1
|
Arakawa H, Ishida N, Nakatsuji T, Matsumoto N, Imamura R, Shengyu D, Araya K, Horike SI, Tanaka-Yachi R, Kasahara M, Yoshioka T, Sumida Y, Ohmiya H, Daikoku T, Wakayama T, Nakamura K, Fujita KI, Kato Y. Endoplasmic reticulum transporter OAT2 regulates drug metabolism and interaction. Biochem Pharmacol 2024; 225:116322. [PMID: 38815630 DOI: 10.1016/j.bcp.2024.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Naoki Ishida
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Nakatsuji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsumi Matsumoto
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Rikako Imamura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Dai Shengyu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karin Araya
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Rieko Tanaka-Yachi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa 920-8640, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Ken-Ichi Fujita
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Wang L, Li X, Yang S, Chen X, Li J, Wang S, Zhang M, Zheng Z, Zhou J, Wang L, Wu Y. Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas. J Proteomics 2023; 270:104746. [PMID: 36210013 DOI: 10.1016/j.jprot.2022.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP), which regulates thymus development, peripheral survival and function during lifetime of CD8+ T cells. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cells destruction mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is an important animal model of T1D. Here, we deeply analyzed the MIP derived from NOD mice thymus and pancreas, and demonstrated that the thymus MIP source proteins partially shared with the MIP source proteins derived from NOD mice pancreas and β cell line. One H-2Kd restricted peptide SLC35B126-34 which was shared by MIP derived from both NOD mice pancreatic tissues and islet β-cell line, but absent in MIP from NOD thymus tissues, showed ability to stimulate IFN-γ secretion and proliferation of NOD mice splenic CD8+ T cells. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. Data are available via ProteomeXchange with identifier PXD031966. SIGNIFICANCE: The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP). The MIP presented by thymic antigen presenting cells (APCs) is crucial for shaping CD8+ T cell repertoire and self-tolerance, while the MIP presented by peripheral tissues and organs is not only involved in maintaining periphery CD8+ T cell survival and homeostasis, but also mediates immune surveillance and autoimmune responses of CD8+ T cells under pathological conditions. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by the destruction of pancreatic β cells, mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is one of important animal models of spontaneous autoimmune diabetes that shares several key features with human T1D. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a good biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. It has great significance for further clarifying the immune recognition and effect mechanism of autoreactive CD8+ T cells in the pathogenesis of T1D, and then developing antigen-specific immune intervention strategies.
Collapse
Affiliation(s)
- Lina Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Immunology, College of Basic Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiangqian Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shushu Yang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shufeng Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengni Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Yuzhang Wu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
4
|
Gabel F, Hovhannisyan V, Berkati AK, Goumon Y. Morphine-3-Glucuronide, Physiology and Behavior. Front Mol Neurosci 2022; 15:882443. [PMID: 35645730 PMCID: PMC9134088 DOI: 10.3389/fnmol.2022.882443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine remains the gold standard painkiller available to date to relieve severe pain. Morphine metabolism leads to the production of two predominant metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). This metabolism involves uridine 5'-diphospho-glucuronosyltransferases (UGTs), which catalyze the addition of a glucuronide moiety onto the C3 or C6 position of morphine. Interestingly, M3G and M6G have been shown to be biologically active. On the one hand, M6G produces potent analgesia in rodents and humans. On the other hand, M3G provokes a state of strong excitation in rodents, characterized by thermal hyperalgesia and tactile allodynia. Its coadministration with morphine or M6G also reduces the resulting analgesia. Although these behavioral effects show quite consistency in rodents, M3G effects are much more debated in humans and the identity of the receptor(s) on which M3G acts remains unclear. Indeed, M3G has little affinity for mu opioid receptor (MOR) (on which morphine binds) and its effects are retained in the presence of naloxone or naltrexone, two non-selective MOR antagonists. Paradoxically, MOR seems to be essential to M3G effects. In contrast, several studies proposed that TLR4 could mediate M3G effects since this receptor also appears to be essential to M3G-induced hyperalgesia. This review summarizes M3G's behavioral effects and potential targets in the central nervous system, as well as the mechanisms by which it might oppose analgesia.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Abdel-Karim Berkati
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
- SMPMS, Mass Spectrometry Facilities of the CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
5
|
Schwarzbaum PJ, Schachter J, Bredeston LM. The broad range di- and trinucleotide exchanger SLC35B1 displays asymmetrical affinities for ATP transport across the ER membrane. J Biol Chem 2022; 298:101537. [PMID: 35041824 PMCID: PMC9010763 DOI: 10.1016/j.jbc.2021.101537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/11/2023] Open
Abstract
In eukaryotic cells, uptake of cytosolic ATP into the endoplasmic reticulum (ER) lumen is critical for the proper functioning of chaperone proteins. The human transport protein SLC35B1 was recently postulated to mediate ATP/ADP exchange in the ER; however, the underlying molecular mechanisms mediating ATP uptake are not completely understood. Here, we extensively characterized the transport kinetics of human SLC35B1 expressed in yeast that was purified and reconstituted into liposomes. Using [α32P]ATP uptake assays, we tested the nucleotide concentration dependence of ATP/ADP exchange activity on both sides of the membrane. We found that the apparent affinities of SLC35B1 for ATP/ADP on the internal face were approximately 13 times higher than those on the external side. Because SLC35B1-containing liposomes were preferentially inside-out oriented, these results suggest a low-affinity external site and a high-affinity internal site in the ER. Three different experimental approaches indicated that ATP/ADP exchange by SLC35B1 was not strict, and that other di- and tri-nucleotides could act as suitable counter-substrates for ATP, although mononucleotides and nucleotide sugars were not transported. Finally, bioinformatic analysis and site-directed mutagenesis identified that conserved residues K117 and K120 from transmembrane helix 4 and K277 from transmembrane helix 9 play critical roles in transport. The fact that SLC35B1 can promote ATP transport in exchange for ADP or UDP suggest a more direct coupling between ATP import requirements and the need for eliminating ADP and UDP, which are generated as side products of reactions taking place in the ER-lumen.
