - Jason A Chesney
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, USA
| | - Victor H van Berkel
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, USA
| | - Hermann B Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA.
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, USA.
| |
Collapse
|
7
|
Kesebir AÖ, Güller P, Kalın R, Özdemir H, Küfrevioğlu Öİ. Methyl benzoate derivatives as inhibitors of pentose phosphate pathway, which promotes cancer progression and drug resistance: An In Silico study supported By In Vitro results. Biotechnol Appl Biochem 2022; 69:1275-1283. [DOI: 10.1002/bab.2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Pınar Güller
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science Erzurum Technical University Erzurum 25700 Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science Atatürk University Erzurum 25240 Turkey
| | | |
Collapse
|
8
|
Chung AW, Anand K, Anselme AC, Chan AA, Gupta N, Venta LA, Schwartz MR, Qian W, Xu Y, Zhang L, Kuhn J, Patel T, Rodriguez AA, Belcheva A, Darcourt J, Ensor J, Bernicker E, Pan PY, Chen SH, Lee DJ, Niravath PA, Chang JC. A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NMMA and taxane for treating chemoresistant triple-negative breast cancer. Sci Transl Med 2021; 13:eabj5070. [PMID: 34910551 DOI: 10.1126/scitranslmed.abj5070] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrew W Chung
- Texas A&M University Health Science Center, Bryan, TX 77807, USA.,Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Kartik Anand
- Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Ann C Anselme
- Texas A&M University Health Science Center, Bryan, TX 77807, USA.,Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | | | - Nakul Gupta
- Department of Radiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Luz A Venta
- Department of Radiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mary R Schwartz
- Houston Methodist Department of Pathology and Genomic Medicine, Houston, TX 77030, USA
| | - Wei Qian
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yitian Xu
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Licheng Zhang
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - John Kuhn
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tejal Patel
- Houston Methodist Cancer Center, Houston, TX 77030, USA.,Department of General Oncology MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Anna Belcheva
- Houston Methodist Cancer Center, Houston, TX 77030, USA
| | | | - Joe Ensor
- Houston Methodist Cancer Center, Houston, TX 77030, USA
| | | | - Ping-Ying Pan
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Shu Hsia Chen
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Delphine J Lee
- Lundquist Institute, Torrance, CA 90502, USA.,David Geffen School of Medicine at Los Angeles, CA 90095, USA
| | | | - Jenny C Chang
- Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Ibrahim RS, El-Banna AA. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Adv 2021; 11:11610-11626. [PMID: 35423607 PMCID: PMC8695995 DOI: 10.1039/d1ra01390d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the predominant causes of death worldwide. The new trend nowadays is to exploit natural products with the hope of developing new anticancer agents with fewer side effects. Propolis is one of these natural products which showed effectiveness in cancer treatment. The aim of this study is to understand the multi-level mechanism of action of propolis constituents in cancer treatment using an integrated approach of network pharmacology-based analysis, molecular docking and in vitro cytotoxicity testing. An inhouse database of chemical constituents from Egyptian propolis was compiled and assessed for its ADME properties using the QikProp module in the Schrodinger software. STITCH, UniProt, STRING, KEGG and DAVID databases were used for construction of constituent-target gene, gene-pathway, and constituent-target gene-pathway networks with the aid of Cytoscape 3.8.2. The network pharmacology-based analysis showed that the hit propolis constituents related to cancer targets were genistein, luteolin, benzoic acid, quercetin and vanillic acid, whereas the main cancer-associated targets were CYP1A1, CYP19A1, ESR1, NOS3, CASP3 and AKT1. Twenty-four cancer-related pathways were recognized where the most enriched ones were pathways in cancer and estrogen signaling pathway. The most enriched biological processes involved in the mechanism of action of propolis constituents in cancer treatment were negative regulation of the apoptotic process and the metabolic process and negative regulation of cellular glucuronidation. Molecular docking analysis of the top hit compounds against the most enriched target proteins in the constructed networks was carried out using the Maestro interface of the Schrodinger software. Among hit compounds, quercetin and genistein exhibited the most stabilized interaction. Finally, confirmation of the potential anticancer activity of propolis was assured by in vitro cytotoxicity testing of propolis extract on human prostate cancer (DU-145), breast adenocarcinoma (MCF-7) and colorectal adenocarcinoma (Caco-2) cell lines. This study presents deeper insights about propolis molecular mechanisms of action in cancer for the first time using an integrated approach of network pharmacology, molecular docking and in vitro testing.
Collapse
Affiliation(s)
- Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| |
Collapse
|
10
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
11
|
Zhu Z, Li Q, Xu M, Qi Z. Effect of Whole-Brain and Intensity-Modulated Radiotherapy on Serum Levels of miR-21 and Prognosis for Lung Cancer Metastatic to the Brain. Med Sci Monit 2020; 26:e924640. [PMID: 33125362 PMCID: PMC7607665 DOI: 10.12659/msm.924640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The goal of the present study was to explore the influence of whole-brain radiotherapy (WBRT) and intensity-modulated radiotherapy (IMRT) on serum levels of miR-21 and prognosis for lung cancer that has metastasized to the brain. Material/Methods Two hundred patients with lung cancer metastatic to the brain were randomized, half to the control group and half to the observation group. The observation group received WBRT and reduced-field IMRT (WBRT+RF-IMRT) and the control group received conventional-field IMRT (CF-IMRT). The total effective rate after treatment was determined. Serum levels of miR-21 were measured before and after radiotherapy with reverse transcriptase-polymerase chain reaction. In addition, tumor marker levels were measured with enzyme-linked immunosorbent assay. The relationship between miR-21 levels and tumor marker levels was assessed with a Pearson correlation coefficient test. Five-year survival was estimated with Kaplan-Meier curves. Results The total effective rate was higher in the observation group (86%) than in the control group (69%). Lower levels of miR-21 and tumor markers were seen in the observation group. Moreover, miR-21 levels were positively correlated with levels of tumor necrosis factor-α, neuron-specific enolase, SCC-Ag, and carcinoembryonic antigen. Low levels of miR-21 were associated with longer overall survival in patients with lung cancer metastatic to the brain. Conclusions WBRT+RF-IMRT is superior to CF-IMRT for lung cancer metastatic to the brain. MiR-21 may be a marker for prediction of the efficacy of radiotherapy in this disease setting.
