1
|
Bao H, Wang C, Jin Y, Meng Q, Wu J, Liu Q, Sun H. The contributory role of GSK3β in hypertension exacerbating atherosclerosis by regulating the OMA1/PGC1α pathway. Apoptosis 2024:10.1007/s10495-024-02029-1. [PMID: 39427090 DOI: 10.1007/s10495-024-02029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Atherosclerosis is closely related to endothelial dysfunction and hypertension. GSK3β is a critical regulator in atherosclerosis. This study was carried out to investigate the effects of GSK3β on hypertension exacerbating atherosclerosis in vitro and in vivo. L-NAME + HFD-ApoE-/- mice were used for this study for 12 weeks, and their endothelial dysfunction and inflammation were analyzed. Oil red O and H&E staining revealed that treatment with LiCl, an inhibitor of GSK3β, reduced atherosclerotic lesions and lipid accumulation. The levels of lipid homeostasis and oxidation stress were attenuated following LiCl administration. LiCl-treated ApoE-/- mice showed lowered blood pressure. LiCl also suppressed the expressions of Drp1, Bax, ICAM1, VCAM1 and TNF-α compared to HFD + L-NAME induced mice and oxLDL + L-NAME-treated Human aorta endothelial cell line(HAECs). LiCl treatment increased the expressions of MFN2 and Bcl2. Mitotracker-red, MitoSOX and JC-1 staining indicated that LiCl treatment reduced mitochondrial division and ROS production, increased mitochondrial ΔΨm compared to oxLDL + L-NAME-treated HAECs. The expression of OMA1 was decreased by LiCl treatment, while PGC1α expression was increased. In HAECs, we found that OMA1 knockdown increased mitochondrial function and the expression of PGC1α. We also demonstrated LiCl increased OMA1 ubiquitination compared with the Control group, thus decreased OMA1 expression. Furthermore, siOMA1 antagonized the increased protein expressions of ICAM1, VCAM1, TNF-α, Bax and Drp1, decreased the protein expressions of Bcl2 and MFN2 by siPGC1α. Taken together, we demonstrated that GSK3β could play a contributory role in hypertension exacerbating atherosclerosis by regulating the OMA1/PGC1α pathway and inhibiting mitochondrial function.
Collapse
Affiliation(s)
- Hongjia Bao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
2
|
SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of myeloid-derived suppressor cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:214. [PMID: 36175598 DOI: 10.1007/s12032-022-01816-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 10/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the aggressive malignant tumors with high mortality, and the proliferation of myeloid-derived suppressor cells (MDSCs) could promote the metastasis of NPC through inhibiting the function of T cells. Meanwhile, SPLUNC1 was known to inhibit the malignant behavior of NPC cells, while the detailed function of SPLUNC1 in LPS-modified immune microenvironment of NPC remains unclear. To assess the impact of SPLUNC1 in immune microenvironment during the progression of NPC, NPC cells were exposed to LPS and then co-cultured with MDSCs for 48 h. RT-qPCR and western blot were performed to evaluate the mRNA and protein level of SPLUNC1, CXCL-2 and CXCR-2, respectively. The level of IL-1β, IL-6, TNF-α, PD-L1, Arg-1 and iNOS were tested by ELISA. Meanwhile, the expression of CD33+ was tested by flow cytometry. The expression of CXCL-2 and CXCR-2 in NPC cells was higher, compared to that in NP69 cells. In contrast, SPLUNC1 level in NPC cells was much lower than that in NP69 cells. SPLUNC1 level was negatively correlated with CXCL-2 and CXCR-2. Overexpression of SPLUNC1 reversed LPS-induced inflammatory responses and proliferation in NPC cells. In addition, SPLUNC1 upregulation could reverse LPS-induced proliferation of MDSCs in tumor microenvironment. Meanwhile, SPLUNC1 overexpression could regulate CXCL-2/CXCR-2 axis through decreasing CXCL-2 and CXCR-2 protein and mRNA expression. SPLUNC1 regulates LPS-induced progression of nasopharyngeal carcinoma and proliferation of MDSCs. Thus, our study might provide a theoretical basis for discovering new strategies against NPC.