Collapse
Affiliation(s)
- Pablo J Schwarzbaum
- Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires-CONICET, CABA, Argentina.
| | - Julieta Schachter
- Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires-CONICET, CABA, Argentina
| | - Luis M Bredeston
- Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires-CONICET, CABA, Argentina.
| |
Collapse
|
6
|
Nakamura S, Yamashita R, Miyauchi Y, Tanaka Y, Ishii Y. Adenine-related compounds modulate UDP-glucuronosyltransferase (UGT) activity in mouse liver microsomes. Xenobiotica 2021; 51:1247-1254. [PMID: 34727004 DOI: 10.1080/00498254.2021.2001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adenine-related compounds are allosteric inhibitors of UDP-glucuronosyltransferase (UGT) in rat liver microsomes (RLM) and human UGT isoforms treated with detergent or pore-forming peptide, alamethicin.To clarify whether the same is true beyond species, the effects of adenine-related compounds on 4-methylumbelliferone (4-MU) glucuronidation were examined using detergent-treated mouse liver microsomes (MLM).Brij-58 treatment of MLM increased the Vmax and the Michaelis constant, Km, of 4-MU. This study was performed using Brij-58-treated MLM as an enzyme source. ATP- and ADP-inhibited 4-MU glucuronidation. In contrast, AMP caused a 1.5-fold increase in glucuronidation. Oxidised forms, NAD+ and NADP+, potently inhibited 4-MU glucuronidation, whereas the reduced forms, NADH and NADPH, did not. Furthermore, the IC50 values of ATP, ADP, NAD+, and NADP+ were approximately 15 μM.In our previous study, ATP was the strongest inhibitor of UGT activity in RLM. However, in this study, the above-mentioned compounds inhibited 4-MU UGT in a comparable and non-competitive manner. Furthermore, AMP antagonised the inhibitory effects of ATP and ADP.These results suggest that ATP, ADP, NAD+, and NADP+ are common endogenous inhibitors of UGT beyond species.
Collapse
Affiliation(s)
- Shoji Nakamura
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryohei Yamashita
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuu Miyauchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Yoshitaka Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
8
|
Miyauchi Y, Kurohara K, Kimura A, Esaki M, Fujimoto K, Hirota Y, Takechi S, Mackenzie PI, Ishii Y, Tanaka Y. The carboxyl-terminal di-lysine motif is essential for catalytic activity of UDP-glucuronosyltransferase 1A9. Drug Metab Pharmacokinet 2020; 35:466-474. [PMID: 32883578 DOI: 10.1016/j.dmpk.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
UDP-Glucuronosyltransferase (UGT) is a type I membrane protein localized to the endoplasmic reticulum (ER). UGT has a di-lysine motif (KKXX/KXKXX) in its cytoplasmic domain, which is defined as an ER retention signal. However, our previous study has revealed that UGT2B7, one of the major UGT isoform in human, localizes to the ER in a manner that is independent of this motif. In this study, we focused on another UGT isoform, UGT1A9, and investigated the role of the di-lysine motif in its ER localization, glucuronidation activity, and homo-oligomer formation. Immunofluorescence microscopy indicated that the cytoplasmic domain of UGT1A9 functioned as an ER retention signal in a chimeric protein with CD4, but UGT1A9 itself could localize to the ER in a di-lysine motif-independent manner. In addition, UGT1A9 formed homo-oligomers in the absence of the motif. However, deletion of the di-lysine motif or substitution of lysines in the motif for alanines, severely impaired glucuronidation activity of UGT1A9. This is the first study that re-defines the cytoplasmic di-lysine motif of UGT as an essential peptide for retaining glucuronidation capacity.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.
| | - Ken Kurohara
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Esaki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Zimmer BM, Barycki JJ, Simpson MA. Integration of Sugar Metabolism and Proteoglycan Synthesis by UDP-glucose Dehydrogenase. J Histochem Cytochem 2020; 69:13-23. [PMID: 32749901 DOI: 10.1369/0022155420947500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|