1
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Buchanan IM, Smith TM, Gerber AP, Seibt J. Are there roles for heterogeneous ribosomes during sleep in the rodent brain? Front Mol Biosci 2022; 9:1008921. [PMID: 36275625 PMCID: PMC9582285 DOI: 10.3389/fmolb.2022.1008921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.
Collapse
Affiliation(s)
- Isla M. Buchanan
- Integrated Master Programme in Biochemistry, University of Surrey, Guildford, United Kingdom
| | - Trevor M. Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| |
Collapse
|
3
|
Jiaze Y, Sinan H, Minjie Y, Yongjie Z, Nan D, Liangwen W, Wen Z, Jianjun L, Zhiping Y. Rcl1 suppresses tumor progression of hepatocellular carcinoma: a comprehensive analysis of bioinformatics and in vitro experiments. Cancer Cell Int 2022; 22:114. [PMID: 35264160 PMCID: PMC8905783 DOI: 10.1186/s12935-022-02533-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA 3’-terminal phosphate cyclase-like protein (Rcl1) is involved in pre-rRNA processing, but its implication in cancers remains unclear. Methods RCL1 expressions in 21 malignancies was examinated through GEPIA website portal. Clinical implication data related to RCL1 level in Hepatocellular Carcinoma (HCC) samples were downloaded through TCGA, ICGC, GEO databases. Survival analysis and gene function enrichment analyses were performed through R software. The correlation between RCL1 expression and tumor immune infiltration was assessed via the TIMER2.0 database. The effects of Rcl1 overexpression or knockdown on cell growth and metastasis was evaluated by CCK8, transwell, and cell cycle assays. Results RCL1 expression is commonly down-regulated in HCC. The lower expression of RCL1 is associated with higher tumor stage, higher AFP level, vascular invasion, and poor prognosis. RCL1 expression has a significant correlation with immune cells infiltration in HCC, especially myeloid-derived suppressor cell (MDSC). Moreover, it was further identified that Rcl1 expression was reduced in HCC cell lines and negatively correlated with invasion of HCC cell lines. Immunofluorescence (IF) analysis revealed that the level of Rcl1 expression in the cytoplasm of HCC cells is significantly lower than that in the cytoplasm of L-02 cell. Moreover, both gain- and loss-of-function studies demonstrated that Rcl1 inhibited the growth and metastasis of HCC cells and regulated cell cycle progression in vitro. Conclusions Rcl1 may serve as a novel tumor suppressor in HCC, and its biological effect needs further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02533-x. Rcl1 mRNA expression is down-regulated within HCC tissues and associated with poor prognosis and disease progression. Anti-cancer effects of Rcl1 on HCC were confirmed in vitro. Rcl1 may be a potential tumor suppressor in HCC.
Collapse
Affiliation(s)
- Yu Jiaze
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Hou Sinan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Yang Minjie
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhou Yongjie
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Du Nan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Wang Liangwen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhang Wen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China.
| | - Luo Jianjun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yan Zhiping
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institution of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Factors Determining Plasticity of Responses to Drugs. Int J Mol Sci 2022; 23:ijms23042068. [PMID: 35216184 PMCID: PMC8877660 DOI: 10.3390/ijms23042068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird’s eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.
Collapse
Affiliation(s)
- Guus G.H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Marjolein M.J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tim J.M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
6
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Barros-Silva D, Klavert J, Jenster G, Jerónimo C, Lafontaine DLJ, Martens-Uzunova ES. The role of OncoSnoRNAs and Ribosomal RNA 2'-O-methylation in Cancer. RNA Biol 2021; 18:61-74. [PMID: 34775914 PMCID: PMC8677010 DOI: 10.1080/15476286.2021.1991167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2ʹ-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Daniela Barros-Silva
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Jonathan Klavert
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (Icbas-up), Porto, Portugal
| | - Denis L J Lafontaine
- Rna Molecular Biology, Fonds De La Recherche Scientifique (F.r.s./fnrs), Université Libre De Bruxelles (Ulb), BioPark Campus, Gosselies, Belgium
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
9
|
Pollutri D, Penzo M. Ribosomal Protein L10: From Function to Dysfunction. Cells 2020; 9:cells9112503. [PMID: 33227977 PMCID: PMC7699173 DOI: 10.3390/cells9112503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify RPL10 (ribosomal protein L10 gene), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function. Here, we reviewed the literature to give an overview of the role of RPL10 in physiologic and pathologic processes, including inherited disease and cancer.
Collapse
Affiliation(s)
- Daniela Pollutri
- Department of Experimental, Diagnostic and Specialty Medicine Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-214-3521
| |
Collapse
|
10
|
Johnson AG, Flynn RA, Lapointe CP, Ooi YS, Zhao ML, Richards CM, Qiao W, Yamada SB, Couthouis J, Gitler AD, Carette JE, Puglisi JD. A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Res 2020; 48:7279-7297. [PMID: 32463448 PMCID: PMC7367175 DOI: 10.1093/nar/gkaa444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Yaw Shin Ooi
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Shizuka B Yamada
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|