Collapse
|
3
|
Zeng Y, Cao J, Li CX, Wang CY, Wu RM, Xu XL. MDM2-Mediated Ubiquitination of RXRβ Contributes to Mitochondrial Damage and Related Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23105766. [PMID: 35628577 PMCID: PMC9145909 DOI: 10.3390/ijms23105766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
A novel function of retinoid X receptor beta (RXRβ) in endothelial cells has been reported by us during the formation of atherosclerosis. Here, we extended the study to explore the cellular mechanisms of RXRβ protein stability regulation. In this study, we discovered that murine double minute-2 (MDM2) acts as an E3 ubiquitin ligase to target RXRβ for degradation. The result showed that MDM2 directly interacted with and regulated RXRβ protein stability. MDM2 promoted RXRβ poly-ubiquitination and degradation by proteasomes. Moreover, mutated MDM2 RING domain (C464A) or treatment with an MDM2 inhibitor targeting the RING domain of MDM2 lost the ability of MDM2 to regulate RXRβ protein expression and ubiquitination. Furthermore, treatment with MDM2 inhibitor alleviated oxidized low-density lipoprotein-induced mitochondrial damage, activation of TLR9/NF-κB and NLRP3/caspase-1 pathway and production of pro-inflammatory cytokines in endothelial cells. However, all these beneficial effects were reduced by the transfection of RXRβ siRNA. Moreover, pharmacological inhibition of MDM2 attenuated the development of atherosclerosis and reversed mitochondrial damage and related inflammation in the atherosclerotic process in LDLr-/- mice, along with the increased RXRβ protein expression in the aorta. Therefore, our study uncovers a previously unknown ubiquitination pathway and suggests MDM2-mediated RXRβ ubiquitination as a new therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Le Xu
- Correspondence: ; Tel.: +86-513-8505-1728
| |
Collapse
|
4
|
Xie X, Ding F, Xiao H. Knockdown of hsa_circ_0000729 Inhibits the Tumorigenesis of Non-Small Cell Lung Cancer Through Mediation of miR-1281/FOXO3 Axis. Cancer Manag Res 2021; 13:8445-8455. [PMID: 34785952 PMCID: PMC8590964 DOI: 10.2147/cmar.s318980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a subtype of lung cancer which seriously threatens the health of people. Circular RNAs (CircRNAs) are endogenous RNAs which have stable closed structure; they are known to be involved in tumorigenesis of NSCLC. Meanwhile, hsa_circ_0000729 was reported to be upregulated in NSCLC. Nevertheless, the function of hsa_circ_0000729 in NSCLC remains unclear. Methods Western blot and RT-qPCR were performed to investigate protein and mRNA levels, respectively. CCK-8 assay was performed to test the cell viability and cell death was investigated by flow cytometry. NSCLC cell pyroptosis was observed by electron microscope. In addition, the migration and invasion of NSCLC cells were detected by wound healing and transwell assay. The relation among hsa_circ_0000729, miR-1281 and FOXO3 was explored by dual luciferase reporter assay and RNA pull-down. Results Hsa_circ_0000729 was found to be upregulated in NSCLC cells, and hsa_circ_0000729 knockdown obviously suppressed the proliferation of NSCLC cells through inducing pyroptosis. In addition, silencing of hsa_circ_0000729 notably inhibited the invasion and migration of NSCLC cells. Meanwhile, hsa_circ_0000729 could bind with miR-1281, and FOXO3 was directly targeted by miR-1281. Moreover, the anti-tumor effect of hsa_circ_0000729 siRNAs on NSCLC was markedly reversed by miR-1281 antagomir. Furthermore, silencing of hsa_circ_0000729 inhibited the tumor growth of NSCLC in vivo. Conclusion Knockdown of hsa_circ_0000729 inhibits the tumorigenesis of NSCLC through mediation of miR-1281/FOXO3 axis. Thus, hsa_circ_0000729 might be served as a crucial mediator in NSCLC.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|