Collapse
Affiliation(s)
- Zhensheng Zhu
- Department of Oncology, Jinan Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, Shandong, China (mainland)
| | - Qiurong Li
- Department of Lung Disease Division, Jinan Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, Shandong, China (mainland)
| | - Mingjuan Xu
- Department of Cardiology, Jinan People's Hospital, Jinan, Shandong, China (mainland)
| | - Zhongliang Qi
- Department of Oncology, Jinan Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
12
|
Belgorosky D, Girouard J, Langle YV, Hamelin-Morrissete J, Marino L, Agüero EI, Malagrino H, Reyes-Moreno C, Eiján AM. Relevance of iNOS expression in tumor growth and maintenance of cancer stem cells in a bladder cancer model. J Mol Med (Berl) 2020; 98:1615-1627. [PMID: 32955679 DOI: 10.1007/s00109-020-01973-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
The expression of inducible nitric oxide (NO) synthase (iNOS) in human bladder cancer (BC) is a poor prognostic factor associated with invasion and tumor recurrence. Here, we evaluated the relevance of iNOS expression in BC progression and in cancer stem cell (CSC) maintenance in a murine BC model. Also, iNOS expression and CSC markers were analyzed in human BC samples. iNOS inhibitors (L-NAME or 1400W) or shRNA were used on murine BC model with different iNOS expressions and invasiveness grades: MB49 (iNOS+, non-muscle invasive (NMI)) and MB49-I (iNOS++, muscle invasive (MI)), in order to analyzed cell proliferation, tumor growth, angiogenesis, number of CSC, and pluripotential marker expression. iNOS, SOX2, Oct4, and Nanog expressions were also analyzed in human BC samples by qPCR and immunohistochemistry. iNOS inhibtion reduced parameters associated with tumor progression and reduced the number of CSC, wich resulted higher in MB49-I than in MB49, in concordance with the higher expression of SOX2, Oct4, and Nanog. The expression of SOX2 was notoriously diminished, when iNOS was inhibited only in the MI cell line. Similar results were observed in human samples, where MI tumors expressed higher levels of iNOS and pluripotential genes, in comparison to NMI tumors with a positive correlation between those and iNOS, suggesting that iNOS expression is associated with CSC. iNOS plays an important role in BC progression and CSC maintenance. Its inhibition could be a potential therapeutic target to eradicate CSC, responsible for tumor recurrences. KEY MESSAGES: • iNOS expression is involved in bladder tumor development, growth, and angiogenesis. • iNOS expression is involved in bladder cancer stem cell generation and maintenance, playing an important role regulating their self-renewal capacity, especially in muscle invasive murine bladder cancer cells. • iNOS expression is higher in human muscle invasive tumors, in association with a high expression of pluripotential genes, especially of SOX2.
Collapse
Affiliation(s)
- Denise Belgorosky
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julie Girouard
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Yanina Veronica Langle
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jovane Hamelin-Morrissete
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lina Marino
- Pathology Department, IOAHR, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Imanol Agüero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Héctor Malagrino
- Urology Department, IOAHR, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Reyes-Moreno
- Medical Biology Department, Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Quebec a Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ana María Eiján
- Research Area, Instituto de Oncología Ángel H. Roffo (IOAHR), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Área Investigaciones, Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, CP1417DTB, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Chanphai P, Cloutier F, Reyes-Moreno C, Bérubé G, Tajmir-Riahi HA. Locating the binding sites of two aminobenzoic acid derivatives on tRNA: drug binding efficacy and RNA structure. J Biomol Struct Dyn 2020; 40:130-135. [PMID: 32811341 DOI: 10.1080/07391102.2020.1808076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binding of tRNA to aminobenzoic acid derivatives DAB-0 (N'-[4-(2,5-dioxo-pyrrolidin-1-yl)-benzoyl]-hydrazine carboxylic acid tert-butyl ester) and DAB-1 (N'-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-benzoyl]-hydrazine carboxylic acid tert-butyl ester) was investigated in aqueous solution at physiological pH. Thermodynamic parameters ΔH0 -4.8 to -4.30 (kJ mol-1), ΔS0 24.20 to 22 (J mol-1K-1) and ΔG0 -12 to -11.40 (kJ mol-1) showed that DAB-0 and DAB-1 readily bind tRNA via ionic interactions with DAB-1 forming stronger tRNA adducts. Similar binding sites to A-T and G-C bases were located with DAB-0 and DAB-1. The binding efficacy ranged from 40% to 50%. No alteration of tRNA conformation was detected upon drug complexation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Penparapa Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Francis Cloutier
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Department of Medical Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Gervais Bérubé
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Heidar-Ali Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|